
Neurocomputing 48 (2002) 647–679
www.elsevier.com/locate/neucom

Simulation of spiking neural networks —
architectures and implementations

Martin Sch%fer a , Tim Sch(nauerb , Carsten Wol, a ;∗;1, Georg Hartmanna ,
Heinrich Klarb , Ulrich R3uckerta

aHeinz Nixdorf Institute, University of Paderborn, 33102 Paderborn, Germany
bInstitute of Microelectronics and Solid State Electronics, Technical University of Berlin,

Einsteinufer 17, 10587 Berlin, Germany

Received 5 July 2000; accepted 13 June 2001

Abstract

The fast simulation of large networks of spiking neurons is a major task for the ex-
amination of biology-inspired vision systems. Networks of this type label features by syn-
chronization of spikes and there is strong demand to simulate these e,ects in real world
environments. As the calculations for one model neuron are complex, the digital simula-
tion of large networks is not e>cient using existing simulation systems. Consequently, it is
necessary to develop special simulation techniques. This article introduces a wide range of
concepts for the di,erent parts of digital simulator systems for large vision networks and
presents accelerators based on these foundations. c© 2002 Elsevier Science B.V. All rights
reserved.

Keywords: Spiking neural networks; PCNN simulation; Accelerators; Vision networks

1. Introduction

Within the research area of artiDcial neural networks (ANN) pulse-coded
neural networks are of major interest—especially for pattern recognition purposes.
Pulse-coded neural networks (PCNN) are also known as pulse-coupled,

∗ Corresponding author.
E-mail addresses: schaefer@get.uni-paderborn.de (M. Sch%fer), tim@mikro.ee.tu-berlin.de

(T. Sch(nauer), wol,@get.uni-paderborn.de (C. Wol,), hartmann@get.uni-paderborn.de
(G. Hartmann), klar@mikro.ee.tu-berlin.de (H. Klar), rueckert@hni.uni-paderborn.de (U. R3uckert).

1 Supported by the Deutsche Forschungsgemeinschaft DFG, Me872=4-1.

0925-2312/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0925-2312(01)00633-6



648 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

pulse-coding or spiking neural networks. In the context of this article these terms
are used synonymously for spike-response- and integrate-and-Dre-models [21].
Pulse-coded neural networks are examined for two reasons. Firstly to understand
and to reproduce processing in the brain. Secondly the results of this research
are for use in technical systems. The pattern recognition capabilities are of in-
terest especially in image processing tasks because PCNNs can produce e,ects
which cannot be achieved by less biology-inspired model neurons. Pulse-coded
neurons transfer their activity into pulse- or spike-trains and the exact timing of
these spikes can be used to represent features in images. Neurons representing
a coherent feature—e.g. a continuous line in their receptive Deld—synchronize
their pulses. Di,erent features are separated with a di,erent phase of the spikes
of the neuron groups representing these features. This mechanism is supposed
to be advantageous for many perception tasks, e.g. object segmentation [9,32],
and several examinations have shown this behaviour in brains [2,3,8]. To
understand these e,ects and to demonstrate their capabilities the real time pro-
cessing of real world sceneries is applied. This requires the simulation of large
networks (several million neurons) at the processing speed of biological systems.
The simulation performance of standard workstations is not su>cient for such
simulations [15,26] causing a demand for a special simulator system. This article
presents methods and architectures developed at the Institute of Microelectronics
at Berlin and at the Heinz Nixdorf Institute at Paderborn. In the following sections
the characteristics of pulse-coded vision networks and the model neuron are pre-
sented. The description of a basic simulation algorithm is followed by the section
about the di,erent techniques for simulation acceleration. Subsequently the inte-
gration of learning algorithms into these architectures is dealt with. The di,erent
accelerator systems developed in the two working groups are presented. Advan-
tages and disadvantages are discussed and a performance evaluation is given in
conclusion.

2. Pulse-coded neural vision networks

The communication in PCNNs is based on spike exchange. In contrast to con-
ventional model neurons, e.g. McCulloch & Pitts neurons, the generation of a
spike requires high computational e,ort in connection with the time behaviour in
the biological example. The computational e,ort for individual neuron calculations
compared to whole network processing is much higher in PCNNs than in conven-
tional ANNs (Table 1).
Common simulation techniques for neural networks make use of vector represen-

tations for the neurons and matrix representations for the connection network [11].
These techniques are not suitable for PCNNs because the actual activity of one
neuron is not representable by only one value. Hence, common simulation tech-
niques based on the acceleration of matrix–vector calculations are not su>cient
for PCNNs. A new simulation paradigm is required with respect to the special
characteristics of neural vision networks.



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 649

Table 1
Typical features of conventional ANNs compared to PCNNs for vision purposes

Conventional ANNs PCNNs for vision purposes

Simple model neurons Complex model neurons
No considerations of timing e,ects Modelling of neural timing
Continuous activation Activity conversion into spike trains
Almost full connectivity Sparse connectivity
All neurons involved Few neurons involved
Mainly supervised learning Unsupervised learning

Vision networks are based on retinal sampling of images. Neurons only respond
to stimulation in a limited retinal area called the receptive Deld (RF) of the neuron.
Consequently, each neuron type in the network is represented by one neuron for
each receptive Deld [12,13]. Thus, the neurons are arranged in layers and each
neuron in a layer corresponds to an area in the presented image. The neurons
connected with neurons in another layer all use similar connection schemes because
they all do the same processing—only the receptive Deld is di,erent. This leads to a
systematic network architecture and a regular connection topology. The network is
not fully connected but mainly the neighboured layers are connected which causes
a sparse connectivity.
Neuron layers extract relevant information from the image and, furthermore,

these layers only process special features. Di,erent features can be found in dif-
ferent image areas but the neuron layers contain neurons for the entire image area.
Hence, only few neurons in a specialized neuron layer receive input matching
their special feature and due to this only few neurons are active while most neu-
rons retain their rest values. Only the active neurons can emit a spike and due
to the refractory period only very few spikes are produced in the whole network.
In a discrete timeslot simulation this can be deDned as a low spike rate. Addi-
tionally, the activity in vision networks is controlled by inhibition neurons that
inhibit groups of neurons depending on the activity in this group or in another
group.
Learning in ANNs usually deals with the modiDcation of connections. In PCNNs,

connections represent the axon, the synapse and the dendrite of biological neurons.
The connection parameters are subject to temporal changes which are divided—
with respect to the time range of these changes—into long term and short term
potentiation. Slow connection changes within a long time range are also known as
long term memory (LTM) and changes within a short time range are known as
short term memory (STM). Neurons are divided into pre-synaptic and postsynaptic
neurons—depending on their position related to the synapse. The connections are
described by the following parameters:

• connection weight,
• various delays (axonal, synaptic and dendritic delay),
• type of inPuence on the postsynaptic neuron (excitation, inhibition).



650 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

Several rules derived from the Hebbian learning rule are used concerning long
term potentiation. These procedures are based on local data. Only the data from the
pre-synaptic and the postsynaptic neuron is used for modiDcation of the connection
and no global network data has to be calculated. The learning procedure is triggered
by a spike. Short term potentiation is considered as a further Dlter function for the
synapses.
In conclusion, PCNNs for vision tasks can be characterized by the following

features:

• systematic network architecture with neuron layers and receptive Delds,
• mainly regular and similar connection schemes,
• sparse connectivity,
• low network activity and low spike rates,
• inhibition neurons for activity control,
• several learning rules based on local data.

E>cient simulation techniques and hardware architectures have to make use of
these features.

3. Model neuron

Pulse-coded neurons transfer their activity—the membrane potential of biological
neurons—to a spike train. A threshold operation decides whether the neuron emits
a spike or not. The spike is weighted, delayed and transferred via the network
topology and used for the modiDcation of the postsynaptic neuron activity. The
model neuron is divided into several parts representing the dendrites, the soma,
the axon and the synapse of a biological neuron.
The dendrites are commonly modelled with leaky integrators which represent a

whole group of similar dendrites of one neuron. The leaky integrators process the
spatio-temporal integration of the received spikes for one dendritic tree and they
form the dendritic potential (DP) of this tree (see Fig. 1). Other Dlter functions
for the dendritic trees are also possible. The membrane potential (MP) of the
neuron is calculated from these dendritic potentials. The dendritic potentials can
be excitatory leading to an addition, they can be inhibitory and then they are
subtracted or they can be modulatory and then they are multiplied. The use of
a modulatory linking tree is characteristic for Eckhorn neurons [2,3]. The spike
generation is processed from a threshold comparison of the membrane potential
(MP) and a dynamic threshold (DT). The dynamic threshold similar to French and
Stein [6] is used to reproduce the refractory period of a biological neuron.
The spikes are weighted via the topology with the connection weight (w) and

summed up to give the input of the postsynaptic neuron. The spikes can be delayed
with an axonal delay referring to all spikes of one pre-synaptic neuron or they can
be delayed with a dendritic or synaptic delay referring to only one synapse of the
neuron. Hence, the axonal delay has to be calculated for the pre-synaptic spike
and the synaptic or dendritic delay has to be calculated for the postsynaptic spike.
Both delays and the connection weight may be modiDable.



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 651

Fig. 1. The pulse-coded model neuron corresponding to Eckhorn [2,3].

The following simulation techniques and hardware architectures do not support
all features listed above. In all cases a model neuron with at least four dendritic
trees with excitatory, inhibitory and modulatory inPuence, a dynamic threshold
and axonal delays is supported. For the leaky integrators at least exponential decay
functions are available.

4. Basic ideas

For digital simulation it is necessary to develop a discrete model close enough to
the desired example. Hence, a suitable resolution for the parameters and variables
has to be found and a timeslot simulation with an appropriate division of the sim-
ulation time has to be established. In the case of PCNNs the chosen time division
has to guarantee the reproduction of the spike timing with the desired exactness.
This exactness depends on the application and is chosen to 1 ms represented with
one timeslot for the vision purposes considered in this contribution. The presented
algorithms are of course also suitable for other time divisions.
The main task of the simulation procedure is to calculate at least those network

parameters that allow the generation of all spikes occurring in a continuous network
processing. Spike emission is derived from the neurons membrane potential and
from the dynamic threshold. Hence, the simulation procedure has to process valid
values for the membrane potential derived from the dendritic potentials and for
the dynamic threshold of all neurons which will emit a spike in the following
timeslot. Furthermore, valid connection weights and delays are required. Therefore,
the simulation procedure has to provide valid values of the data of all neurons and
connections that are possibly involved in the emission of a spike. These parameters
can be stored in a memory and the network state is represented by this memory.
The simulation is processed using this data.



652 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

Common ANNs work with matrix and vector representations of this data. Us-
ing the simple neurons and connections the network state can be derived from
matrix–vector calculations. PCNNs—in contrast—require the calculation of indi-
vidual neurons and synapses because their complex model neurons are not suit-
able for matrix–vector representations. Because the large numbers of neurons and
synapses cannot be represented individually by their own calculation units, at least
partly sequential processing is needed.
A sequential simulation has to guarantee consistent data concerning the time.

One possibility is to calculate the spike emission of all neurons in a Drst step
before these spikes are used in a second step to modify the dendritic potentials of
all the postsynaptic neurons. Hence, the timeslot is divided into these two steps.
Furthermore, synapses have to be modiDed before they are used for spike trans-
mission in the following timeslot. In the case of other—e.g. parallel—simulation
procedures the use of consistent data concerning time also has to be considered.
To provide this consistency, in all cases data has to be stored until one calculation
step has been Dnished for all neurons. Presynaptic spikes are well suited for this
storage, because on the one hand they represent the relevant information and on
the other hand they form a small amount of information due to the low spike rates
in vision PCNNs.
Based on these two simulation phases a trivial algorithm for PCNN simulation

can be designed (see Fig. 2). In the Drst phase the dendritic potentials of the
neurons are read from the neuron memory and the membrane potential is calculated.
The dendritic potentials are decayed and written to the neuron memory. If the
neuron’s membrane potential is supraliminal, a spike is produced and collected in
a spike list. The dynamic threshold is incremented and decayed or—if the neuron
is not supraliminal—only decayed. In the second step of the timeslot the spikes
are read from the spike list, weighted (with weight wij) and distributed via the
network topology and used for the modiDcation of the dendritic potentials of the
postsynaptic neurons. In the case of learning, the synapses can be modiDed with
respect to the spikes from the spike list after this step. The network is modiDed
to an actual state and the next timeslot can be started. The single steps in one
timeslot can be combined or calculated in parallel if the consistency of the data is
guaranteed.
For this type of network processing, the spike has to carry information about

the emitting neuron. The address of the neuron’s data in the neuron memory is
used as such a label for a spike leading to a simulation based on address events.
These addresses are called neuron address in the following. In the decay phase
the neuron addresses of spiking neurons are collected in the spike list bu,er and
in the stimulation phase they are used to address the postsynaptic neurons via the
network topology.
The calculation of neurons and synapses can be processed with sequential, par-

allel or pipelined units. In the case of pipelining, for each calculation step of
a neuron or a synapse one unit is provided and these units are arranged in a
pipeline which may be fed with one neuron or synapse in each clock cycle. Parallel
units can process neuron calculations simultaneously—e.g. decaying of all dendritic



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 653

Fig. 2. Basic algorithm for digital PCNN simulation.

potentials in one step or processing of synapses and neurons with parallel units.
A further parallel approach is the distribution of neurons or synapses into several
equal processing units [22,23,33]. The communication between the units is based
on spikes or spike list exchange. As a neuron is connected to other neurons by
one axon but many synapses, many postsynaptic spikes are calculated from one
pre-synaptic spike. This leads to a smaller communication amount for systems
based on pre-synaptic spike exchange.
In addition to simulation acceleration by parallelism or pipelining, simulation

time can be reduced by exploration of the special characteristics of vision PCNNs
(see Section 2) if the number of processed neurons and synapses can be reduced
to those involved in spike generation. Based on the low activity in vision networks
and with utilisation of event-driven simulation techniques the calculation amount
can be limited to the steps required for a correct spike-train generation. These basic
considerations can be transferred to hardware architectures. Some main problem
classes are shared by all these architectures and the basic approaches for solving



654 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

these problems are mentioned below.

• Calculation steps: The number of calculation steps can be greatly reduced by
utilization of the special characteristics of vision PCNNs. Combined with tech-
niques like parallelism and pipelining architectures this leads to a collection of
methods for an optimized simulation time.

• Storage capacity: The problem of limited number and size is especially urgent
for the dedicated fast memories of special processing units. Therefore, large but
slow shared memories have to be used. For small dedicated memories techniques
for e>cient usage are presented.

• Memory bandwidth: Shared memories commonly su,er from limited bandwidth
and access. To solve these problems, methods for the reduction of accesses and
transferred data amount are described.

• Communication: Especially parallel processing units have to use limited com-
munication resources. Hence, fast communication techniques in the context of
PCNNs and procedures for the reduction of communication are required.

• Load balancing: Due to the simulation of network parts on several processing
units the problem of load balancing occurs. This problem has to be solved in
the context of the unknown activity distribution in PCNNs.

5. Concepts for accelerated simulation of large PCNNs

For an accelerated simulation of PCNNs the mentioned problem classes have to
be treated. There are two points of view that can be used: the neuron process-
ing time and the synapse processing time. Spikes are the central events of the
simulation and therefore the reduction of calculations is based on the following
approaches:

• Only the spike emitting and spike receiving neurons are processed.
• Only the neuron parts involved in spike generation are processed.
• Only the spike transmitting synapses are processed.

These approaches can be divided into methods concerning the spike emitting neu-
rons and methods concerning the spike receiving neurons.

5.1. Reducing the neuron calculations

Concerning the spike emitting neurons, the neurons that may generate a spike
in one timeslot are collected or marked in the preceding timeslot. This can be
achieved with a decay list [4,5,10], where all neurons with dendritic potentials
higher than the rest value are collected (valid potentials). Only these neurons can
become supraliminal and their neuron addresses are stored in the decay list during
the decay phase. In the stimulation phase neuron addresses of spike receiving
neurons are also stored, as their dendritic potentials are modiDed. Multiple entries
are avoided by using a tag memory. In the following timeslot, only the neurons
from the decay list are processed.



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 655

Using a very Dne time division many neurons in the decay list only perform
decay steps during their refractory period or while decaying to their rest values.
These neurons are not involved in spike processing and their calculation has to be
avoided. They can be dismissed until their refractory period is over and then they
have to be resubmitted and to be modiDed in one decay step. The resubmission
has to be processed if the neuron receives input or is able to generate a new spike.
Otherwise the neuron can be removed from the resubmission list after a given time
period [33,34]. The resubmission time can be calculated from the time when—after
an increment caused by a spike emission—the decaying dynamic threshold reaches
again the decaying membrane potential of the neuron. This prediction is quite
time consuming due to the many components forming the membrane potential.
This leads to an approximate calculation by predicting the time when the threshold
reaches the old membrane potential of the neuron at the time of dismissal followed
by a new resubmission time calculation using the membrane potential at this time.
The expense for further resubmission steps is relativated by the fact that a resub-
mission is required for every spike received by the neuron during the resubmission
time.
Calculation e,ort for a single neuron can be reduced by only processing rel-

evant dendritic potentials (DP) of the neurons during the decay phase. Extended
to a DP-tagging for the valid neurons this technique can replace the decay list.
Instead of processing the whole valid neuron only the valid dendritic potentials
of this neuron are processed with respect to a threshold. As in the decay list and
resubmission list algorithm, spike receiving neurons have to be considered supple-
mentary. Even these valid potentials can be irrelevant for a spike emission, e.g.
because of a linking potential at a zero value. With a Pre-Analysis of the po-
tentials while feeding them into the processing pipeline these potentials can be
excluded from calculation. DP-tagging reduces the required memory bandwidth for
the neuron state memory because only valid data is read. The simulation time can
be drastically reduced if the DP-tagging is combined with Pre-Analysis especially
for neurons with many dendritic potentials and a calculation pipeline with only
few processing units for the dendritic potentials [30].
The simulation of PCNNs is an IO-bounded problem [26] because many pa-

rameters are required for the few processing steps of a single neuron. Especially
integrated circuits for PCNN simulation are not only limited from their calculation
capability but also from their IO bandwidth. This fact becomes even more crucial
with respect to parallel processing. DP-compression can be used to exploit a pro-
cessors bandwidth more e>ciently [29]. To achieve this compression, in contrast
to the neuron state memory with an entry for each neuron at a dedicated neuron
address a neuron memory with entries only for the valid potentials is used. These
potentials are stored in a deDned order and can be fed continuously into parallel
processing pipelines. The calculation of the neuron address of a concrete potential
is performed from the distance of a tag bit to the tag bit of a preceding neuron.
Hence, the potentials can be read together with the tag-bits from one central mem-
ory in a continuous data stream which leads to less required storage capacity and
a better load balancing of the processing pipeline.



656 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

Fig. 3. Network topology representation with connection lists.

Furthermore, a reduction of processing e,ort can be achieved using a special
feature of vision PCNNs: the inhibition neurons. The inhibition e,ect of these
neurons can be combined with the calculation of the inhibited target neurons by
using an increment or decrement directly for the membrane potential or the dynamic
thresholds of these target neurons [30]. The inhibition neurons are not required any
more which leads to a substantial reduction of calculation amount and especially
of communication.

5.2. Reducing the synapse calculations

After introducing algorithms for a wide reduction of neuron calculations, in the
following methods concerning the synapse and topology calculations are presented.
As in the neuron calculations the main task is to reduce the number of synapses
that have to be computed to the spike transmitting ones. For synapse considerations
there are two points of view, a sender-oriented from the spike emitting pre-synaptic
neuron or a receiver-oriented view from the spike receiving postsynaptic neuron.
In both cases the synapse computation is triggered by a spiking neuron which
leads to calculation of only the spike transmitting synapses. The spiking neurons
can be taken from the spike list where they have been stored during the neuron
calculations.
In conventional ANNs the network connections are usually stored in a weight

matrix [11] where each matrix element represents a possible connection between
one neuron marked by the matrix column index and one marked by the matrix
row index. This matrix representation can also be used for vision PCNNs but it is
ine>cient due to the sparse connectivity. A much more e>cient way of connection
storage is the use of connection lists [4,5,10] (Fig. 3) similar to the adjacency lists
commonly used in computer science. There is one list for each neuron containing
only the connections to its postsynaptic neurons. The single connection is composed
of the neuron address (NA) of the postsynaptic neuron, the connection weight
wij, and some further information. Because a connection list can contain di,erent



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 657

numbers of connections for di,erent neurons they are stored consecutively and
addressed indirectly via a blockstart-memory (BSM) with a blockstart-address
(BSA).
The connection lists are named as stimulation information blocks (SIB). During

the simulation only the SIBs of spiking neurons are addressed and consequently
only the spike transmitting synapses from these SIBs are computed. This leads
to a low number of calculated connections corresponding to the low spike rates.
Although—compared to matrix representation—the storage requirement using SIBs
is reduced, the number of connections in vision networks leads to large topology
memories. Especially if many highly integrated, parallel processing units are used,
the dedicated memories of these units cannot o,er the required storage capacity.
Hence, di,erent methods for compact topology storage are needed.
This compact topology storage can beneDt from the high regularity in vision

PCNNs. Whole layers of neurons are connected via regular connection schemes
with their target layers [25,33]. Because all neurons of one source layer share the
same connection scheme the method can be named weight sharing. The connection
scheme can be described with a mathematical function on the coordinates of the
target neuron layer and corresponds to the detector masks known from computer
vision. With these connection schemes the topology can be stored in a very com-
pact manner and the individual connections are calculated on-line only if they are
required. One possibility to store the schemes is to store the parameters of the
describing mathematical function [25]. For a sender-oriented topology representa-
tion this can lead to the calculation of a high number of possible but not existing
connections. Also, only a limited and Dxed number of function classes can be im-
plemented. Only if sending and receiving neuron are both known, the connection
weight can be calculated faster than with other methods because no search opera-
tions are required. A second possibility of regular connection storage is the use of
connection masks [33] similar to the SIBs. These connection lists do not contain
absolute target neuron addresses but relative positions of target neurons and the
connection weights. A regular SIB is addressed via a BSM and used for all neurons
of a source layer. The absolute target neuron addresses can be processed from the
mask and the source neuron address with few calculations. A main disadvantage
of regular connection schemes is the missing learning ability. Learning modiDes
individual connections but the connection schemes contain one virtual connection
for many real connections.
The learning ability and the use of highly non-regular connection schemes can

only be o,ered with a SIB representation of all connections. Hence, a large topo-
logy memory is required which su,ers from communication bandwidth especially
if accessed by many parallel units. To overcome this bottleneck caching strategies
are useful:
With SIB-caching [33], frequently used SIBs are stored in a cache memory

dedicated to the processing unit which processes the pre-synaptic neuron of the SIB.
If the neuron emits a spike and the SIB is stored in the cache, the stimulations can
be processed without access of the main topology memory. As spiking neurons will
not emit a spike during their refractory period the SIB has to be stored signiDcantly



658 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

longer than in a standard caching algorithm. A further point to be considered is
the consistency of the cache during learning. ModiDed SIBs have to be exchanged
with the old ones stored in the cache. Due to the low activity and high locality in
vision tasks—objects in real scenes need many timeslots to move—the hit rate of
even a small cache memory is very high.
A further caching approach, weight caching [29], reduces the communication be-

tween topology memory and processing unit by incrementing the weights for each
postsynaptic dendritic potential in a special memory during the timeslot. Hence,
for the next neuron calculation only the increments of the dendritic potentials have
to be transferred to the processing unit and the required bandwidth is reduced.
A further advantage is the parallel execution of synapse calculations and neuron
processing. While a neuron unit is processing the neurons and emitting the spikes,
the connection unit can calculate the increments for the dendritic potentials. In the
next timeslot the neuron unit reads the dendritic potentials for membrane potential
calculation and receives the corresponding increments at the same time. The den-
dritic potential can be modiDed and decayed in one step instead of two steps for
a separate decay and stimulation phase.
After considering the sender-oriented strategies some special features of a

receiver-oriented topology storage are mentioned in the following. The storage
of connections can be implemented with SIBs or connection masks, but these con-
nections are not stored in the direction from the pre-synaptic to the postsynaptic
neuron but vice versa. The main advantage of this topology representation is the
interlocked execution of decaying and stimulating the dendritic potentials because
for a neuron processed for decaying all synapses that might stimulate the neuron
are known from its SIB. As with weight caching the double access of dendritic po-
tential memory is unnecessary. A further advantage is achieved for several learning
procedures which require the state of the pre-synaptic neuron to modify the con-
nections of a spiking postsynaptic neuron. Because many learning algorithms make
use of both sender- and receiver-oriented topology storage a connection memory
with an additional pointer memory can be helpful. This shall be dealt with in the
following section. (Fig. 4).

6. Integration of learning algorithms

Learning in neural networks normally means changing connection weights be-
tween the neurons in order to optimize the behaviour of the network. Dealing with
pulse-coded neural networks, we will concentrate on biologically motivated learn-
ing methods. In biology there are several known mechanisms modifying synaptic
e>cacy leading from short-time e,ects in the range of milliseconds to lifelong
changes of the nervous structure. Building a neuro-computer for pulse-coded neu-
ral networks, we have to deDne a model for synaptic modiDcation that includes
the properties we want to simulate. Aiming at some Pexibility in simulation ap-
proaches, such a model should support at least some biological e,ects. On the other
hand modelling of learning is restricted to the hardware realization. Data structures



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 659

Fig. 4. Impact of the diverse network features on the e>ciency of the acceleration concepts.

or speed of simulation have to be considered. The accelerated calculation of some
million neuron parameters has to be compared to the modiDcation of connections
which may count some hundredfold. Clearly, problems concerning hardware archi-
tecture must not be the main aspect for the deDnition of a learning model, but the
approach has to be suitable for a hardware realization.
Focus of interest in simulating biologically motivated neural networks is heb-

bian learning. Hebbian learning can be seen as a class of learning rules in which
correlation of pre- and postsynaptic activity determines synaptic modiDcation. In a
general form hebbian learning may be described by four terms:

(1) A connection is strengthened if pre- and postsynaptic neuron are simultaneously
active.

(2) A connection is weakened if only the pre-synaptic neuron is active.
(3) A connection is weakened if only the postsynaptic neuron is active.
(4) A connection remains unchanged if none of the neurons is active.

Synaptic modiDcation is determined only by local parameters at the synapse, global
parameters as the mean network activity or assembly activities do not inPuence
synaptic strength. There is no right or wrong network behaviour and thus there
is no teacher who deDnes synaptic modiDcation. Therefore, hebbian learning is an
unsupervised learning method.
Variants of hebbian learning have been developed by various groups. A simple

rule for rate-coded neural networks is deDned by: Rwij(t)= (xi(t) − Txi)(xj(t) −
Txj). Synaptic modiDcation is determined by the correlation of the neural output



660 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

activities xi and xj, which can be interpreted as mean Dring rates. Since simulation
of pulse-coded neural networks is motivated by the investigation of biological
information processing by spikes, this kind of learning rule seems not to be very
suitable in this case. Instead we have to look for more biologically motivated
learning rules.
For a hardware-realization of pulse-coded neural networks neurophysical models

of long term potentiation (LTP) and long term depression (LTD) are a good choice
for learning methods. A brief functional description of LTP and LTD is that the
e>cacy of an active synapse is increased if the postsynaptic membrane potential
is depolarised and it is decreased if not. The Drst case is named LTP, the second
LTD. Both cases can be compared to the terms 1 and 2 in the description of
hebbian learning above. Term 3 is not part of this behaviour because synaptic
modiDcation is only observed at an active synapse.
In order to reach a Pexible simulation environment, it is a good idea to add term

3 to the learning model, even if it does not Dt to the known experimental results
of LTP. One reason for this is that hebbian learning with rate-coded neurons was
shown to be able to simulate biology-inspired self-organization e,ects [1,18–20].
Another fact is, that in biology synapses that do not a,ect postsynaptic activity
vanish on long time scale.
Two important results can be observed on taking a more detailed look at the

experiments concerning LTP:

(1) There is a kind of threshold in postsynaptic depolarisation which activates either
LTP or LTD.

(2) InPuence of backpropagated postsynaptic spikes form a learning-behaviour de-
pending on the time-di,erence between pre- and postsynaptic spikes.

Both results lead to two learning rules that are very interesting for biologically
motivated simulation of pulse-coded neural networks.

6.1. Threshold-based learning

The modiDcation of synaptic e>cacy depends on depolarisation of the postsynap-
tic membrane potential. Between the thresholds �LTD and �LTP the synaptic e>-
cacy is decreased. If the postsynaptic membrane potential MP of an active synapse
lies within this interval, LTD takes place [31]. If MP exceeds �LTP the synapse
is strengthened and LTP occurs. Compared to the model of hebbian learning, the
transmission of a pre-synaptic spike deDnes the pre-synaptic activity. Postsynaptic
activity is given by the value of MP (Fig. 5).
Since this model describes synaptic modiDcation for an active synapse, the emis-

sion of a pre-synaptic spike can operate as a trigger for a learning event. Synaptic
strength has to be updated only if a pre-synaptic spike occurs. This fact satisDes
the requirement for an e>cient simulation, since a neural spike is rather seldom.
Thus, only a small part of all synapses have to be processed during one simulation
step.



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 661

Fig. 5. Threshold-based learning rule (synaptic modiDcation Rwij versus postsynaptic membrane
potential MPi).

A further simpliDcation with regard to a hardware realization can be reached
if �LTD is set to zero. The resulting learning process can be described by the
following algorithm:

if pre-synaptic neuron j emits a spike
if MPi ¿�LTP

increase wij
else
decrease wij

Here wij is the connection weight from neuron j to neuron i; MPi is the postsy-
naptic membrane potential. However, the algorithm above only describes terms 1
and 2. Term 3, which deDnes synaptic modiDcation only if the postsynaptic neuron
is active, is still missing. The following algorithm completes the desired learning
behaviour:

if MPi ¿�LTP

if pre-synaptic neuron j does not emit a spike
decrease wij

This learning process is only activated if the membrane potential of the postsynaptic
neuron exceeds �LTP. This happens far more frequently than the emission of a
spike, but rarely occurs due to sparsely coding of pulse-coded neural networks.

6.2. Correlation-based learning

A further model of synaptic modiDcation deals with time di,erences between pre-
and postsynaptic spikes. Pre-synaptic spikes and postsynaptic spikes backpropagated
to the dendritic tree add up to the postsynaptic membrane potential and determine
synaptic modiDcation. Since both signals have an e,ect on a short time scale,
correlation of both is decisive for connection changes. Thus, the time di,erence
between pre- and postsynaptic spikes is the main parameter for learning. Change of
connection weight can be described by the so called window of learning [7,16,17].
Setting the occurrence of the pre-synaptic spike to t= t0, the time of postsynaptic
Dring deDnes the weight modiDcation Rwij (Fig. 6). The window of learning is
composed by superposition of exponential-functions. Its values tend to zero for



662 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

Fig. 6. Correlation based learning rule with learning window.

large absolute time di,erences. In a digital simulation it can be approximated by
a function with a Dnite width that is mainly determined by the refractory period
of the postsynaptic neuron. Thus, most neurons Dre not more than once within the
window. To enable registration of postsynaptic spikes following the pre-synaptic
one, the learning event has to be delayed by tdelay. Postsynaptic spikes occurring
after this delay time do not inPuence synaptic modiDcation. With the considerations
above, correlation based learning can be written as an algorithm triggered by the
Dring of the pre-synaptic neuron:

if pre-synaptic neuron j sent out a spike tdelay before
look for last time of postsynaptic Dring
change wij according to this time

As in the Drst algorithm for threshold-based learning term 3 is missing. Again
there is the necessity for completion:

if postsynaptic neuron i Dres
if pre-synaptic neuron j does not emit a spike
decrease wij

Biologically motivated learning with a threshold learning rule or one based on
spike correlation can be described by two event-driven algorithms. Event driven in
this case means that only the synapses that actually underlie modiDcation have to
be processed. The two events triggering learning processes are pre-synaptic spikes
and the level of postsynaptic membrane potential.

6.3. Sender- and receiver-oriented learning

For hardware realization there is a signiDcant di,erence between learning pro-
cesses triggered by pre-synaptic events and those triggered by postsynaptic events.
In the Drst case, starting from a Dring neuron all synapses transmitting spikes from
this neuron have to be processed. Quantity of modiDcation depends on the state
of the postsynaptic neuron, either the membrane potential or time of last Dring.
This process is very similar to the sender-oriented stimulation. Addressed by the
pre-synaptic neuron the contents of the blockstart memory provide a pointer to the
Drst connection in connection memory. During the stimulation phase, connection



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 663

Fig. 7. Sender-oriented learning (neuron address N , weight w).

weights are read out and added to the addressed target neurons. Similarly, in the
case of learning connection weights are read, modiDed according to the states of
the addressed target neurons and Dnally written back. As in the sender-oriented
stimulation, we call this sender-oriented learning (see Fig. 7).
In the second case, a postsynaptic event triggers learning and modiDcation de-

pends on the state of the pre-synaptic neuron, which refers to the emission of a
spike in both learning rules described above. This process is called receiver-oriented
learning. To meet the requirements of a Pexible simulation basis, both types of
learning should be implemented. Thus, access to connections must be provided
from two directions: from the neuron address of the pre-synaptic and the neu-
ron address of the postsynaptic neuron. This is essential for hardware realization.
Sender-oriented learning Dts very well into the sender-oriented architecture de-
scribed above. Data Pow is similar. Connections are processed sequentially, starting
from the Drst one that is addressed by the blockstart memory.
In general, not all connections in a network are modiDed by learning. Many

may remain unchanged for the whole simulation. Thus, there are plastic and static
connections in a network. According to this, a SIB in the connection memory
that contains all connections starting from one neuron is divided into two blocks
(Fig. 8). The Drst block stores all plastic connections, the second the static ones.
The Drst static connection is marked by an LE-bit (Learn-End), the last by the
BE-bit (Block-End) mentioned above.
Stimulation starts at the Drst position in SIB and processes sequentially all con-

nections including the last one marked by the BE-bit. Similarly, learning starts
at the Drst position, however it ends at the Drst static connection marked by the
LE-bit. Consequently, only plastic connections are calculated and no simulation
time is wasted by processing static connections. In the sender-oriented storage
of connection data, there is no information about connections leading to a given
neuron. Therefore an extension is required. This is possible by adding a second



664 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

Fig. 8. SIB partition for plastic and static connections.

Fig. 9. Receiver-oriented pointer memory (neuron address N , weight w).

pointer memory that provides the address to the Drst connection leading to a given
neuron in the connection memory (Fig. 9). This pointer memory acts just like the
blockstart memory. Further additions are required for the connection memory. Each
connection word must contain a pointer to the next connection leading to the same
postsynaptic neuron. The address of the pre-synaptic neuron provides access to the
state of the sender. A control-bit ctlr marks the end of a receiver-oriented list of
connections.



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 665

Fig. 10. Fine (w1
ij) and coarse (w2

ij) modiDcation of synaptic weight.

Triggered by the occurrence of a postsynaptic neuron, the pointer memory ad-
dresses the Drst connection leading to this neuron. This connection can be modiDed,
depending on the state of the corresponding pre-synaptic neuron. Additionally, the
connection word provides a pointer to the second connection, and so on. All plastic
connections leading to the same neuron form a list, which is processed sequen-
tially until the last connection is detected by the ctlr-bit. According to a connection
count of 16M and 1152K sending neurons, as used in the SPIKE128k system pre-
sented below, the pointer to the next connections is a 24 bit-word and the number
of the pre-synaptic neuron is a 21bit-word. With the pointer memory for the Drst
connection, the total additional requirement for the receiver oriented extension is
somewhat more than the one for the receiver-oriented structure.
In the receiver-oriented term of the threshold based learning rule, a learning event

occurs if the postsynaptic membrane potential MPi exceeds the learning threshold
�LTP. If a neuron is active, this happens for a series of following simulation steps
(Fig. 10). In contrast, an action potential occurs only for one single simulation
step. Thus, most learning events are receiver-oriented. Depending on the simu-
lated net, the relation of sender-oriented events to receiver-oriented ones is about
1–10. One way to rectify this unbalanced behavior is the use of a su>ciently small
decrement in term 3. As learning should be a rather slow process, connections must
not change abruptly, and therefore a high resolution for connection weights is re-
quired. In the SPIKE128k system this is not the case as connections are stored in
9 bit-words.
Restriction of receiver-oriented processes to every nth step instead of every simu-

lation step, with n approximately 10 : : : 100; leads to the same result. In simulations
with some thousand simulation steps average network behavior is the same, even
if Rw has the same order for sender- and receiver-oriented processes. The advan-
tage of this approach is the possibility to choose a rather large value for Rw and
consequently a lower resolution for connection weights. This leads to a signiDcant
simpliDcation in storage and processing.



666 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

If a loss in simulation speed and a slight modiDcation of learning behaviour
is accepted, the hardware requirement for the receiver-oriented extension is not
necessary. In this case receiver-oriented changes of connection weights can be
triggered by pre-synaptic neurons. In every nth simulation step a learning process
is started referring to ALL pre-synaptic neurons. In threshold-based learning a
connection is weakened if the membrane potential of the postsynaptic neuron is
above �LTP. The same happens for correlation-based learning if the postsynaptic
neuron sent out a spike in the last m simulation steps, where m is the width of the
discrete window of learning.
There are two disadvantages in connection with a signiDcant simpliDcation of

hardware structure. Receiver-oriented learning is not triggered by the state of the
postsynaptic neuron but by the virtual spiking of every pre-synaptic neuron. Since
in this approach all plastic connections are processed, simulation is relatively slow.
The state of a pre-synaptic neuron does not inPuence weight modiDcation. If the
pre-synaptic neuron sends out a spike, a connection should be strengthened accord-
ing to term 1) instead of the receiver-oriented term 3 which decreases connection
weights. The coincidence of pre-synaptic spike and learning is infrequent. Thus,
on average, the error in learning behaviour leads to a slight decrease of the in-
crement according to term 1). This can be adjusted by choosing suitable values
for Rw.

7. Simulation platforms for complex PCNNs

In the following several platforms developed at the Technical University of
Berlin and the University of Paderborn for the simulation of complex PCNNs
are presented. For platforms that have already been implemented, measured results
are given, otherwise performance estimations are based on system simulations. As
benchmarks two networks designed by the group of Prof. Eckhorn at the University
of Marburg [32] were employed. The networks perform image segmentation and
exhibit similar characteristics: the number of active neurons is about 15–20% and
on average about 0.5% of all neurons emit a spike.

7.1. SPIKE128k

The SPIKE128k was developed and implemented by the group of Prof. Hart-
mann at Paderborn [4,5,10,27]. This platform is based on a single processor unit
as dedicated hardware that allows the computation of a neuron in a pipeline.
Thereby a throughput of one neuron per cycle is achieved. Network topology is
stored in a sender-oriented form in SIB-lists. The model neuron of SPIKE128k
may consist of up to four dendrite potentials, axonal delays and an exponential
and three other types of functions for the decay of dendrite potentials. In order
to speed up simulation, the concepts of a decay list and a spike event list are
implemented. Di,erent algorithms of Hebbian or modiDed Hebbian learning are
supported. The SPIKE128k consists of SRAM and DRAM, programmable logic



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 667

Fig. 11. Modular structure of the SPIKE128k-platform (simulation Pow with hatched arrows similar
to Fig. 2, topology module similar to Fig. 3).

such as PLDs and FPGAs as well as commercial arithmetic and logic compo-
nents. As a modular system, it is based on a VME-backplane. Transputers are
employed for communication between di,erent modules and to the host. The sys-
tem is capable of simulating up to 130,000 neurons with 16 million synapses
(Fig. 11).
The processing of neurons and the decay list takes place in a neuron module,

containing six submodules for computing dendrite potentials, dynamic thresholds
and axonal delays. Spikes are stored in a spike event list within a communication
module. The communication module also stores incoming spikes from other sys-
tems or the host and sends outgoing spikes to other systems. Communication is
controlled by a transputer. In a topology module, the addresses of spiking neurons
address a blockstart memory containing a pointer to the corresponding SIBs in a
topology memory. SIBs are propagated to the neuron module where they stimulate
dendrite potentials. Additionally, a learning module receives the addresses of the
spiking neurons together with a ready-for-learning (RFL)-Pag. This Pag is the re-
sult of a comparison of the membrane potential with the learning threshold. Based
upon this information the learning module modiDes synaptic weights in the mem-
ory of the topology module. The simulation of one time slice is divided in two
phases: in a decay phase neurons from the decay list are computed and spikes are



668 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

stored in the spike event list. In a subsequent stimulation phase the spike event
list is read by the topology module and SIBs from the topology memory stimulate
dendrite potentials. Learning is performed in parallel to the decay phase of the next
time slice. By employing a spike event list, out of 4 million synapses only 25,000
need to be computed. The decay list reduces the number of neurons to compute
from 130,000 to 17,500 within the example network.
Threshold-based learning and correlation-based learning represent two variations

of hebbian learning. Both of them may be described as event-controlled algo-
rithms. The main di,erence is in the choice of postsynaptic parameters respon-
sible for the modiDcation of synaptic weights. For threshold-based learning the
value of the membrane potential is decisive, for the correlation-based learning the
occurrence of the last spike is crucial. Formally, learning may be described as
wnew
ij =f(wold

ij ; P(i); MODE), where the new, modiDed weight is a function of the
old weight, the state of the postsynaptic neuron and the learning mode. Learn-
ing modes are sender- and receiver-oriented learning procedures. A look-up table
adequately fulDls such a function and is easily realized by a simple memory com-
ponent. Thus, the actual learning algorithm does not require explicit calculation
which would otherwise require complex processing components.
As previously pointed out, learning takes place in parallel to the decay phase

when no access to the SIBs in the topology memory is required by the membrane
module. However during the decay phase neuron parameters may not be accessed
by the learning module. They are therefore transferred in two steps to the learning
module via a FIFO-memory 1 depending on the learning algorithm. Sender-oriented
learning considers spiking pre-synaptic neurons. Their addresses are transferred to
FIFO-memory 1 during the stimulation phase, where they initiate learning actions.
For receiver-oriented learning a mirrored receiver-oriented topology list presents
an e>cient way of accessing all postsynaptic neurons connected to a pre-synaptic
neuron. However in the SPIKE128k all pre-synaptic neurons are still considered
as starting points. Their addresses are generated by a counter instead of being read
from FIFO-memory 1 (Fig. 12).

7.2. ParSPIKE

The ParSPIKE-System [33,34] was also developed by the group of Prof. Hart-
mann at Paderborn. The system is a further development of the SPIKE128k to a
parallel computer consisting of digital signal processors (DSP). DSPs take over the
main processing unit of the SPIKE128k, the neuron module.
A prototype implementation of the system using the SHARC ADSP21160 from

Analog Devices is foreseen. For parallelization, neurons are distributed to sev-
eral of these processors. Due to the reduced computational power and memory
capacity of the SHARC in comparison with the SPIKE128k, the DSP can simu-
late 16,384 neurons at the most. Since the algorithm of the DSP is implemented in
software, ParSPIKE o,ers high Pexibility concerning neuron models and their com-
putation. Performance evaluation of the ParSPIKE is based on the neuron model
of the SPIKE128k using a decay list. The use of a resubmission list showed only



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 669

Fig. 12. Block diagram of the combined learning and topology module of the SPIKE128k during the
two main simulation phases [27] (black arrows= active datapath).

minimal performance improvement: out of 128k neurons of the benchmark net-
work, 17,500 need to be computed when using a decay list and 15,000 when
using a resubmission list. For this example the network received a static input
with a frequent stimulation of similar neurons, so that only short dismissal times
occurred.
There are two alternatives for storing the network topology. To support learn-

ing and irregular connection schemes a global sender-oriented SIB-memory is
employed. For each accessing DSP there is a small local SIB-cache. Another
alternative supports only regular connections. These are stored locally in the on-
chip-memory of the DSPs as SIB-connection masks. The SHARC-DSP as a
processing node o,ers several special characteristics. It contains a 512kByte



670 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

Fig. 13. Structure of the ParSPIKE-system for non-regular connections (nrc).

on-chip-memory with link ports and a multi-processor-interface. In the ParSPIKE-
system, the multi-processor-interface is used as output for the addresses of
pre-synaptic spiking neurons. They are transferred through a tree-structure of
hardware-switches (CU) to other SHARCs or to the global topology memory,
which is controlled by a controller (WMC) (see Fig. 13). Out of the read SIBs,
WMC sends each DSP the corresponding stimulation data via a dedicated linking
port. Apart from the WMC, the global memory subsystem consists of a learning
unit (LU). The learning unit supports the learning algorithms of the SPIKE128k, in
particular the threshold-based learning using the RFL-signals, in conjunction with a
sender-oriented topology memory and an inverse receiver-oriented pointer memory.
The memory subsystem consists of SDRAMs, for the CUs, the WMC and the LU
the use of FPGAs is planned. The prototype is conceived as a VME-Bus-System.
Boards for irregular connections contain 16 DSP and the memory subsystem, while
boards for regular connections consist only of DSPs and CUs. An irregular-
connection-board (nrc) may simulate up to 256k neurons with up to 32M synapses,
a regular-connection-board (rc) 512k neurons. The prototype architecture with 2
irregular-connections and one regular-connection board, as well as a VME-
workstation can simulate up to 1M neurons.



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 671

Fig. 14. Structure of the NESPINN-system (Processing Chip=NESPINN Chip).

7.3. NESPINN

At the same time as the SPIKE128k was developed in Paderborn, Professor
Klar’s group in Berlin conceived the NESPINN-System (neuro-computer for
spiking neural networks) [14]. Compared to the FPGA-based approach of the
SPIKE128k, NESPINN’s main processing unit consists of two ASICs (Applica-
tion SpeciDc Integrated Circuits): the NESPINN-Chip, which is dedicated to the
processing of the model neuron, as well as a Connection-Chip [25], which com-
putes the regular connections of the network (Fig. 14). The use of ASICs allows
an increased clocking frequency (SPIKE128K: 10 MHz; NESPINN: 50 MHz). As
in the SPIKE128k, a NESPINN-Board is connected to a host computer and other
NESPINN-Boards via a VME-bus. Main units on the NESPINN-board are a spike
event list, a regular connection unit (Connection Chip), an irregular connection unit
(DRAM-Unit) and a neuron-processor, the NESPINN-Chip. Addresses of neurons
emitting a spike are written to the spike event list. For each spiking neuron the
connection units supply the receiver-neurons and respective connection weights.
The NESPINN-Chip adds these connection weights to the current dendrite poten-
tials and combines them into a membrane potential. Dendrite potentials represent
the actual excitation state of the neuron and are stored in the neuron state memory.
If the membrane potential exceeds a threshold, the neuron emits a spike and its
address is again written to the spike event list. With the capability of the Connec-
tion Chip to compute not only all receivers of a sender neuron, but also all senders
to a receiver neuron, the regular connection unit allows the application of hebbian
and modiDed hebbian learning rules.
In contrast to the SPIKE128k, NESPINN is not limited to a Dxed neuron model,

but allows the conDguration of a neuron model with up to 16 dendrite potentials
with di,erent functionality (e.g. inhibitory, excitatory, multiplicative). Instead of
a decay list, NESPINN marks active dendrite potentials and thereby prevents not



672 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

Fig. 15. Structure of the MASPINN-system (2 ASICs: NeuroPipe-Chip and Connection Chip).

only unnecessary computation of inactive neurons, but furthermore neglects inactive
dendrite potentials of active neurons.

7.4. MASPINN

After the NESPINN-System, the MASPINN-System was designed in Berlin [29].
The NESPINN-System aimed at the real-time simulation of about 105 spiking neu-
rons. However, since network sizes attractive for image processing task are in the
order of 106 neurons, the goal of the MASPINN (memory optimized accelerator
for spiking neural networks) was to gain another order of magnitude in speed.
The basic structure of MASPINN is quite similar to the NESPINN architecture.
MASPINN consists of a spike event list, a Connection Unit and a Neuron Unit,
with a core processor: the NeuroPipe-Chip [30] (see Fig. 15). The NeuroPipe-Chip
also allows a conDgurable neuron model with up to 16 dendrite potentials. The
gain in performance compared to NESPINN is achieved by a higher system fre-
quency of 100 MHz and new architectural features. Such features are applied on
board and chip level. On board level, weight caches have been introduced. They
allow a further parallelization of the processing steps necessary for the simula-
tion of a spiking neural network. Furthermore, a compressed dendrite potential
(DP)-Memory, relaxes the bandwidth requirements of the neuron-processor-chip.
On chip level, the NeuroPipe-Chip applies pre-analysis of dendrite potentials to be
processed. Pre-analysis tests the relevance of a dendrite potential in the context of
the other dendrite potentials of the corresponding neuron. This reduces the compu-
tational load during the computation of the membrane potential in the pipeline of
the NeuroPipe-Chip. Also on chip level, an inhibition unit in the NeuroPipe-Chip



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 673

Fig. 16. PVM software simulator for workstation cluster.

may emulate the inhibition of the entire network or large parts of it. Since all pa-
rameters related to inhibition and their computation are hosted on-chip, the band-
width and computational requirements of the entire system are also reduced. The
performance of the NeuroChip has been evaluated on register-transfer-level by a
VHDL-simulation (HDL: hardware description language) [28]. A prototype of the
chip has been fabricated in May 2000.

7.5. Parallel PVM-software-simulator

Based on the examinations for the ParSPIKE-System in the group of Prof. Hart-
mann in Paderborn a parallel software simulator based on PVM (parallel vir-
tual machine) for a Sun-workstation-cluster has been developed (Fig. 16). The
simulation is organized as a farmer–worker system. The simulator realizes the
parallel algorithm of the ParSPIKE for the nrc-topology representation in com-
bination with the SIB-cache and for the rc-topology representation by using lo-
cally stored SIB-masks (see Section 7:2). As a third option, the distribution of the
nrc-SIB-topology to the workers is possible, because the workstations o,er a much
higher capacity of local memory than the DSPs of ParSPIKE. The performance
evaluation of the ParSPIKE-approach is based on data from the simulation of the
PVM-software-simulator in conjunction with results from a DSP-evaluation system.
In particular, the possibility of parallelizing the simulation has been examined in



674 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

Fig. 17. Supported concepts of implementations.

order to Dnd an optimal mapping of neurons with minimal communication and
optimal load balancing between the workers.
As a division of the network with a minimum of connections cut is desir-

able, graph-partitioning libraries [24] are applied. Depending on the partitioning
communication and loads vary. In particular communication is an issue for the
nrc-topology with SIB-cache. In case of a cache-miss, the SIB must be transferred
from the farmer via the network to the worker. Connections of neurons between
two di,erent workers may not be stored in the cache. The cache-hit-rate is therefore
a good indicator of the number of cut connections. In the presented system of eight
workers cache-hit rates of 60% were achieved. Concerning the computational load
of workers distributions with variations of ±5% were found. Further investigations
have shown that distributions with good load balancing require a high number of
cut connections, while distributions with only few connection cuts result in bad
load balancing (Fig. 17).

8. Summary and conclusion

The simulation of complex PCNNs operating on a similar time scale to bio-
logical neural networks requires extreme computational power which conventional
computers do not supply [15,26]. Therefore concepts are necessary to provide the
required power in terms of computation and communication e.g. as a dedicated
hardware to compute such complex PCNNs in real-time. The presented concepts
take advantage of the characteristics of PCNNs in image processing, in order to
minimize simulation time and facilitate implementation in hardware. The concepts
were developed by the groups of Prof. Hartmann in Paderborn and Prof. Klar
in Berlin and were used in various combinations for simulator systems. Hence,
the performance of the concepts may only be evaluated in the context of these



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 675

Fig. 18. Performance evaluation of di,erent simulator implementations.

simulator systems. Their performance was partially measured in existing imple-
mentations and partially estimated by simulations and extrapolations (marked ∗).
The results shall facilitate a classiDcation of the system. Note that PE (processor
element) refers to a processing pipeline which in the case of the SPIKE128k cor-
responds to an entire board, in the case of the ParSPIKE to a DSP and in the case
of NESPINN, MASPINN and CNAPS to a single pipeline on the processor-ASIC.
NESPINN- and MASPINN boards may be used for further parallelization beyond
parallel PE on a single chip. The evaluation is based on benchmark networks [32]
with 128k neurons, 4M synapses, 15% activity and 0.5% spikes per time step.
A resolution of 1ms per time step is desirable. For larger networks performance
data was determined by extrapolation. In doing so, for SPIKE128k and ParSPIKE a
load distribution similar to the one of the benchmark network was assumed. Perfor-
mance data for the CNAPS-Neurocomputer were taken from [15] for comparison. 2

(Fig. 18).
The presented implementations and concepts pursue di,erent goals and therefore

are not comparable solely on the basis of simulation speed. Apart from a maximum
simulation performance composed of simulation time and number of neurons, these
goals are:

• an e>cient implementation that can be designed quickly and with little expense
in terms of size, Dnancial and human resources,

• a high degree of Pexibility concerning the neuron model, network topology and
learning,

• good handling with an easy-to-use simulation environment, e>cient network
speciDcation and extensive debug capabilities.

Neurocomputers based on dedicated neuroprocessor-ASICs like NESPINN and
MASPINN certainly o,er maximum simulation speed. Commercial processors like
DSPs require several ten or hundred clock cycles to compute a neuron or a synapse
and therefore cannot compete with the capability of an ASIC in computing main
simulation steps within one clock cycle in a deep pipeline. The realization of
the NESPINN and MASPINN-ASICs on a VME- and PCI-board provides the

2 The required simulation time to simulate one time step is partially estimated by extrapolations and
simulations (∗). PE (processor element) refers to an entire board for the SPIKE128k, to a DSP for
ParSPIKE and for the rest of the systems to a single pipeline on-chip.



676 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

capability for a good integration into software simulator environments. On the
other hand there are limitations concerning debug capabilities and Pexibility to
change, i.e. the neuron model is only given within the foreseen programmability
of the neuron model. Since NESPINN and MASPINN are based on processing
with a very coarse granularity of parallelization, load balancing is not as crucial
as for a software simulation on a parallel computer or the ParSPIKE-system. On
the other hand the implementation of systems like MASPINN and NESPINN takes
the highest e,orts and costs since, apart from conventional components, ASICs
need to be fabricated. Due to the dedicated hardware of these systems advances
and modiDcations in algorithms are di>cult and costly to implement. MASPINN
as the successor of NESPINN presents the superior system.
Concerning Pexibility, handling and the ease of implementation a software so-

lution is superior to dedicated hardware. However the simulation performance for
real scenarios is still insu>cient. Even parallel implementation, e.g. on the basis of
PVM, does not achieve a su>cient performance. Also, the Dne granularity of paral-
lelization on high-performance commercial parallel computers leads to the common
problems of parallel processing. Communication between processing nodes with a
high number of small data packages, as they frequently occur during the simula-
tion of PCNNs, becomes the main bottleneck and prevents a satisfying simulation
performance.
The ParSPIKE-concept combines commercial hardware with dedicated commu-

nication hardware to overcome this bottleneck in parallel processing. However a
simulation performance comparable to the MASPINN-system is only achieved us-
ing a very high number of processors and good partitioning of the network. Due
to the use of solely commercial processors and programmable logic, the imple-
mentation e,ort of ParSPIKE is smaller. Since all components are programmable,
high Pexibility is also guaranteed. Handling of ParSPIKE-boards is comparable
to NESPINN- and MASPINN-boards. However the mapping of networks to the
ParSPIKE-architecture with Dne granularity of parallelization is di>cult.
Between the extremes of the ParSPIKE- and the MASPINN-system there is

the SPIKE128k. Its implementation is mainly based on programmable logic, but
as in the MASPINN a dedicated neuroprocessor pipeline is realized. The system
furthermore constitutes the basis for the presented learning algorithms for PCNNs.
Even though latest technological achievements are not included in this system it
shows a far superior performance than software implementations. Flexibility of the
system is limited by the dedicated pipeline. Additionally, handling is reduced by
the use of transputer communication links that are seldom used nowadays and the
size of the system (one VME-chassis for 128k neurons).
The application of the presented systems and architectures pursues two aspects.

On the one hand, PCNNs should be developed and examined and on the other hand
PCNNs should be applied to real-world tasks. For the development of PCNNs the
required simulation performance is less crucial while there is a strong demand
for Pexibility and handling. Suitable simulators for such a task are software sim-
ulators and for an increased simulation performance systems like SPIKE128K or
ParSPIKE. For applications of real-world tasks on the other hand, systems like



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 677

NESPINN and MASPINN—and to some extent ParSPIKE—present a superior plat-
form for the simulation of PCNNs.

References

[1] E.L. Bienenstock, L.N. Cooper, P.W. Munro, Theory of the development of neuron selectivity:
orientation speciDcity and binocular interaction in visual cortex, J. Neurosci. 2 (1982) 32–48.

[2] R.Eckhorn, H.J. Reitb(ck, M. Arndt, P. Dicke, Feature linking via stimulus—evoked oscillations:
experimental results for cat visual cortex and functional implications from a network model,
Proceedings of the IJCNN89, Vol. I, 1989, pp. 723–730.

[3] R. Eckhorn, H. J. Reitb(ck, M. Arndt, D. Dicke, Feature linking via synchronization among
distributed assemblies: simulations of results from cat visual cortex, Neural Comput. 2 (1990)
293–307.

[4] G. Frank, Ein digitales Hardwaresystem zur echtzeitfhigen Simulation biologienaher neuronaler
Netze, HNI-Verlagsschriftenreihe, Georg Hartmann (Hrsg.), Bd. 26, Dissertation, Paderborn, 1997.

[5] G. Frank, G. Hartmann, An artiDcial neural network accelerator for pulse-coded model neurons,
Proc. ICNN95, Vol. 4, Perth, Australia, 1995, pp. 2014–2018.

[6] A.S. French, R.B. Stein, A Pexible analog using integrated circuits, IEEE Trans. Bio-Med. Eng.
BME-17 (3) (1970) 248–253.

[7] W. Gerstner, R. Kempter, J.L. van Hemmen, H. Wagner, A neuronal learning rule for
sub-millisecond temporal coding, Nature 383 (1996) 76–78.

[8] C.M. Gray, W. Singer, Stimulus-speciDc neuronal oscillations in orientation columns of cat visual
cortex, Proc. Natl. Acad. Sci. USA 86 (1989) 1698–1702.

[9] G. Hartmann, S. Dre, Self organization of a network linking features by synchronization, in:
G. Hauske (Ed.), Parallel Processing in Neural Systems and Computers, 1990, pp. 361–364.

[10] G. Hartmann, G. Frank, M. Schfer, C. Wol,, SPIKE128K—An Accelerator for Dynamic
Simulation of Large Pulse-Coded Networks, MicroNeuro 97, Dresden, 1997, pp. 130–139.

[11] J.N.H. Heemskerk, Neurocomputer for brain-style processing. Design, Implementation and
Application, Ph.D. Thesis at Leiden University, Rijksuniverditeit Leiden, Netherlands, 1995.

[12] D.H. Hubel, Exploration of the primary visual cortex, 1955-1978, Nature 299 (1982) 515–524.
[13] D.H. Hubel, T.N. Wiesel, Receptive Delds, Binocular interaction and functional architecture in

the cat’s visual cortex, J. Physiol. 160 (1962) 106–154.
[14] A. Jahnke, U. Roth, H. Klar, A SIMD=dataPow architecture for a neurocomputer for

spike-processing neural networks (NESPINN), MicroNeuro 96, Lausanne, Switzerland, 1996,
pp. 232–237.

[15] A. Jahnke, T. Schoenauer, U. Roth, K. Mohraz, H. Klar, Simulation of spiking neural networks
on di,erent hardware platforms, ICANN97, Springer, Berlin, 1997, pp. 1187–1192.

[16] R. Kempter, Hebbsches Lernen zeitlicher Codierung: Theorie der Schallortung im H(rsystem der
Schleiereule, Darmstadt DDD, Naturwissenschatliche Reihe, Bd 17, Dissertation TU Munchen,
1997.

[17] R. Kempter, W. Gerstner, J.L. van Hemmen, Hebbian learning and spiking neurons, Phys. Rev.
E 59, 1999, 4498–4515, submitted for publication.

[18] R. Linsker, From basic network principles to neural architecture: Emergence of spatial-opponent
cells, Proc. Natl. Acad. Sci. USA 83 (1986) 7508–7512.

[19] R. Linsker, From basic network principles to neural architecture: Emergence of orientation-
selective cells, Proc. Natl. Acad. Sci. USA 83 (1986) 8390–8394.

[20] R. Linsker, From basic network principles to neural architecture: emergence of orientation
columns, Proc. Natl. Acad. Sci. USA 83 (1986) 8779–8783.

[21] W. Maass, C.M. Bishop, in: W. Maass, C.M. Bishop (Eds.), Pulsed Neural Networks, MIT Press,
Cambridge, MA, 1998.

[22] K. Mohraz, U. Schott, M. Pauly, Parallel simulation of pulse-coded neural networks, Proc. of the
IMACS World Congress ’97, Vol. 6, Berlin, 1997, pp. 523–528.



678 M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679

[23] E. Nierbur, D. Brettle, E>cient simulation of biological neural networks on massively parallel
supercomputers with hypercube architecture, Adv. Neural Inform. Process. Systems 6 (1994)
904–910.

[24] R. Preis, R. Diekmann, PARTY—a software library for graph partitioning, in: B.H.V. Topping
(Ed.), Advances in Computational Mechanics with Parallel and Distributed Processing, 1997,
pp. 63–71.

[25] U. Roth, F. Eckhardt, A. Jahnke, H. Klar, E>cient on-line computation of connectivity:
architecture of the connection unit of NESPINN, MicroNeuro 97, Dresden, 1997, pp. 31–38.

[26] U. Roth, A. Jahnke, H. Klar, Hardware requirements for spike-processing neural networks,
IWANN 95, Malaga, Spain, 1995, pp. 720–727.

[27] M. Schfer, G. Hartmann, A Pexible hardware architecture for online hebbian learning in the
sender-oriented neurocomputer spike 128K, MicroNeuro 99, Granada, 1999, pp. 316–323.

[28] T. Sch(nauer, S. Attasoy, N. Mehrtash, H. Klar, Simulation of a digital neuro-chip for spiking
neural networks, International Joint Conference on Neural Networks, IJCNN’00, Como, Italy,
2000.

[29] T. Sch(nauer, N. Mehrtash, A. Jahnke, H. Klar, MASPINN: Novel concepts for a neuro-
accelerator for spiking neural networks, VIDYNN’98, Stockholm, 1998.

[30] T. Sch(nauer, N. Mehrtash, H. Klar, Architecture of a neuroprocessor chip for pulse-coded neural
networks, ICCIN’98—International Conference on Computational Intelligence and Neuroscience,
RTP, N. Carolina, USA, 1998, pp. 17–20.

[31] W. Singer, Development and plasticity of cortical processing architectures, Science 270 (1995)
758–764.

[32] L. Weitzel, K. Kopecz, C. Spengler, R. Eckhorn, H.J. Reitb(ck, Contour segmentation with
recurrent neural networks of pulse-coding neurons, CAIP’97, Kiel, 1997.

[33] C. Wol,, G. Hartmann, U. Rckert, ParSPIKE—a parallel DSP-accelerator for dynamic simulation
of large spiking neural networks, MicroNeuro 99, Granada, 1999, 324–331.

[34] C. Wol,, G. Hartmann, H. Rahne, Parallele simulation groer pulscodierter neuronaler netze auf
DSPs, DSP Deutschland 99, Mnchen, 1999, pp. 267–273.

Martin Sch+afer received his BS and MS at the University of Paderborn where
he Dnished his studies in 1995. From 1995 to 2000 he was a research as-
sistant at the Computer Vision Lab at GET at the University of Paderborn
where he received his Ph.D. degree in 2000. Currently, he is working as a
researcher at Hella KG on embedded digital hardware. His research interests
are hardware-implementations of hebbian learning rules.

Tim Sch+onauer received the MS degree in Electrical Engineering in 1995 from
the Technical University of Berlin (TUB), Germany, after academic stays at the
Ecole Nationale Superieure d’ Electronique et de Radioelectricite de Grenoble
(ENSERG), France, in 1994 and Stanford University, California, in 1995. He
subsequently became a Ph.D. candidate in Electrical Engineering at the TUB
with research interests in the area of spiking neural networks and dedicated
hardware for biology-oriented neural networks. End of 2000 he joined Multi-
link Technology Corporation (www.mltc.com) in Munich, Germany, working
on processors for high-speed, high-bandwidth optical networks.



M. Sch-fer et al. / Neurocomputing 48 (2002) 647–679 679

Carsten Wol. received his MS degree in Electrical Engineering in 1996 from
the University of Paderborn. From 1997 to 2000 he held a scholarship of the
graduate college of the Heinz Nixdorf Institute at the University of Paderborn.
Furthermore he was a research assistant at the Computer Vision Lab at GET
at the University of Paderborn where he received his Ph.D. degree in 2001.
His research interests are among computer architectures and digital simulation
techniques for spiking neurons. End of 2000 he joined InDneon Technologies
AG working on baseband processors for mobile phones.

Georg Hartmann we born in F3urth, Germany on April, 7th 1937. From the
University of Erlangen he received his MS degree in physics (1962) and after
postgraduate studies of nuclear physics he received his Ph.D. degree (1968).
He was development engineer in the Deld of nuclear instrumentation, radiomet-
ric measurement, and industrial automation between 1968 and 1976, and head
of development until 1979. At this time he received a call to the Faculty of
Electrical Engineering at the University of Paderborn. Between 1983 and 1987
he served as Vice President at this university. From this time on he is member
of the governing board of the Heinz Nixdorf Institut, a center of interdisci-
plinary research in the Deld of computer science at the Paderborn University.
His Deld of research is computer vision, and from 1994 until 2000 he was
President of the German Association for Pattern Recognition. Currently, he is
dean of the Faculty of Electrical Engineering of the University of Paderborn.

Heinrich Klar received the Dipl.-Ing. degree and the Dr.-Ing. degree from the
Technical University of Munich, Germany in 1972 and 1976, respectively.
In 1976 he joined the research Laboratories of Siemens AG, Munich, where
he was engaged in the research development of circuits for transmission and
processing of analog and digital signals as well as the design of standard
MOS IC’s. He now is a Professor at the Institute of Microelectronics of the
Technical University of Berlin, Germany.

His research interests are in integrated circuits for digital and analog sig-
nal processing, especially spiking neural networks, high speed, high resolution
analog=digital converters and RF-CMOS circuits.

Ulrich R+uckert (Member IEEE) received the diploma degree in computer sci-
ence and a Dr.-Ing. degree in electrical engineering from the University of
Dortmund in 1984 and 1989, respectively.

From 1985 to 1992 he worked on microelectronic implementation of neural
networks at the Faculty of Electrical Engineering (University of Dortmund).
His main activities have been in associative memories and selforganizing maps,
for which he implemented successfully application speciDc integrated circuits.
He is one of the three organizers of the Drst International Conference on Mi-
croelectronics for Neural Networks which is the only international conference
devoted exclusively to hardware implementations of neural networks.

From 1993 to 1994 he was Professor of microelectronics at the Technical
University of Hamburg-Harburg.

Since 1995 he has been Professor of electrical engineering at the University of Paderborn. As a
member of the Heinz Nixdorf Institute he is head of the research group “System and Circuit Technolo-
gies”. The group is working on innovative circuit design and development of microelectronic systems
for massive-parallel and resource-e>cient information processing. The main research interests are dis-
tributed intelligent systems, neural information processing and microelectronic system integration.

R3uckert is vice-dean of the Faculty of Electrical Engineering and member of the managing board
of the Heinz Nixdorf Institute and the Cooperative Computing & Communication Laboratory (C-lab),
respectively.


