
DESIGN AND FPGA IMPLEMENTATION OF AN EMBEDDED REAL-TIME
BIOLOGICALLY PLAUSIBLE SPIKING NEURAL NETWORK PROCESSOR

M.J.Pearson ∗, C.Melhuish, A.G.Pipe, M.Nibouche, I.Gilhesphy, K.Gurney, B.Mitchinson

IAS laboratory
University of the West of England

Coldharbour Lane, Bristol,
BS16 1QY

email: martin.pearson@uwe.ac.uk

ABSTRACT
The implementation of a large scale, leaky-integrate-and-
fire neural network processor using the Xilinx Virtex-II fam-
ily of Field Programable Gate Array (FPGA) is presented.
The processor has been designed to model biologically plau-
sible networks of spiking neurons in real-time to assist with
the control of a mobile robot. The real-time constraint has
led to a re-evaluation of some of the established architectural
and algorithmic features of previous spiking neural network
based hardware. The design was coded and simulated using
Handel-C Hardware Description Language (HDL) and the
DK3 design suite from Celoxica. The processor has been
physically implemented and tested on a RC200 development
board, also from Celoxica.

1. INTRODUCTION AND BACKGROUND

Spiking Neural Networks (SNNs), or Pulse Coded Neural
Networks (PCNNs), differ from many other neural networks
in that inter-neural communication is reduced to temporally
separated spikes or pulses. This coding scheme is analo-
gous to biologically observed neural codes [1]. Models of
real neural systems using SNNs have been proposed by neu-
roscientists in the past using computer based software sim-
ulations [2]. Typically, these models will not be tested in
real-world situations and therefore remain in the theoretical
domain. To test them in a real world situation, as in mobile
robotics for example [3], [4], requires a processing modality
which can maintain real-time performance and be embed-
ded on a platform with limited physical space and power re-
sources. FPGAs fulfil this specification and have the added
advantage of design tools which facilitate the rapid transla-
tion of software algorithms directly into hardware. This al-
lows them to take advantage of increased processing through-
put, derived from parallelisation techniques and hardware

∗Collaboration with Adaptive Behaviour Research Group, University of
Sheffield and funded by EPSRC as part of the whiskerbot project Grant No.
GR/S19639/01

Command out
Bus

Command in
Bus Next_state

Bus
Current_state
Bus

D
at

a

H
an

ds
ha

ke

D
at

a

H
an

ds
ha

ke
H

an
ds

ha
ke

D
at

a

H
an

ds
ha

ke

D
at

a

Sequencer

npe0 npe1 npe2 npe3 npe4 npe5 npe6 npe7 npe8 npe9

Fig. 1. Block diagram of processor topology

optimisation, at a fraction of the cost of full Application Spe-
cific Integrated Circuit (ASIC) implementation.
The design presented in this paper is best described as a
‘soft-core’ Single Instruction path, Multiple Data path (SIMD)
array processor. Hardware based SNN processors have been
developed [5],[6], however, these approaches are best de-
scribed as ‘hardware accelerators’, or co-processors, since
they cannot guarantee hard-real-time performance at all lev-
els of neural activity. This is due to an event driven approach
to network state update which takes advantage of the sparse
inter-neural connectivity and low average activity levels of
biological neural networks. When modelling large networks
with high peak network activity, they will not be able to con-
tinuously update the network in real-time. This situation
is unacceptable in control systems, particularly distributed
control systems, which highlights the principle reason that
the processor detailed in this paper was designed.



Fig. 2. Block diagram an output module

2. THE PROCESSOR

The processor consists of an array of Neural Processing Ele-
ments (NPEs) and two pairs of input/output modules operat-
ing concurrently from the same instruction set as illustrated
in Fig.1. A central sequencer issues the instructions, which
actually constitute synchronisation cues due to the process-
ing algorithm of each module being explicitly implemented
in the hardware. The input/output modules can interface
asynchronously across different external clock domains us-
ing a simple handshaking protocol. The SIMD neural pro-
cessor has 10 NPEs, each of which emulate 112 ‘virtual’
neurons and 912 synapses using time division multiplexing.
The update period of the processor is set at 500µS, which
constitutes a real-time update period for biologically plausi-
ble SNNs [7].
The hardware for the processor was described and captured
using the C syntax Hardware Description Language (HDL)
Handel-C. The Celoxica DK3 development environment was
used to compile and synthesize Handel-C to EDIF for target
specific physical synthesis by Xilinx Project Navigator. The
development board used is the Celoxica RC200, which has
a XC2V1000 Xilinx Virtex-II FPGA at its core and various
peripheral devices for rapid project prototyping.

2.1. Module specifics: Sequencer

The sequencer maintains real-time performance and coordi-
nates the concurrently operating modules of the processor.
An operational iteration (epoch) of the processor consists of
two phases; the update phase and the communication phase.
The sequencer initiates the update phase at the beginning
of an operational epoch. It then monitors all the modules
and initiates the communication phase only when the update
phase has completed. The communication phase involves
each active module being polled to release the contents of
its current state memory (i.e. the results of the preceding
update phase) and instructing other modules to store this in
their next state memory space (i.e. the data to be used in the
next update phase). A real-time counter is used to regulate
the initiation of each operational epoch.

Fig. 3. Block diagram of neural processing element

2.2. Module specifics: Input modules

The input module has 64 input channels which can be con-
nected to physical pins or an internal interface using the con-
figurable logic array of the host FPGA. The handshaking
lines facilitate asynchronous operation and allow communi-
cations across different clock domains. During the update
phase of an epoch, the state of the 64 input channels are
transferred onto the internal 16 bit data bus of the module
and stored in the current state memory. The 64 channels are
each read 6 times during the update phase, giving a total of
384 inputs per module. During the communications phase
all 384 of the stored input states are broadcast to the rest of
the processor.

2.3. Module specifics: Output modules

The output module, shown in Fig.2, is similar in both archi-
tecture and operation to the input module. The communica-
tion protocol is the same; utilising 2 handshaking lines and a
multiplexed 64 channel output port generating 384 outputs.
The source address of each of the outputs are stored in a
block of distributed, or SelectRAM (RAM 1 see Fig.2). The
next state memory (RAM 2) contains the current state of the
entire network, i.e., the activity of all inputs and neurons.
This is updated during the communication phase of an oper-
ational epoch and it is from here that each of the outputs are
read, as indexed by the source addresses in the user defined
memory block.

2.4. Module specifics: Neural Processing Element

This module contains a hardware implementation of a neu-
ron and a single synapse. The contextual information of
112 virtual neurons and 912 synapses are stored locally in



4 banks of BlockRAM, as illustrated in Fig.3. The context
for each neuron and synapse are sequentially multiplexed
onto the hardware during the update phase of each epoch.
A copy of the state of the entire network is stored locally in
each NPE (as in the output module) which serves as the in-
put stimulus for the virtual neurons/synapses. The updated
state of each of the neurons in the NPE are stored in the local
next state memory space and are broadcast to the rest of the
processor during the communication phase. The hardware
optimised 18×18-bit signed multipliers (MULT18X18) are
used to implement fixed-point integer arithmetic operations
such as exponential decays and multiplicative noise. Noise
can be simulated on both the synaptic weight and the mem-
brane threshold using a simple 16-bit, Linear Feed forward
Shift Register (LFSR) acting as a pseudo-random number
sequence generator within each NPE. The random numbers
generated are used to index elements within a memory space
containing two pre-defined noise distributions. During tri-
als a Gaussian distribution was used for generating thresh-
old noise and a Rayleigh distribution was used for synaptic
noise. The reason these particular noise distributions were
chosen was to match empirical electro-physiological data
taken from real neurons.
Fig.4 details a block diagram of the neuron and synapse
model used in the NPE. The inclusion of noise and inter-
neural propagation delays to these models emphasises the
biological plausibility of the system.

2.5. Discussion

The disadvantages of using a local network state memory in
each module of a parallel processing system are well docu-
mented [7], [1]. These disadvantages are particularly appar-
ent when implementing SNNs with biologically plausible
activity rates. However, the principle disadvantage of using
a more efficient, central network state memory is the mem-
ory access latency introduced by bus arbitration. This can
lead to unacceptable performance in a real-time application
and has therefore not been adopted in this processor. Each
synapse and output is associated with a pre-synaptic source
address, stored as a parameter in a local contextual mem-
ory space. If a target orientated addressing scheme were
used (as in [5]) the time period of the communication phase
will be dependent on the topology and activity of the net-
work. During periods of high activity the time required for
the communication phase may cause the duration of the op-
erational epoch to exceed real-time. Using the source orien-
tated addressing scheme with a local network activity mem-
ory space, guarantees a fixed time period for the communi-
cation phase independent of network activity. This is a high
priority in the specification for this processor and is there-
fore the approach which has been adopted.

Fig. 4. Block diagram of individual neuron and a single
synapse

3. DEVELOPMENT CYCLE

The project in which this processor has been developed is a
collaboration between neuroscientists and engineers. There
is a requirement, therefore, for an interface to be established
between the two parties through which models and results
can be passed freely. A set of universal file formats have
been adopted which contain network parameters and inter-
connect information, input test stimuli and the correspond-
ing output of the defined network. A conventional SNN soft-
ware simulator is used by the Neuroscientists to prototype
potential neural structures and generate network parameter
lists. These parameters are translated into a format which
can be used to initialise the memories of the FPGA based
neural processor. This translation includes converting from
a floating point number system into a 16-bit fixed point rep-
resentation. A C++ coded simulator of the FPGA based
SIMD processor is used to rapidly assess the degradation in
model integrity as a result of this translation. Similar tests
can also be conducted using the Handel-C simulator though
at a greatly reduced simulation speed. A simulation of 2
seconds of real-time FPGA based processor activity requires
approximately 5 hours of simulation time using Handel-C.
To establish that the behaviour of the processor at a physical



0 50 100 150 200 250 300
0

1

2

3

4

5

6
Floating point software implementation

N
um

be
r o

f s
pi

ke
s 

pe
r s

am
pl

e

Time (milliseconds)

0 50 100 150 200 250 300
0

1

2

3

4

5

6
Fixed point hardware implementation

N
um

be
r o

f s
pi

ke
s 

pe
r s

am
pl

e

Time (milliseconds)

Fig. 5. Comparative Peri-Stimulus Time Histogram (PSTH)
plots of 10 presentations of the same stimulus to an 1100
neuron SNN implemented using a floating point software
processor and fixed point hardware processor. (Correlation
coefficient = 0.7662)

level is the same as indicated in simulation, a test platform
has been implemented on an FPGA using a neural processor
and a serial port interface. These two components are linked
together so that the processor core can be loaded with the
universal input stimulus file. The resulting output is then
externally logged and converted into the standard output file
format for comparison. Finally the bit file that was gener-
ated to configure the test FPGA neural processor core, can
be used to configure an embedded FPGA and form part of a
control system.

4. RESULTS

As part of the development cycle described above, existing
models of real neural structures were used to test and syn-
chronise the two software FPGA simulators (implemented
in C++ and Handel-C). Upon synchronisation the two fixed
point simulators generated indistinguishably similar output
and internal state matches in response to all corresponding
sets of input stimulus.
Most of the observed discrepancies between the floating point
and fixed point models were due to differences between the
random number generators in the two systems. The statistics
of the random number distributions from both generators
are, however, very similar. This was highlighted by repet-
itive presentations of the same input stimulus to both hard-
ware and software processors using randomly seeded gener-
ators as shown in Fig. 5. Other discrepancies were found
to be introduced by quantisation distortion of certain pa-
rameters when translated from floating to fixed point. This

problem was overcome by pre-scaling such parameters and
introducing a small amount of noise (or ‘dither’) to arith-
metic operations to remove the bias. The inclusion of these
two techniques has resulted in the observed behaviour of the
simulated hardware processor matching almost exactly that
of the floating point software simulator.
Finally, the processor required a series of fully embedded
tests to confirm that its operation, as indicated by the Handel-
C simulator, can be replicated in real hardware. All the re-
sults generated from these tests confirm that the processor,
implemented on an FPGA, performs in real-time exactly as
has been indicated by the simulation.

5. CONCLUSION

It has been demonstrated that a large biologically plausible
SNN model can be implemented in hard real-time using a
single FPGA. Use of Handel-C HDL to describe this archi-
tecture facilitated both the rapid development time and the
subsequent synchronisation procedure to generate an inter-
mediate software based hardware simulator. This simula-
tor eases the transfer of models developed using software
SNN simulator packages, using a floating point number sys-
tem, into a fixed point integer representation implemented
in hardware for use in real-time, real-world control applica-
tions.

6. REFERENCES

[1] W. Maass, “Computing with spiking neurons,” in Pulsed Neu-
ral Networks, W. Maass and C. M. Bishop, Eds. MIT Press
(Cambridge), 1999, pp. 55–85.

[2] K. Gurney, T. Prescott, and P. Redgrave, “A computational
model of action selection in the basal ganglia i: A new func-
tional anatomy,” Biological Cybernetics, vol. 84, pp. 401–410,
2001.

[3] R. R.I.Damper and T.W.Scutt, “Arbib: An autonomous robot
based on inspirations from biology,” Robotics and Autonomous
systems, vol. 31, pp. 247–274, 2000.

[4] The, “Whiskerbot project,” EPSRC grant
number: GR/S19639/01. [Online]. Available:
http://www.whiskerbot.org

[5] J. Schemmel, K. Meier, and E. Mueller, “A new vlsi model
of neural microcircuits including spike time dependent plas-
ticity,” in Proceedings of IJCNN’04. IEEE Press, 2004, pp.
1711–1716.

[6] N. Mehrtash, D. Jung, H. Hellmitch, T. Schoenauer, V. Lu,
and H. Klar, “Synaptic plasticity in spiking neural networks
(sp2inn): A system approach,” IEEE Transactions on Neural
Networks, vol. 14, no. 5, 2003.

[7] C. Koch and I. Segev, Eds., Methods in Neuronal Modeling:
From Synapses to Networks. Cambridge, Massachusetts:
MIT Press, 1989.


