
Abstract
The fast simulation of large networks of spiking neurons

is a major task for the examination of biology inspired vi-
sion systems. Networks of this type are labelling features
by synchronization of spikes and there is strong demand to
simulate those effects in a real world environment. Be-
cause of the quite complex calculations for one model neu-
ron the simulation of thousands or millions of these
neurons is not efficient on existing hardware platforms. In
order to simulate closer to the real time requirement, it is
necessary to implement a dedicated hardware. Our aim is
a hardware system mainly consisting of standard compo-
nents which is as flexible as possible concerning the model
neuron but as specialized as necessary to meet our perfor-
mance requirements. Thus we decided to implement a par-
allel system with Digital Signal Processors (DSP) offering
a large on-chip-memory. One main task of this work is the
optimization of the simulation algorithm for the neurons
distributed to the DSP which means the sequential part of
simulation. This optimization benefits from the fact that
there is only a very low percentage of simultaneously ac-
tive neurons in vision networks. For communication be-
tween the nodes only spikes are distributed via a spike
switching network. Processing of the network topology is
realized by two different concepts. One idea is to compute
the synapses autonomously on the processing node by rep-
resenting a regular connection scheme with one connec-
tion mask for many neurons. Additional connections
requiring adaptability and irregular connection schemes
are stored in a shared memory. To avoid a bottleneck a
synapse caching is used within each processing node. This
paper describes the architecture of a DSP accelerator and
shows the advantages with simulation results from a typi-
cal large vision network.

1. Introduction

Efficient simulation of large pulse-coded neural net-
works (PCNN) is an important aim for further research on
biology-inspired vision systems and brain research. Inves-

tigations have shown the advantages of spiking neurons
[7][8] and special mechanisms like spike synchronization
have been found in biological brains [2][3][6]. In order to
evaluate the experimental results and the theoretical mod-
els and in order to build applicable vision systems it is nec-
essary to simulate close to the conditions of biological
systems. On the other hand the existing simulation tech-
niques for large conventional neural networks are not
adaptable for pulse-coded neural networks and simulation
of pulse-coded networks is not efficient on existing hard-
ware platforms [12][14][17] with exception of the
Spike128k-architecture [4][9]. Because increasing simula-
tion power is required we propose an enhanced
Spike128k-architecture. The aim is to simulate networks
with much more neurons and connections, to simulate
them faster, to have more flexibility for modifications of
the model neuron and to get an easier to handle system
with a higher degree of integration.

2. The Model Neuron

Although the accelerator system described in this contri-
bution is able to simulate different pulse-coded model neu-
rons it is specialized to the simulation of Eckhorn Neurons
[3]. These model neurons are modified French and Stein
neurons [5] supporting especially the synchronization
mechanisms with a modulatory dendritic linking tree. As
the Spike128k system and several simulations on other
hardware systems [12][13] also use Eckhorn neurons, sim-
ulations for our system are also based on this neuron for
comparability.

The Eckhorn model neuron uses a group of identically
structured dendritic trees as an input (Fig. 2.1). The mem-
brane potential of the neuron is driven by the postsynaptic
potentials of these trees. Although a dendritic tree may
have many synaptic weights there is only one common
leaky integrator with one common time constant for all
synapses of a tree. To reduce this restriction two trees (EP1
and EP2) with different time constants are provided for ex-
citatory inputs.

ParSPIKE - A Parallel DSP-Accelerator for Dynamic Simulation of
Large Spiking Neural Networks

Carsten Wolff, Georg Hartmann, Ulrich Rückert
Universität Paderborn, FB14 Elektrotechnik, Pohlweg 47-49, 33098 Paderborn

Email: wolff@get.uni-paderborn.de



The postsynaptic potentials of both these trees are added.
This potential is modulated by the postsynaptic potential of
the so-called linking tree (LP). The resulting potential may
be reduced by the postsynaptic potential of the inhibitory
tree (IP) globally influencing the membrane potential
(MP). The spike encoding circuitry, including the dynamic
threshold (DT), is identical to that of French and Stein.
With respect to motion detection and to the simulation of
synchronization mechanisms an adjustable axonal delay
and burst generation is added. Output spikes are trans-
ferred via weighted synapses to the input trees of other
neurons.

For realistic tests of our architecture we use a typical vi-
sion network developed by the Eckhorn group in Marburg
[19]. This network provides contour segmentation on pre-
processed input images and needs about 105 neurons and
4.106 connections. The network uses feature linking by
synchronized spikes to represent coherent objects. It is part
of the contour-form-system of a larger vision system and
shows some characteristics which should be mentioned.
The network is simulated for 2 sec of real-time correspond-
ing 2000 timeslots. During this time the network input is
stationary and in this segmentation task there is only sparse
activity in most network layers. So only 14% of the neu-
rons are active at one timeslot and only about 0.5% are
emitting a spike. In tasks of this kind the group of active
neurons changes quite slowly. We decided to use this net-
work for the test of our architecture because it combines
many typical parts of image processing with pulse-coded
neurons.

3. Simulation of Spiking Neural Networks

Most simulation systems for neural networks make use
of vector processing by mapping neural networks in matrix
representations [10]. These simulation algorithms are not
efficient for pulse-coded neural networks because of the
very complex calculations for one neuron and the sparse
connectivity. Compared to conventional neural networks
(McCulloch&Pitts neurons e.g.) matrix representations of
pulse-coded neural networks would require additional sets
of parameter vectors and matrices, and these matrices
would mainly consist of zeros.

An efficient simulation algorithm for pulse-coded neural
networks has to make use of the low spike rates and the
sparse connectivity by calculating only those neurons and
connections that are involved in the momentary activity.
These considerations lead to an individual calculation of
neuron variables and connections and consequently to a se-
quential simulation of neurons. Sequential simulation of
dynamic networks requires a timeslot simulation algorithm
which guarantees that all parameters are updated before
they are calculated again [4]. The aim of an accelerator
system under these conditions is acceleration of the se-
quential simulation algorithm, reduction of the number of
neurons and connections to be updated per timeslot, and
distribution of the neurons onto as many parallel units as
possible. Furthermore, we will show that we can benefit
from the low spike rates to solve the communication prob-
lem in this massively parallel architecture. As we can hold
the updating of neuron parameters in local nodes, the main
part of calculation requires no additional communication.

In the following, first the architecture of a node for se-

Excitatory
feeding-
inputs

S LP

P S
1

S

MP

-

+

DT

DToff

Output 
spike

Leaky-
integrator

..
.

Linking-
inputs

S
Excitatory
feeding-
inputs

S

S t IP

Inhibitory
feeding-
inputs

S

EP1

EP2

IP 

t DT

t EP1

t LP

t EP2

x D DT

1

S

1+LP
..

.
..

.
..

.
..

.
..

.
..

.
..

.

Figure 2.1: Eckhorn model neuron



quential calculation is shown and in a second step the par-
allel architecture of a system with several nodes is
described.

3.1 Sequential Simulation
The sequential simulation makes use of some concepts

from the Spike128k architecture [4][9]. The neurons are
represented by their actual state parameters which are post-
synaptic potentials, dynamic threshold and the parameters
describing the neurons behavior. These parameters are
stored in several neuron state memories with a common
address for each neuron. For reading the parameter set of
one neuron all these memories are accessed with this com-
mon neuron address.

The simulation timeslot is divided into a decay phase
and a stimulation phase. In the decay phase of a timeslot
the neuron parameters are fetched, the membrane potential
is calculated and compared with the dynamic threshold. If
the neuron is supraliminal the spike encoder is activated
and stores the neurons address onto a spike list mentioned
below. The potentials and the threshold of the neuron are
decayed due to the leaky integrators time constant and
written back to the neuron state memory. In the stimulation
phase of the timeslot the spike list is read to address the
postsynaptic neurons. The state parameters (the postsynap-
tic potentials) of these neurons are modified according to
the synaptic weights of the corresponding connections.

This simulation algorithm implements the spatio tempo-
ral integration of spikes with leaky integrators and the
spike generation with a dynamic threshold.

As previously mentioned, all addresses of neurons spik-
ing in the corresponding timeslot are collected in the spike

list. So we can achieve that only those postsynaptic neu-
rons addressed via the spike list are updated and we avoid
the calculation of all synaptic connections in every time-
slot. The connections are stored in a sender oriented way.
The neuron address of the spiking neuron (sender) address-
es a so-called stimulation information block (SIB) which
contains the neuron addresses and the synaptic weights of
the postsynaptic neurons. To allow SIBs with variable
length these blocks are indirectly addressed via a block
start memory. This block start memory contains a pointer
for every possible presynaptic neuron address and with this
pointer the SIB with the postsynaptic neurons is accessed.

Due to the selective processing of presynaptic neurons
for the mentioned segmentation network with its 4.106

connections only about 28000 connections (0.7%) are cal-
culated in each timeslot.

A second possibility to avoid unnecessary calculations is
to use a decay list. In the decay phase most neurons are to-
tally inactive and those neurons cannot emit a spike. These
neurons are of no interest and there is no need to calculate
or decay their parameters. So if the state parameters of a
neuron are on their rest values the neuron can be excluded
from further calculations until it is again stimulated. The
exclusion can be achieved by collecting the remaining neu-
rons in a decay list. This decay list is updated in both phas-
es of a timeslot. In the decay phase addresses of neurons
with non-zero potentials are put to the list, while in the
stimulation phase addresses of those neurons are collected
which receive spikes. A tag memory is used to avoid mul-
tiple entries. In the case of the segmentation network only
17500 neurons are calculated instead of the 120000 neu-
rons in the network which means a speed-up of 6.85 for the
decay phase. It should be mentioned that this high speed-
up is achieved due to the very stable group of involved
neurons in this example which is about 14% of all the neu-
rons. Networks or input stimuli with a faster changing
group of active neurons may lead to a lower speed-up.

Until now we have saved calculation time by only updat-
ing neurons addressed via the spike list and by only decay-
ing potentials of those neurons, collected on the decay list.

Figure 3.1: Simulation cycle

spike list

model neuron

EP1

EP2

LP

IP

DT

neuron memory

wij

i

j

network topology

Figure 3.1: Sender oriented topology storage

block-start-
memory

BSA

topology memory 

list-oriented interconnection storage

SIB

wij

i

j

network topology



An additional way of saving calculation time is based on
the following considerations: In the previously described
concept (mainly based on the Spike128k architecture
[4][9]), potentials are decayed in every timeslot. However,
if there is neither activation by incoming spikes nor emis-
sion of spikes, incremental potential calculations per
timeslot can be replaced by a single calculation combining
a set of timeslots. Hence, this calculation only takes place
if the neuron is stimulated or if a spike has to be emitted.

In vision networks e.g., the stimulus may move and the
activity distribution may be locally shifted. So there may
be neurons not longer receiving any input and those neu-
rons only have to be decayed until they reach their rest val-
ues. On the other hand the number of neurons receiving
spikes depends on the number of spikes in the previous
timeslot. This means that the number of processed neurons
only depends on the spike rate and the connectivity of the
network. Ifa(t) is the number of active neurons in timeslot
t, s(t) the number of spiking neurons andk the mean num-
ber of connections per neuron, we get for the number of
calculated neuronsc(t) :

(1)

instead of

(2)

for the use of a decay list algorithm. Because the spike
rate does not depend on the number of timeslots (in a cer-
tain range) that are used to represent one second of real
time the number of calculated neurons in (1) is highly de-
coupled from the resolution of timesteps.

Neurons which are only decaying to their rest values can
be stored in a list until they are resubmitted. The calcula-
tion of the exact resubmission time is quite complex due to
the many leaky integrators with different time constants.
That is the reason why we use an iterative approach.

We only calculate a lower limit of the resubmission time
assuming that the membrane potential remains unchanged
until T1 in Fig. 3.2. After this time the neuron is resubmit-
ted and the new membrane potential is calculated by de-
caying the postsynaptic potential according to the past
time. Then this process is repeated. If a neuron is stimulat-
ed during the resubmission time it obviously must be cal-
culated too.

We realize this algorithm by using two time stamps for
each neuron stored in the list. One stamp stores the timeslot
for resubmission and one stamp stores the timeslot when
the neuron was stored. For the processing of this time we
only need two logarithmic calculations. Due to our simula-
tion results we use 4 bit time stamps. A time stamp of zero
represents an actually calculated neuron, time stamps of 15
represent totally inactive neurons. Longer resubmission
stamps do not lead to longer real sleeping times for the
neurons because most neurons are stimulated during their
resubmission time. This effect is the reason for the quite
low speed-up of 1.2 compared to the decay list algorithm
that we get with simulations of the previously mentioned
segmentation network. Other applications like motion de-
tection with a changing group of involved neurons lead to
a higher speed-up because the decay list algorithm has a
lower speed-up for such an application. The total speed-up
for the decay phase is 8 compared to the calculation of each
neuron which means that 15000 neurons are calculated in-
stead of 120000 neurons in the network.

3.2 Parallel Spike Processing
As the spike rate of a pulse-coded neural network in-

creases with the number of neurons a purely sequential
simulation concept is not able to satisfy the performance
requirements of larger networks. The distribution of work
to several identical processing units has been a proper way
for many applications. So it seems also likely to find a par-
allel procedure for simulation of pulse-coded neural net-
works. As we have seen the main processing amount for
PCNNs is the calculation of the individual neurons and so
we distribute the neurons to a set of processing nodes. If we
are able to put all the neuron parameters of those neuron
groups into the dedicated memory of the corresponding
node we only have to transfer the spike list out of the node
and to distribute it to the other nodes. The whole commu-
nication is based on neuron addresses and we can benefit
from the low spike rates.

Our aim is the development of a compact, easy to handle
system and so we want to implement the processing nodes
by DSPs without external dedicated memory. The chosen
Analog Devices DSP has a relatively large but even limited
on-chip memory and so we have the problem to store the
SIBs of the network topology. There are two possibilities

c t( ) s t( ) s t 1–( ) k⋅ s t( ) k⋅+ +=

c t( ) a t( ) s t( ) k⋅+=

Figure 3.2: Calculation of resubmission time

e.g. 20 timeslots

timeslots

membrane
potential

dynamic 
threshold

potential
values

T1 2 3T T

rest values

resubmission times



to solve that problem: a large shared memory for all nodes
or another more compact form of connection storage.

The main part of information stored in the dedicated
memory of the node are the neurons parameters like the
postsynaptic potentials, the dynamic threshold and the pa-
rameters describing the neurons behavior. Additionally the
resubmission list and the spike list are stored in the dedi-
cated memory. Because of the memory limitations spike
list and resubmission list are merged and the neuron pa-
rameters are stored in a compressed fixed point format.
The remaining memory can be used for storing the network
topology.

Until now, e.g. in the Spike128k [4][9], we store an in-
dividual set of target addresses for each sender address in
the SIB. In regular connection structures, however, as they
occur in vision networks, target neurons may be addressed
relatively by a set of address offsets to the corresponding
sender address. We call this set of address offsets "connec-
tion mask" and we have to store this mask only once. This
type of connection representation has been proposed in
[16]. The mask can be stored in the same format as a SIB
with one difference: the addresses of the postsynaptic tar-
get neurons are not absolute neuron addresses but address
offsets. In the case of regular connection representation the
block start addresses in the block start memory do not point
to different SIBs for each neuron but to the same SIB for a
total layer of neurons.

In typical vision networks we have many layers with
highly regular detector masks so we can simulate a large
number of neurons by very few regular connection masks.
In the dedicated node memory the block start memory for
the local neurons and appropriate SIB-masks have to be
stored. To allow input to the local part of the network from
other neurons the SIBs for a limited number of external
neurons (on other nodes) have to be stored on the node too.
The number of those external neurons is one restriction of
this approach. We decided to allow as much presynaptic
external neurons as local ones.

To compute the whole network the processing nodes
have to communicate via address exchange. Even if we
have low spike rates the communication via a shared bus
would limit the number of possible nodes. A much better
way is the implementation of a spike switching network.
The nodes are connected to spike switches which are con-
nected to other switches or to other nodes. The neuron ad-
dresses can be used for routing to target nodes. To support
this routing mechanism, the neuron addresses are arranged
in corresponding address blocks. These blocks are de-
scribed by a start address and an end address stored in reg-
isters in the switch. This algorithm can be implemented in
a hardware pipeline and these configurable hardware
switches are used to build the switching network. There are

several possibilities to realize the switching network. The
architecture for our accelerator is a tree with the host as a
root and the processing nodes as leaves. An accelerator for
the highly regular network topologies of the early vision
stages only consists of the nodes and the address switching
tree.

Within a system which only uses regular connection
masks there is no possibility for irregular connections or
adaptability. To implement these features individual SIBs
for each neuron are needed and this leads to memory re-
quirements which cannot be granted by the dedicated
memory of the nodes. A shared memory system for all
nodes is necessary to offer the required memory amount in
a efficient way.

To provide this shared memory resource, the whole net-
work topology is stored in the above described sender ori-
ented way in a memory subsystem at the root of the address
switching tree. All presynaptic neuron addresses are trans-
mitted to a spike list at this memory subsystem. In the stim-
ulation phase the postsynaptic spikes and the weights from
the stored SIBs are transmitted to the nodes.

As already mentioned, a large shared memory allows the
storage of individual weights and so it also allows individ-
ual modification by learning. Based on a network topology
with individual SIBs for each neuron the Hebb’ian-like
learning algorithm of the Spike128k system [4][9] can also
be implemented for a parallel accelerator system. For this
learning rule a special adaptation for PCNNs should be
mentioned: In a pulse-coded neural network the coinci-
dence of spikes at the presynaptic and the postsynaptic
neuron is accidental because the spike is only a coding of
activity. To provide the information if a neuron is active
we introduced the "ready for learning" RFL which is used
in our learning rule. A neuron is RFL if the membrane po-
tential exceeds a static learning threshold. A simple formu-
lation of the learning rule is:

If the postsynaptic neuron is RFL and the presynaptic
neuron is spiking -> increment the synaptic strength

If the postsynaptic neuron is RFL and the presynaptic
neuron is not spiking -> decrement the synaptic strength

To provide the RFL information at the shared memory
system additionally to the spike list a address list of RFL
neurons is transmitted via the address switching tree. The
learning procedure is calculated in the decay phase and de-
layed by one timeslot. The learning algorithms should not
be the topic of this contribution. They are described in
[4][9] in more detail.

As main advantage the shared memory system allows in-
clusion of learning and non regular connection schemes.



However a higher hardware expense, the more intensive
communication, and the limited processing power due to a
shared resource are the main problems.

A solution avoiding a bottleneck is caching of synapses
or SIBs at the nodes. Usually used caching algorithms like
"last recently used" (LRU) or "most recently used" are not
profitable for a spike processing system because those neu-
rons which emitted a spike are refractory for a longer time
period and the cache control algorithm would move the
SIB out of the cache. But those eliminated SIBs are used
with high probability in the further simulation steps be-
cause the neuron is still active and becomes supraliminal
with higher probability than other neurons. The caching al-
gorithm for a spike processing system has to hold the SIBs
in the cache for a much longer period than typical cache al-
gorithms. Especially, neurons with axonal delay or post-
synaptic potentials which have not reached their rest values
have to be stored in the cache. Those informations are
available at the nodes because they store all the neuron
state parameters. Our cache implementation needs a cache
size of 64k synapses (for the segmentation net with 4 M
synapses in total) and achieves a cache hit rate of 96%.
With a special tag bit the memory subsystem at the root of
the spike switching network gets the information, that for
a presynaptic spike found in the cache no SIB has to be
transferred to the node.

By concentrating the main processing work on the
nodes, by storing most of the required information in the
dedicated memory and by using a special spike switching
network for communication we can implement a compact
accelerator system.

Another essential problem of parallel processing sys-
tems which is not yet mentioned is the distribution of
workload. For our accelerator the workload is balanced by
suitable distribution of the neurons. This partitioning of the
network is realized by a special compiler. Neural networks
for our new accelerator system as well as for the existing
Spike128k system [4][9] and for several other systems [13]
are described with the network description language
MNET which has been developed in Marburg at the Eck-
horn group. For the parallel accelerator system a new
MNET compiler is implemented which uses graph parti-
tioning and layer based partitioning algorithms from the
PARTY library [15]. This compiler also creates the regular
connection masks and the switching information for the
spike switches.

4. DSP-based Implementation

Our proposed accelerator implementation is based on
Analog Devices ADSP21060 with 512 kByte on-chip
memory. The switching network and the memory control-

ling circuitry is designed for Xilinx XC4000 FPGAs. We
are going to implement a prototype system for up to one
million neurons and up to 30 million connections which
will be scalable up to 4 million neurons.

The accelerator is proposed as a VME-based system
with a VME-Sparc as a host computer. It will contain one
modified VME board for regular connections simulating
up to 512k neurons, and two boards with a shared memory
system simulating 256k neurons each.

The main board area is covered with an array of DSP’s.
The so-called SHARC-DSP consists of a floating point
unit with 3 parallel calculation units, two independent 256
kByte dual-ported SRAMs, an IO-processor with up to six
linkports and a multiprocessor interface. The dual-ported
SRAM allows one-clock access to the neuron parameters.
By using this dual-ported RAM, the register file of the core
processor, and the instruction cache, a one-clock command
execution is achieved. Furthermore the communication
overhead for the neuron address exchange with other nodes
is processed by the IO-processor. The SHARC-DSP is
clocked with 40 MHz.

The regular connection board (RC) consists of up to 32
SHARC processors, six FPGAs for the switching network
and a VME interface. Groups including four DSPs and one
FPGA interface are connected to one common bus via their
multiprocessor interface. These FPGAs are connected to
the next ones and those are connected to the VME bus. The
FPGAs are clocked with 20 MHz. Both the DSPs and the
FPGAs will run with 3.3 V.

The FPGAs implement the so-called communication
unit (CU), an unique switch design with different interfac-
es. The CU consists of an initialization data path for read-
ing and writing the DSP memories and two spike switching
data paths for the leave-to-root direction and the root-to-
leave direction. Those switching paths only transmit

Figure 4.1: Accelerator system

TM

TM

TM

TM

TM

TM TM

TM

SIB SIB FORCE
VME-Sparc

VME-Bus-System

RC-Unit
(regular connections/

512k neurons)

NRC-Unit
(non regular connections/

256k neurons)

NRC-Unit
(non regular connections/

256k neurons)

Sun SPARC



matching neuron addresses. Other neuron addresses
fetched from the bus are rejected.

The accelerator boards for the non regular connection
boards (NRC) consists of up to 16 processing nodes and
implement the spike switching tree of the RC-board too.
Furthermore the shared memory subsystem is realized on
the NRC-board. It consists of three SDRAM modules, the
weight memory controller (WMC) and the learning unit
(LU). The spike switching tree of the NRC board only
transmits presynaptic spikes from the leaves to the root
which means from the nodes to the WMC.

The retransmission of the postsynaptic spikes makes use
of the linkports of the DSPs. One linkport for each DSP is
connected to the WMC and only the SIB parts for this spe-
cial DSP are transmitted via the link. The decision which
postsynaptic spike has to be transmitted via which link can
be made easily by the neuron address of the postsynaptic
neuron.The WMC has also access to the global spike list
stored at the root of the spike switching tree and to the
block start memory BSS. The design of the learning unit is

highly connected with the WMC design. Two spike lists
are used alternatively so the LU can access the old spike
list when a new spike list is written. For the forgetting pro-
cess an inverse network topology is provided in one of the
SDRAM (synchronous DRAM) modules.

5. Conclusion

In this presentation an architecture has been shown
which will allow the simulation of pulse-coded neural net-
works with millions of neurons. Furthermore, this architec-
ture implies the advantage that the future improvements in
circuit technology can be implemented easily and an up-
grade path to even larger networks is given. The Spike128k
architecture is improved with respect to many items and
the implementation is less expensive than in the existing
Spike128k system. With a parallel simulation architecture
the capability is given to decouple the simulation speed
from the number of neurons in a wide range. This parallel
solution for the simulation of pulse-coded neural networks
will lead to further expansions with respect to the amount
of neurons and the network size to be simulated.

The architecture and the algorithms have been tested
with a typical application [19] to get comparable results.
These simulations have been done with a PVM software
simulator on a Sun workstation cluster and with an Analog
Devices DSP evaluation kit. The software simulations al-
low a comparison with several hardware platforms. The
network has been simulated on Sun Sparc and Ultra work-
stations and on a DEC Alpha system in Marburg. It has
been simulated and demonstrated on the Spike128k system
[9]. The network has about 120000 neurons and about 4
million connections with a mean activity of 14% and a
mean spike rate of 0.5%. A network with similar character-
istics (20% activity/0.5% spike rate) has been the base of
simulations and estimations for other hardware platforms
[12][18]. The given performance overview in table 5.1 is
not a real measurement result or a benchmark but an at-
tempt to get a classification of the proposed DSP accelera-
tor. The values which are marked by (*) are estimated
(partly from the simulation results with fewer neurons,
partly from calculations), those marked by (B) are from
[12][18], unmarked results are measured. It should be men-
tioned that the simulation times are measured (or estimat-
ed) for one timeslot which represents 1 ms of biological
real time. This real-time requirement can only be achieved
by proposed special processor architectures like
MASPINN[18] or by an optimized parallel architecture
like ParSPIKE.

Figure 4.3: The communication unit (CU)

DSP
Interface

CU
Interface 1

WMC
Interface

Address-
Generator

CU
Interface 2

VME
Interface

Init

Work

Work

r/w

select decode

range

address

select

select all

range

select

leaves root

Figure 4.4: Weight memory controller (WMC)

>> shiftregister

BSA

16-bit
count

BSA

16-bit
count

BSA

16-bit
count

4 bit

W memory addresses W memory data

BSS

Node1

WMC

>> shiftregister

4 bit

Node2

>> shiftregister

4 bit

Node16

spike-
list-
control

spikelist

spike-
address

Linkports

SDRAM-Interface

SDRAM-Readbuffer



6. Acknowledgment

This work has been partly supported by the Deutsche
Forschungsgemeinschaft (German Research Council)
DFG graduate college "Parallele Rechnernetzwerke in der
Produktionstechnik" Me872/4-1.

7. References

[1] J. Deppisch, K. Pawelzik, T. Geisel: "Uncovering the syn-
chronization dynamics from correlated neural activity
quantifies assembly formation."Biol. Cybern. 71, pp. 387-
399 (1994)

[2] R. Eckhorn, H. J. Reitböck, M. Arndt, P. Dicke: "Feature
Linking via Stimulus - Evoked Oscillations: Experimental
Results for Cat Visual Cortex and Functional Implications
from a Network Model."Proc. IJCNN89, Vol. I, pp. 723-
730 (1989)

[3] R. Eckhorn, H. J. Reitböck, M. Arndt, D. Dicke: "Feature
Linking via Synchronization among Distributed Assem-
blies: Simulations of Results from Cat Visual Cortex."
Neural Computations 2, pp. 293-307 (1990)

[4] G. Frank, G. Hartmann: "An Artificial Neural Network Ac-
celerator for Pulse-Coded Model Neurons." ICNN95,
Perth, Australia, In:Proc. ICNN95, Vol. 4, pp. 2014-2018
(1995)

[5] A. S. French, R. B. Stein: "A Flexible Analog Using Inte-
grated Circuits."IEEE Transactions on Bio-Medical Engi-
neering, Vol. BME-17, No. 3, pp. 248-253 (1970)

[6] C. M. Gray, W. Singer: "Stimulus-specific neuronal oscil-
lations in orientation columns of cat visual cortex."Proc.
Natl. Acad. Sci. USA, 86, pp, 1698-1702 (1989)

[7] G. Hartmann, S. Drüe: "Self Organization of a Network
Linking Features by Synchronization." In:Parallel Pro-
cessing in Neural Systems and Computers, G. Hauske
(ed.), pp. 361-364 (1990)

[8] G. Hartmann: "Motion Induced Transformations of Spatial
Representations: Mapping 3D Information onto 2D." In:
Neural Networks, Vol. 5, pp. 823-834 (1992)

[9] G. Hartmann, G. Frank, M. Schäfer, C. Wolff:
"SPIKE128K - An Accelerator for Dynamic Simulation of
Large Pulse-Coded Networks."MicroNeuro 97, Dresden,
pp. 130-139 (1997)

[10] J.N.H. Heemskerk : "Neurocomputer for Brain-Style Pro-
cessing. Design, Implementation and Application." Ph.D.
thesis at Leiden University, Rijksuniverditeit Leiden,
Netherlands (1995)

[11] A. Jahnke, U. Roth, H. Klar: "A SIMD/Dataflow Architec-
ture for a Neurocomputer for Spike-Processing Neural
Networks (NESPINN)."MicroNeuro 96, Lausanne, Swit-
zerland, pp. 232-237 (1996)

[12] A. Jahnke, T. Schoenauer, U. Roth, K. Mohraz, H. Klar:
"Simulation of Spiking Neural Networks on Different
Hardware Platforms." In:Artificial Neural Networks-
ICANN97. Springer Verlag, Berlin, pp.1187-1192 (1997)

[13] K. Mohraz, U. Schott, M. Pauly: "Parallel Simulation of
Pulse-Coded Neural Networks." In:Proceedings of the
IMACS World Congress '97, Berlin, Vol. 6, pp. 523-528
(1997)

[14] E. Nierbur, D. Brettle: "Efficient Simulation of Biological
Neural Networks on Massively Parallel Supercomputers
with Hypercube Architecture."Advances in Neural Infor-
mation Processing Systems 6, pp 904-910 (1994)

[15] R. Preis, R. Diekmann: "PARTY - a software library for
graph partitioning", In: B.H.V. Topping, editor,Advances
in Computational Mechanics with Parallel and Distributed
Processing, pp 63-71 (1997)

[16] U. Roth, F. Eckhardt, A. Jahnke, H. Klar: "Efficient On-
Line Computation of Connectivity: Architecture of the
Connection Unit of NESPINN."MicroNeuro 97, Dresden,
pp. 31-38 (1997)

[17] U. Roth, A. Jahnke, H. Klar: "Hardware Requirements for
Spike-Processing Neural Networks.IWANN 95, Malaga,
Spain, pp. 720-727(1995)

[18] T. Schoenauer, N. Mehrtash, A. Jahnke, H. Klar:
"MASPINN: Novel Concepts for a Neuro-Accelerator for
Spiking Neural Networks" In:VIDYNN’98, Stockholm,
(1998)

[19] L. Weitzel, K. Kopecz, C. Spengler, R. Eckhorn, H. J. Re-
itböck: "Contour Segmentation with Recurrent Neural Net-
works of Pulse-Coding Neurons."CAIP’97, Kiel (1997)

Number of
Neurons

Ultra-
Sparc2

200MHz

DEC
Alpha

266MHz

Pentium II
266 MHz

CNAPS
50MHz/
256PE

SPIKE128k
10MHz/1PE

NESPINN
50MHz/

4PE

MASPINN
100MHz/

4PE

ParSPIKE
40MHz/

64PE

16k 11 ms * 18 ms * 10 ms B 1.5 ms B 1.5 ms 0.38ms *B 0.06 ms *B< 1 ms *

128k 85 ms 140 ms 85 ms B ~1 s *B 9 ms 3 ms *B 0.39 ms *B< 1 ms *

512k - - 427 ms B - 11 ms (4PE)* 11.7 ms *B 1.56 ms *B2.5 ms *

1 M - - - - 11 ms (8PE)* 23.4 ms *B 3.1 ms *B 5 ms *

Table 5.1:  Performance of the ParSPIKE architecture compared to other hardware platforms


