
FPGA Implementation of Spiking Neural Networks - an Initial Step
towards Building Tangible Collaborative Autonomous Agents

S. Bellis, K. M. Razeeb,
C. Saha, K. Delaney,

C. O'Mathuna
NMRC, University

College Cork, Ireland
sbellis@nmrc.ie

A. Pounds-Cornish,
G. de Souza, M. Colley,
 H. Hagras, G. Clarke,

 V. Callaghan
University of Essex, UK

apound@essex.ac.uk

C. Argyropoulos,

C. Karistianos,
G. Nikiforidis

University of Patras,
Greece

charg@med.upatras.gr

Abstract

This paper contains the results of an initial study
into the FPGA implementation of a spiking neural
network. This work was undertaken as a task in a
project that aims to design and develop a new kind
of tangible Collaborative Autonomous Agent. The
project intends to exploit/investigate methods for
engineering emergent collective behaviour in large
societies of actual miniature agents that can learn
and evolve. Such multi-agent systems could be used
to detect and collectively repair faults in a variety of
applications where it is difficult for humans to gain
access, such as fluidic environments found in critical
components of material/industrial systems. The
initial achievement of implementation of a spiking
neural network on a FPGA hardware platform and
results of a robotic wall following task are discussed
by comparison with software driven robots and
simulations.

1. Introduction

Extensive theoretical work has shown that Spiking
Neural Networks (SNNs) are deemed
computationally more powerful than conventional
artificial neural network formalisms [1]. This implies
that SNNs need fewer nodes to solve the same
problem than conventional artificial neural nets.
Relatively little work has been carried out on the
implementation of SNNs in digital platforms such as
FPGAs [2][3], most work tending to concentrate on
analogue ASIC type devices [4][5][6]. FPGA
implementation gives the flexibility to develop SNNs
for a particular task without committing to costly
silicon ASIC fabrication. In addition digitally based
SNNs provide a number of other desirable features
such as noise-robustness and simple real-world
interfaces [7].

The FPGA implementation of the spiking neural
network is intended to be the core computational
component in what has been dubbed a CAA
(Collaborative Autonomous Agent). The work forms
part of a European IST project called SOCIAL (Self
Organised Societies of Connectionist Intelligent
Agents Capable of Learning - IST-2001-38911). The
SOCIAL project aims to exploit/investigate methods
for engineering emergent collective behaviour in
large societies of actual miniature agents that can
learn and evolve. It is envisaged that the project will
produce tangible agents that can perform individual
and collective goal seeking tasks such as repair in
environments that are inaccessible for humans. An
example of such a task is the repair of bypass tubing
used in the oil industry. Pipelines can deteriorate due
to scale formation and this can be detected by
changes in pH in the vicinity of the fault when the
pipes are flushed with water. With integrated pH
sensing capability it is intended to build miniature
tangible CAAs with the ability to navigate, indirectly
communicate amongst themselves, directly
communicate with a development environment and
possibly repair such faults.

The paper focuses on the initial investigation of
the FPGA SNN implementation with the goal of
performing a navigational task of wall following.
The exercise was used go gain familiarity with SNNs
and show that, when implemented on FPGAs, simple
navigational tasks can be performed. Initially the
SNN used is described in terms of its VHDL
implementation resulting from a manual translation
of a C-type code implementation of the SNN. The
paper will then overview synthesis to FPGA
hardware modules used for implementation of the
SNN. Interfacing to robotic platforms and results to
show comparison with software versions of the SNN
on a simulation tool also developed within the
project framework will be discussed.

Conclusions will be drawn and the future direction
of the project toward implementation of the SNNs on

miniature platforms will be projected. New miniature
FPGA and communication modules that have been
built and proven functional will be presented to show
the next phase of implementation.

2. Implementation of SNNs on FPGAs

This section overviews the route taken in the
implementation of the SNN controller for the wall
following robot on FPGA hardware. A wall
following task has been demonstrated on robots
running the VxWorks operating system [8].
Essentially this is C-code with extra libraries
supporting the real-time robotic operation. It was
decided to manually translate this to VHDL as a first
pass to FPGA implementation of the SNN. The route
to demonstration of the prototype reported in this
paper is summarized as follows:

1. Manual translation of the VxWorks C-code

to VHDL;
2. Test-bench simulation and comparison with

VxWorks C-code output;
3. Synthesis of VHDL to FPGA hardware;
4. Interfacing to a simulation tool developed in

the project and the robotic platforms;
5. Test wall following scenario on the

simulator and then on the robot.

3. Translation of the C-Code to VHDL

Initially the wall following C-Code was written
for the embedded processor of the robots and
compiled using VxWorks. The task for VHDL
translation involved breaking the code down to its
respective functions and representing the entire code
in a hierarchical structural description. VHDL entity
e_SNN formed the top level of the hierarchy and
defines the connectivity between the neurons,
weighted synapses and control timer of the network
connected as shown in Figure 1.

The network contains two types of neuron. There
are two instantiations, front and rear, of the pre-
synaptic neurons. On the robots there are ultrasonic
sensors located at the front and rear that are used to
detect range either from a wall or an obstacle. The
two pre-synaptic neurons convert the ultrasonic range
values into spike trains, the shape of which defined
by a series of exponential functions. These spike
trains are weighted in the four synapse entities by a
set of weights evolved in software trials on the
VxWorks system. The outputs of the synapses feed
into the post-synaptic neuron entities. By varying the
speed of one motor relative to the other then the
robot can turn to avoid an obstacle or follow the path
of a wall. The post-synaptic neurons function by
firing once a membrane potential has been reached.

The time at which they fire has a relationship with
the speed of the motor that they are controlling.

Figure 1. Schematic representation of
the VHDL SNN code for entity e_SNN.

In FPGAs it is advantageous to use fixed-point

logic so that mathematical functions in the standard
libraries can be used to minimize resources. When
translating the VxWorks C-Code the precision of
signals, sensor inputs and motor outputs had to be
decided. Precision directly corresponds to the
number of bits used to represent a signal and in turn
relates to register storage, logic resources for
computation and communication. Optimizing the
precision leads to lower resource usage and therefore
smaller neurons, ultimately allowing larger SNNs to
be implemented on the FPGA. The precision of data
within the modules was calculated given the
accuracy, noise levels and ranges of the input
ultrasonic detectors. The ultrasonic sensors output
data in the range 0 to 90 and therefore 7 bits were
required to represent this as an unsigned binary
number. A five bit signed two’s complement
representation was used for the weights.

 Overall the VHDL modules contain quite
simple arithmetic, concatenation and scaling
assignments. Therefore the VHDL standard libraries
were used to implement these functions. However,
the pre-synaptic neuron block requires more complex
arithmetic for the computation of the spike effect.
This involves exponential functions that are not
contained in the standard VHDL libraries. The

Entity descriptionSymbol Key

Synapse weight Wn

Post-synaptic neuron

Pre-synaptic neuron

Entity descriptionSymbol Key

Synapse weight Wn

Post-synaptic neuron

Pre-synaptic neuron

forward
Sensor

rear
Sensor

Left
Motor
Output

Right
Motor
Output

rear

left

right

front

W0

W2

W1

W3

postpre

pre post

forward
Sensor

rear
Sensor

Left
Motor
Output

Right
Motor
Output

rear

left

right

front

W0

W2

W1

W3

postpostprepre

prepre postpost

pre

post

Wn

prepre

postpost

WnWn

exponential function could be broken down into an
arithmetical expansion series of calculations and the
end result would be computationally expensive in
terms of the logic resources on the FPGA. It was
therefore decided to model the spike effect as a look-
up table in VHDL using case statements.

A C-program was written to generate this look-up
table by taking the spike generation exponential
functions of the VXWorks C-code and using a
decimal to binary conversion routine. The results
showed that slight errors were introduced due to
quantization of the spike-effect. Note the jagged
appearance of the spike effect falling time curve as
shown in Figure 2.

Figure 2. Spike- Effect LUT precision.

4. Synthesis of VHDL to the FPGA

After functional verification against the C-Code wall
following model using test-bench methods the
synthesis of the VHDL was considered. The FPGA
PCB used for the initial testing was originally
developed for a research project in which sensor
networks were being researched and developed.
However a commercially available PCB could
equally have been used at this stage. The board uses
a Xilinx Spartan II low cost series FPGA,
specifically the mid range xc2s300e-7fg456 device
[10]. The module has an on board serial
configuration EPROM enabling it to be run remotely
from a battery source.
The SNN controller was synthesized using Xilinx
ISE V6.1 Webpack software. To do this a wrapper
VHDL file was created. This wrapper file includes
the SNN controller and also port maps the necessary
UART components for serial communication with
the robot. The implementation of a four-neuron
VHDL model of a digital spiking neural network
required 324 Slices approximately 10% of the
resources on the FPGA device. Therefore
approximately 40 neurons would fit on the FPGA for

the current version of the neuron. The overall
network delay of 8.461ns allows clocking up to a
maximum frequency of 118.189MHz. The
requirement to clock at 1kHz, based on the
specifications of the robots used, to give a 1ms cycle
time is therefore met.

5. Interfacing and Hardware Test

A simulation tool is being developed in parallel to
the hardware implementation of the SNNs. The
simulator allows robot behaviour to be modeled and
evolved in software before going to hardware
implementation. The simulation tool was also
adapted so that it could be interfaced to the FPGA
board as shown in Figure 3. By doing so the FPGA
implementation could be verified against simulated
results to minimize the amount of test and debug
needed when interfacing to the real robots. The
simulator computes the ultrasonic sensor readings
and continuously updates the FPGA via the serial
port. The FPGA SNN controller then outputs the
motor control data through the serial port and this is
used to control the motion of the simulated robot.
The FPGA controlling the movement of a virtual
robot exhibited the wall following behaviour by
avoiding the obstacles and keeping a set distance
from the wall and gave similar results to that of the
software SNN controller.

Figure 3. Simulator to FPGA hardware
interface.

The FPGA was interfaced to the real robots once

the wall following behaviour had been verified using
the simulation tools. The robots have a serial port
interface and therefore the FPGA code did not have
to be changed from that used with the simulator.
Figure 4 shows the robot being controlled by the
FPGA that is located within the white box towards
the top of the left of the robot. Power was supplied to
the FPGA directly from the auxiliary supply
available on the robot. As expected the tangible robot
exhibited similar wall following characteristics as
those shown on the simulated robot proving the
developmental approach taken to be valid.

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150

Current Time

S
p

ik
e

E
ff

ec
t

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150

Current Time

S
p

ik
e

E
ff

ec
t

FPGA

serial cableSimulator

simulated
sensor data

FPGA control to
simulated robot FPGA

serial cableSimulator

simulated
sensor data

FPGA control to
simulated robot

Figure 4. FPGA controlling the
tangible robot with corresponding
simulator view shown on the left hand
side.

6. Future Work and Conclusions

This paper has overviewed the initial research
towards building tangible collaborative autonomous
agents for fluidic environments. The agent’s
intelligence was based on spiking neural networks
implemented on FPGA devices. The paper has
demonstrated a number of key aspects of the project.
Firstly FPGAs can be used to implement spiking
neural networks to perform navigational tasks.
Secondly the spike response can be easily be
accurately modeled by using look-up-tables. Thirdly
it has been demonstrated that the FPGA can be used
in conjunction with simulation tools to control a
virtual simulated robot creating a spiking neural
network test and development environment. The
FPGA linked to the simulation tool could also serve
as an accelerator and enable hybrid simulations of
software and hardware controlled virtual robots to be
studied. Finally it was shown that the FPGA-SNN
could be used to control a tangible robot for wall
following, yielding similar results to those seen on
the simulator. This proved the feasibility of the
development and simulation environment that is
currently under construction.

 Future work will consider the implementation of
more complex spiking neural networks and
optimization of the neurons onto the NMRC’s new
miniature 25mm FPGA module [11]. These networks
will aim to complete more challenging tasks of fault
detection and collaboration in fluidic environments.

A development environment for the graphical
input and formal specification of spiking neural
networks is under construction and eventually will
support automatic translation to VHDL format. The
simulation tool will be linked to the development
environment and this will support 3D fluidic
simulation.

7. References

 [1] W. Mass, “Networks of spiking neurons: The third
generation of Neural Network Models”, Neural
Networks, Vol. 10(9), 1997, pp 1659-1671.

[2] Ponca M and G. Scarbata, “Implementation of
Artificial Neurons Using Programmable Hardware”,
Synopsys User Group Conference - SNUG Europe
2001, 12-13. March, Munich, Germany, 2001.

[3] D. Roggen, S. Hofmann, Y. Thoma, D. Floreano,
“Hardware spiking neural network with run-time
reconfigurable connectivity”, 2003 NASA/DoD
Conference on Evolvable Hardware, 2003, pp. 189-
198.

[4] F.J. Pelayo, E. Ros, X. Arreguit, A. Prieto, “VLSI
Implementation of a Neural Model Using Spikes”,
Analog Integrated Circuits and Signal Processing",
Special Issue on Neuromorphic Engineering, Kluwer
Academic Publishers, Vol. 13, 1997, pp. 111-121.

[5] D.H. Goldberg, G. Cauwenberghs, A.G. Andreou,
"Analog VLSI Spiking Neural Network with Address
Domain Probabilistic Synapses", Proc. IEEE Int.
Symp. Circuits and Systems (ISCAS'2001), Sydney,
Australia, May 6-9, 2001.

[6] T. Schoenauer, N. Mehrtash, H. Klar, “Architecture of
a Neuroprocessor Chip for Pulse Coded Neural
Networks”, International Conference on
Computational Intelligence and Neuroscience
(ICCIN'98), (JCIS'98), Research Triangle Park, NC
(USA), 1998, pp. 17-20.

[7] T. Lehmann and R. Woodburn, “Biologically-inspired
on-chip learning in pulsed neural networks”, Analog
Integrated Circuits and signal Processing, 1999, 18,
pp. 117-131.

[8] Wind River webpage: http://www.windriver.com/
[9] M. Colley, G. de Souza, H. Hagras, A. Pounds-

Cornish, G. Clarke, V. Callaghan, “Towards
developing micro-scale robots for inaccessible fluidic
environments”, Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, 2004.

[10] Xilinx, Spartan-IIE 1.8V FPGA Family: Complete
Data Sheet DS077, Version 2.1, 2003.

[11] The 25mm cube module, NMRC web page:
http://www.nmrc.ie/research/mai-
group/25cube_mai.html

