
VIDYNN’98 - Workshop on Virtual Intelligence and Dynamic Neural Networks - Stockholm 1998 1

g
l

a

ls are
ase for
tworks.

st after
uronal

[Mal81,
spiking

image
on
tations.
only be

mented
Arrays
using

i97]
images

and

neuron
MASPINN: Novel Concepts for
a Neuro-Accelerator for Spiking Neural Networks

T. Schoenauer, N. Mehrtash, A. Jahnke and H. Klar

Institute of Microelectronics, Technical University of Berlin
Jebensstr.1, Sekr. J13, D-10623 Berlin, Germany

Phone: +49 30 314-22640, Fax: +49 30 314-23029
E-mail: {tim, nasser}@mikro.ee.tu-berlin.de

ABSTRACT

We present the basic architecture of aMemory Optimized Accelerator for Spiking Neural Networks (MASPINN).
The accelerator architecture exploits two novel concepts for an efficient computation of spiking neural networks:
weight caching and a compressed memory organization. These concepts allow a further parallelization in processin
and reduce bandwidth requirements on accelerator’s components. Therefore, they pave the way to dedicated digita
hardware for real-time computation of more complex networks of pulse-coded neurons in the order of 106neurons.
The programmable neuron model which the accelerator is based on is described extensively. This shall encourage
discussion and suggestions on features which would be desirable to add to the current model.

Keywords: Spiking Neural Networks, Pulse-Coded Neural Networks, Neurochip, Neurocomputer, Neuro-Accelerator

1. INTRODUCTION

Biology is the source of inspiration for artificial neural networks. Spike processing (or simply: spiking) neuron mode
closely related to biological neurons since they take into account the precise timing of spike events. This is not the c
conventional rate-coding neuron models as e. g. multilayer perceptrons, which are most commonly used for large ne
Spiking neural networks (also referred to as pulse-coupled neural networks) have gained increasing intere
experimental evidence of stimulus induced synchronized brain activity [Eck89, Gra89]. Synchronized firing of ne
assemblies could serve the brain as a code for feature binding, pattern segmentation and figure/ground separation
Eck88]. Since the human brain unlike technical systems easily solves such tasks as invariant object recognition,
neural networks (SNNs) are of great interest for machine vision applications. However, employing SNNs for
processing requires huge networks in the order of 106 of spiking neurons. Simulating large networks of complex neur
models is a computational expensive task and leads to high simulation times even for high-performance works
Furthermore, to solve real world tasks there is a need for real-time performance of complex networks, which can
achieved by supercomputers or dedicated hardware.
At the University of Paderborn a neuroaccelerator for spiking neural networks, SPIKE128k, has been designed, imple
and tested [Har97]. However, the speed of this implementation is limited by the use of Field Programmable Gate
(FPGA). A faster and more flexible implementation could be achieved by taking advantage of VLSI-technology
Application Specific Integrated Circuits (ASICs). Such an approach was pursued by the NESPINN-System (Neurocomputer
for Spike-ProcessingNeuralNetworks) [Jah96]. Since image processing applications with spiking neurons like in [We
have shown an even higher demand for network complexity in order to allow a sufficient resolution of processed
[Sch97], concepts for a second generation NESPINN-system have been developed: MASPINN (Memory Optimized
Accelerator forSpiking Neural Networks). In comparison to the NESPINN-Architecture, the memory organization
dataflow of MASPINN is optimized to tackle the challenge of simulating more complex networks.
Before describing the concept of MASPINN, spiking neuron models and the derivation of a generic programmable

VIDYNN’98 - Workshop on Virtual Intelligence and Dynamic Neural Networks - Stockholm 1998 2

orks are
elerator
nally the

g to the
, axon,
avior of

e called
euron. If
fter the
-coded

om
s the

for by
nel

)-Eq. (3)
ck89].

1). The
the

odel. A
model as well as typical network characteristics are outlined. Subsequently, the major steps simulating such netw
reviewed. Concepts how to increase the efficiency of simulation of SNN are discussed. Two new concepts of acc
design are introduced. It is shown how these concepts are realized in the neuroaccelerator architecture MASPINN. Fi
performance of MASPINN is discussed.

2. Spiking Neural Networks

2.1 Neuron Models
Spiking neuron models are biophysical models which try to account for properties of real neurons without descendin
level of ionic current but by modelling the integrated signal flow through parts of the neuron, in particular the synapses
dendrites and soma. Spiking neurons represent complex leaky Integrate-and-Fire neurons. The rudimentary beh
spiking neurons is the following: Input spikes from presynaptic neurons are weighted and summed up yielding a valu
membrane potential. The membrane potential is time dependent and decays when no spikes are received by the n
however spikes excite the membrane potential sufficiently so that it exceeds a certain threshold, a spike is emitted. A
emission of a spike the neuron is unable to spike again for a certain period called refractory period. A generic pulse
neuron model, referred to as Spike Response Model (SRM), can be described mathematically by [Ger98]:

(1)

(2)

(3)

where , firing time of neuroni and neuronj, respectively.
membrane potential of neuroni.

, set of all firing times of neuroni and neuronj, respectively.
if threshold is reached by , neuroni emits a spike.
set of neuronsj presynaptic toi.
kernel to model the refractory period.
kernel to model the postsynaptic potential of neuroni induced by a spike of neuronj.

Eq. (1) yields the membrane potential of neuroni and contains in the second addend the sum of all spikes fr
presynaptic neuronsj. Spikes from presynaptic neurons are evaluated by a kernel function which model
response to presynaptic spikes. When the membrane potential exceeds the threshold , neuroni spikes and inhibits
itself for a refractory period. This is modeled by a negative feed back which the first addend of Eq. (1) accounts
summing all spikes emitted by neuroni at and evaluating these spikes with a kernel function . Typical ker
functions and are:

(4)

where , and are time constants and H(s) denotes the heavyside stepfunction. The SRM described by Eq. (1
can be extended in order to model a synchronization of neuronal assemblies by introducing linking connections [E
Inputs from the linking connections modulate the feeding inputs, which correspond to the second addend in Eq. (
integrated signals from the linking inputs, together with a constant offset term, (+1), interact multiplicatively with
integrated signals from the feeding inputs. Eq. (1) becomes in this case

(5)

where the extra indexf in , , , marks values related to feeding connections, while the extra indexl in , ,
, marks values related to linking connections. Such a model shall be called extended Spike Response M

ui t() ηi t t f()
i–() εi j t t f()

j–()
t f()

j Fj∈
∑

j Γi∈
∑+

t f()
i F∈ i

∑=

Fi t f()
i 1 f n≤ ≤();{ } t ui t() υ={ }= =

Γi j j presynaptic to i{ }=

t f()
i t f()

j

ui t()
Fi Fj
υ υ ui t()
Γi
ηi ⋅()
εi j ⋅()

ui t()
εi j ⋅()

ui t() υ

t f()
i ηi ⋅()

ηi ⋅() εi j ⋅()

ηi s() η0 e s τ⁄– H s()⋅ ⋅–= εi j wij
1

1 τs τm⁄()–
---------------------------- e s τm⁄– e s τs⁄––[] H s()⋅=

τ τm τs

ui t() ηi t t f()
i–() εf i j t tfj

f()–()
t fj

f() Ffj∈
∑

j Γf i∈
∑ 1 εl i j t t l j

f()–()
t lj

f() Flj∈
∑

j Γl i∈
∑+⋅+

t f()
i F∈ i

∑=

Γf i tfj
f() Ffi εf i j Γl i tl j

f()

Fli εl i j

VIDYNN’98 - Workshop on Virtual Intelligence and Dynamic Neural Networks - Stockholm 1998 3

-/EPSP-
t of
the filter

g neuron
ble (so

.3.

onsists of
ons are
rily. The
etwork

h time
g. 2.
graphical model of the extended SRM is shown in Fig. 1.

Figure 1: Graphical representation of the extended Spike Response Model.

Digital hardware requires a model discrete in time. In Fig. 2 simple leaky accumulators have been chosen as IPSP
filter functions and the refractory period filter function . Also in Fig. 2 delay elements at the outpu
the neuron are added to model axonal delays. As one can see in Fig. 2, in order to memorize the state of a neuron
values ut(nT), ufx(nT) and ulx(nT) need to be stored. These values will be further on calledinternal potentials or IP-values.

Figure 2: Time-discrete extended Spike Response Model with first-order filters.

The extended Spike Response Model as described by Eq. (5) covers to our knowledge all features inherent to spikin
models which are subject of active research. To allow for different types of neurons of the extended SRM, a configura
called programmable) model neuron is desirable for a hardware implementation. It will be presented in subsection 3

2.2 Network Topology and Characteristics
As SNNs we assume sparsely connected networks. The network is composed of several layers where each layer c
neurons with equal properties. Neurons may be connected laterally (within one layer) or to other layers. Connecti
usually structured in perceptive fields, but in a neuroaccelerator system it should be possible to choose them arbitra
network activity resembles the average number of spikes per time slice divided by the total number of neurons. N
activity is typically low e.g. below 1% for SNNs.

3. Computing Spiking Neural Networks

3.1 Basic Procedures
In a digital simulation, a SNN is computed at discrete times , where the period T is called time slice. During eac
slice, the next state of the network is computed. Let us assume the SNN consists of spiking neurons as shown in Fi

Xl1(t)
Wl1

Input

X [0,1]

Output

Soma

EPSP-/IPSP-
Function

Π
Ui(t) Comparator

Σ

εl1

ΠXlp(t)
Wlp

Σ

ΠXf1(t)
Wf1 εf1

ΠXfq(t)
Wfq εfq

ε lp
Linking-Dendrite

Feeding-Dendrite

Σ

other
Dendrites

+

η i

υ
Static Threshold

Dynamic
 Threshold
Function

Π−η 0

1

y(t) [0,1]

Synapse /Dendrite

Feeding
Inputs

Linking
Inputs

Σ

Π + 1
Ul1 (t)

U
lp

(t)

U
f1

(t)

Ufq (t)

U
t
(t)

εi j ⋅() ηi ⋅()

Xl1(nT)
W l1

Input
X(nT) [0,1]

Output

Soma

EPSP-/IPSP-
Function

U
i
(nT)

Comparator

Σ

ΠXlp(nT)
W

lp

Σ

ΠX
f1

(nT)
Wf1

ΠX
fq

(nT)
W

fq

Linking-Dendrite

Feeding-Dendrite

Σ

other
Dendrites

+

υ
Static Threshold

Dynamic
 Threshold
Function

Π−η 0

yk(nT) [0,1]

Synapse / Dendrite

Σ
Π Tr

l1

Σ
Π Tr

lp

Σ
Π Tr

f1

Σ
Π Tr

fq

Σ
ΠT r

T

d
1

.T

d
k
.T

y1(nT) [0,1]

Axon

Π

Σ

Π

Ul1 (nT)

U
lp

(nT)

U
fq

(nT)

Uf1 (nT)

Ut (nT)

+ 1

n T⋅

VIDYNN’98 - Workshop on Virtual Intelligence and Dynamic Neural Networks - Stockholm 1998 4

In

slice to

ed-point

eme
of the

nding
contains
s all source
ly active

IP-
imuli. For
ible IP-
Rather

any
m 8bit

ter set.
e neuron
educe
rwise it
-values
d delay
ld values
ultiplied

rise and

bout ten
able to
limited
h

n Fig. 3
Four major steps need to be taken:
1. Decay of IPs:

Internal potentials like ut(nT), ufx(nT), ulx(nT) are decreased according to kernel functions or .
case of a simple leaky accumulator this would correspond to a multiplication with a decay factor rx (see Fig. 2).

2. Spike propagation:
Spikes are propagated from the outputs of neurons (source-neurons) that e.g. spiked during the previous time
the inputs of connected neurons (target neurons).

3. Output:
The output function combines all IP-values of a neuron to the membrane potential ui(nT) and a spike is emitted or not
depending on the comparison with a threshold.

4. Learning:
Learning parameters are adapted according to a learning algorithm.

The concepts discussed in this paper focus on step 1-3.

3.2 Concepts of Efficient Simulation
To efficiently simulate SNNs several strategies can be pursued: event list protocol, sender-oriented connection list, fix
arithmetic and neglecting small IP-values [Jah98].
Event-list: To implement step 2 (Spike Propagation), all spikes of the previous time slice1 need to be distributed according to
the connections of source neurons2 to their target neurons. An event list protocol is an efficient communication sch
[Laz93]. The event list contains the addresses of source neurons. Due to a low network activity, only a small fraction
total number of neurons needs to be stored in that list.
Sender-oriented connection list: During step 2 all connections from these source neurons as well as the correspo
weights need to be determined. It is suitable to store connections and weight values in a list. Such a connection list
either for each source neuron address all target neuron addresses (sender-oriented) or for each target neuron addres
neuron addresses (receiver-oriented) [Fra95]. A sender-oriented connection list is appropriate since it ensures that on
connections are computed.
Neglecting small internal potentials:Since the network activity is low and the IP-values decay in time, many of the
values approach or already are zero. The percentage of negligible IP-values depends on network parameters and st
an enlarged version of a simple SNN presented by Reitboeck et al. [Rei93], we found an average number of neglig
values in the order of 80%. It would be a waste of computational resources to apply a filter function to these values.
each IP-value could be tagged as valid (tag=1) or not (tag=0) after a comparison with a minimum value IPmin. In this case,
only the IP-values with a valid tag-bit are processed.
Numeric precision: Instead of using floating-point arithmetic, fast fixed-point arithmetic may be used without
degradation in network performance. According to the resolution analysis of Roth et al. [Rot95], accuracies fro
(weights) up to 16bit (internal potentials) are sufficient for vision problems.

3.3 A Programmable Model of a Spiking Neuron
A programmable neuron model admits to configure spiking neurons of various complexity and with a different parame
Such a model is shown in Fig. 3. It represents a configurable neuron which may be programmed to correspond to th
model in Fig. 2. Furthermore, the programmable neuron allows several inputs x(nT) to one IP-filter in order to r
computational expense by letting spikes that can be modelled by the same filter characteristic split one filter. Othe
consists of summing nodes to sum weighted spikes which share a filter, a processing unit which combines the IP
according to a program code, a comparator which compares the resulting value with e.g. an activity threshold an
elements at the output. The parameter set of the neuron comprises e.g. the filter coefficients, program code, thresho
and delay values. The program code specifies how the IP-values are combined: if they are e.g. added, subtracted, m
or cascaded. By cascading the IP-filters, higher-order filters can be configured e.g. to emulate a kernel function with a
a subsequent decay as denoted by the right part of Eq. (4). In Fig. 3, cascading of IP0 and IP1 is depicted with a broken line,
which can be specified by the program code for IP0.
Events in neural networks occur at a time scale of milliseconds and modern VLSI-circuits operate at a time scale of a
nanoseconds. Therefore, within the time scale of the functioning of a biological neuron, one VLSI-implementation is
simulate the function of many neurons. Taking advantage of the higher speed of VLSI-circuits, parallelization may be
to only a few processing units while still achieving real-time simulations of 105 neurons and more. However the values whic
are not currently calculated must be stored in memory. This is the reason why e.g. employing the neuron model i

1. This simplification is valid in case none of these spikes has an extra-delay.
2. Source neurons are here referred to as neurons emitting a spike while target neurons receive a spike.

ηi ⋅() εi j ⋅()

VIDYNN’98 - Workshop on Virtual Intelligence and Dynamic Neural Networks - Stockholm 1998 5

emory is

at first:
network

acity of
ing chip
uency.
ated as

sing
one IP-
state of
are two

g their
omplex

ng small
system as
on Unit
Besides
neurons.
of the
uron Unit.

decay of
separate
since the
formed in
llel. Its
ncepts:
requires memories to store: the IP-values and the parameter set. If small IP-values are to be neglected, a tag m
required, too.

Figure 3: A generic programmable model of a spiking neuron

4. Concepts of the MASPINN-Architecture

4.1 Simulation of Complex Spiking Neural Networks
When designing SNN-accelerators for real-time simulation of more complex SNNs, two things need to be considered
memory capacity has to increase to store more network variables and processing speed must rise to process more
variables within the same time frame. Due to the continuous growth of memory capacity during the past years, cap
off-chip memory is a minor problem. However, the bandwidth of data-transfer between a memory chip and a process
has not grown correspondingly. It is limited by the number of pins supplied by the chip package and its operation freq
Both have only slightly increased. Therefore, bandwidth may become a limiting factor. System speed may be formul

(6)

with a circuit operation frequency fclock, NPE processing elements working in parallel and the efficiency of these proces
elementsξPEdefined as the reciprocal value of the number of clock cycle it takes one processing element to process
value. Clock frequency rises with the downscaling of VLSI-technology and must be presumed constant for a certain
technology. Suppose the hardware effort (e.g. chip size, pin count, board complexity) is to be kept constant also, there
ways left to increase the system speed: simplifying processing elements so that a higher number NPEmay be chosen without
increasing the overall hardware effort or increasing the efficiency of the processing elements without increasin
complexity. We will concentrate on the latter strategy. Therefore, the task of designing an accelerator for more c
SNNs is conform with the optimization of bandwidth requirements and the efficiency of the processing elements.

4.2 Limitations of Accelerator Architectures
In subsection 3.2, concepts of efficient simulation as a spike event list, a sender-oriented connection list and neglecti
IP-values have been presented. Taking advantage of a spike event list already suggest a basic architecture of a
shown in Fig. 4a. The major system elements are a Neuron Unit, a Connection Unit and a Spike Event List. The Neur
performs the computation of each neuron in the network (e.g. as suggested by the programmable model in Fig. 3).
continuously updating the IPs, the Neuron Unit supplies the addresses of neurons which emit a spike: the source
They will be stored in the Spike Event List. In the following time slice, the Connection Unit reads the addresses
relevant source neurons and supplies the addresses of the target neurons with the corresponding weights to the Ne
This basic organization has been used by NESPINN as well as SPIKE128k.
It requires a sequential processing of steps 1-3 decay, propagation and output (see subsection 3.2). In principle the
IP-values and spike propagation can be performed within the same time period. However each step requires a
memory access: while the decay of potentials can be organized as a regular dataflow, propagating spikes is irregular
occurrence of spikes is not predictable. Since both steps require an access to the same memory, they cannot be per
parallel. We suggest a new organization of the system which allows the processing of all three steps in para
fundamental organization as shown in Fig. 4b is quite similar to the one in Fig. 4a, however it is based on two new co

IP0Σ
Π

Π

X0,0

X0,k0

IP1Σ
Π

Π

ω0,0

ω0,κ

X1,0

X1,k1

IP7
Σ

Π

Π

X7,0

X7,k7

ω7,0

ω7,κ15

ω1,0

ω1,κ1

PROG 0

PROG 1

PROG7

D0

D1

D2

D3

Delays

Comparator

Output
Y [0,1]

AxonSomaSynapse / Dendrite

Input
x [0,1]

r
o

r1

r
7

Thresholds:
 *Activity
 *Learning

vsys f clock NPE ξPE⋅ ⋅=

VIDYNN’98 - Workshop on Virtual Intelligence and Dynamic Neural Networks - Stockholm 1998 6

om the
e
ms the
ase the

ng
ion for
es one
antages
omplex

units in

mulated
lated
weight caching and a compressed IP-memory.

Figure 4: Basic organization of an accelerator system employing a spike event list (‘ * ’ denotes ‘address of’). a) typical b) MASPINN

4.3 Novel Concepts: Weight Caching and Compressed IP-Memory
Weight Caching: instead of sending each weight and the corresponding target neuron address separately fr
Connection Unit to the Neuron Unit, they are accumulated to values∆IP in a copy of the IP-memory (weight cache) in th
Connection Unit. During the next time step the accumulated weights are sent to the Neuron Unit which then perfor
three steps: decay of potentials, propagating of (accumulated) spikes and computing the output. Since in this c
dataflow is regular, this processing can be fully pipelined.
Compressed IP-Memory with tag-bit addressing:it was pointed out earlier, that due to low network activity and decayi
characteristics of IP-values many IP-values are negligible. As illustrated in Fig. 5, instead of saving a memory locat
each IP-value - no matter if it is relevant or not - the compressed IP-Memory stores only the non-negligible IP-valu
after the other. This optimization in memory organization combined with tag-bit addressing scheme has several adv
such as a smaller memory size and a more efficient memory access, which is crucial for the simulation of even more c
networks.

Figure 5: Internal Potentials are stored in the IP-Memory. In a) each IP-value holds a fixed memory location while in b) only relevant IP-
values are stored one after each other.

4.4 Neuron-Unit
The Neuron Unit may perform the three steps decay, propagate and output fully pipelined and with several processing
parallel. Pipelining is possible since the dataflow is regular. The data processed during one time slice (IP,∆IP, tags) is
completely available at the beginning of the time slice. This is the case, because the Connection Unit has already accu
the weighted spikes (∆IP) during the previous time slice. Now, the Neuron Unit simply needs to add these accumu

∆ IP,
Tags

Connection-Unit

Neuron-Unit

*Source Neuron

Σ

Σ

Decay

Propagate

Output
processing

time
Time Slice

Event-
List

Event-
List

*Source Neuron

b)
Connection-Unit

Neuron-Unit

*TargetNeuron,

Weight

*Source Neuron

Decay & Propagate Output

processing
time

Time Slice

Event-
List

Event-
List

*Source Neuron

a)

IP6 IP7
IP14

IP 4
IP 12

IP 1 IP 2
IP 8
IP 0Layer X IP 3 IP 5

IP 9 IP 10 IP 11 IP 13 IP15

Layer 1 IP 3 IP 5 IP 6 IP 9 IP 11 IP 14

Layer X IP 0 IP 2 IP 6 IP 7 IP 9 IP 12

Layer 0 IP 0 IP 2 IP 6 IP 7 IP 9 IP 12

IP-Memory (compressed)
IP 5 IP6
IP 13 IP14

IP 4
IP 12

IP 2
IP 11IP 10IP 9

IP 0

IP 3IP 1 IP 2

IP 8

IP 0
IP14 IP15

 IP6
IP 8 IP 10 IP 11 IP 13

IP 5

Sektor 1

Layer0 IP 4 IP7
IP 9 IP 12

IP 1 IP 3 IP7

IP-Memory (uncompressed)

IP15

a)

IP15

IP15

Valid Internal Potential
Neglible Internal Potential

b)

VIDYNN’98 - Workshop on Virtual Intelligence and Dynamic Neural Networks - Stockholm 1998 7

t layer
lues are
ss of the

o store
ammable
has to be
tantly. To
ave to be
high

-
s, since

rtually
75% of
xpensive
of the

ncept.

pacity is
isting of

pointer.

memory
mory?
ed to be

from the
l valid
P-values
a small

lute
no extra
s a high
pt of a

on the
weights∆IP to the decayed IP-values. This can be done consecutively e.g. starting with the first IP-value of the firs
until the last IP-value of the last layer. In doing so, each IP-value is processed pipelined where at the end the IP-va
combined to the membrane potential according to the program code and if it exceeds the dynamic threshold the addre
corresponding neuron (source neuron) will be sent to the Spike Event List.
As illustrated in Fig. 6, the Neuron Unit consists of a Neuron Chip responsible for all the processing and memories t
the IP-values, the IP-tags and the network parameters. Network parameters contain the parameter set of the progr
neuron (see subsection 3.3). Since a layer consists of neurons with equal properties, the network parameter memory
accessed only once per layer. On the other hand the IP-memory and the IP-tag-memory need to be accessed cons
achieve a high system speed parallel processing is desirable. That means several IP-values and IP-tag values h
accessed in a one clock cycle as well as∆IPs need to be read from the Connection Unit. Hence, there is a demand for a
IO-bandwidth of the Neuron Chip. Not only the values themselves but also the addresses of IP-values and∆IPs contribute to
the requirement of a high IO-bandwidth. For example a complex network of 105 neurons with 6 IP-values each, the IP
address would have a bitwidth of 20bit. Soon the required IO-bandwidth exceeds the bandwidth achievable by ASIC
the bandwidth of ASICs is bound by a limited number of pins.
The use of the embedded DRAM-technology would be an attractive alternative. On-chip memory exhibits a vi
unlimited bandwidth. The compressed IP-memory concept is very attractive for embedded-DRAM design, as up to
memory capacity could be saved. Since area is a major concern in this extremely expensive technology, a less e
design or a design for the computation of far more complex networks could be fabricated. Unfortunately, the costs
embedded-DRAM technology is currently prohibitively high for small volume designs.

Figure 6: Internal Structure of Connection Unit and Neuron Unit employing the weight caching and compressed IP-Memory co

But a compressed organization of the IP-memory exhibits also advantages for off-chip memories, where memory ca
not of concern. Instead of reading IP-values at different addresses in different memory devices, one wide word cons
the next relevant IP-values can be easily accessed from one memory device by simply incrementing the address
Therefore a compressed IP-memory facilitates memory access.
However storing only some of the IP-values also causes a problem: the assignment of a certain IP-value to a certain
location is lost (see Fig. 5). How can the information be obtained which IP-value is stored in what location of the me
To store the address of each IP-value in memory is not a solution, since for each IP-value an extra value would ne
accessed and also memory resources would be massively wasted. A very elegant way is the extraction of the address
IP-tag bits. Since the tag bits contain the information which IP-value is valid and which is not valid, the address of al
IP-values can be decode from the tag bits if IP-values are accessed consecutively. Assuming an average validity of I
of 20% would mean that in average only 5bits per IP-value need to be transferred to obtain the IP-address. This is
value considering that a complex network of 105 neurons with 6 IP-values each requires a bitwidth of 20bit for the abso
IP-address. Since tag bits are handled by the Neuron Unit anyway to prevent the computation with irrelevant data,
resources are required for this kind of address encoding. The Neuron Unit - as described in this subsection - exhibit
efficiencyξPE of its fully pipelined processing elements due to the concept of weight caching. Furthermore the conce
compressed IP-Memory in conjunction with a tag-bit addressing scheme reduces the IO-bandwidth requirements
Neuron Chip.

PCI-
Inter-
face

PCI-Bus Connection
Chip

Neuron-
Chip

IP-
Memory

Neuron-Unit

Net-Par.-
Memory

Tag-
Mem.0

∆IP-,
Tag-
Mem.

1

Weight
Memory

Spike
Event
List

Tag-
Memory

IP-
Mem 0

Tag-
Mem.1

IP-
Mem 1

*source neuron

∆IP, ∆IP-tags
Connection-Unit

VIDYNN’98 - Workshop on Virtual Intelligence and Dynamic Neural Networks - Stockholm 1998 8

ry, two
-in the
s.
he target
d in that
n and

eceived
cache

ion of
Neuron

only one
tead of

tag-bit

caches
nted is a
might

ization in
tor of
d the step
able to
ipelined
ut of one
ing a
yields

slice <
lid IPs).

in
4.5 Connection-Unit
As illustrated in Fig. 4b, the Connection Unit receives source neuron addresses and supplies∆IPs (accumulated weights) and
∆IP-tags.∆IP-tag bits label the corresponding∆IP-values as valid (∆IP-tag=’1’) or not valid (∆IP-tag=’0’). In Fig. 6, the
internal structure of the Connection Unit is depicted. Major components of the Connection Unit are the weight memo
copies of the complete (not-compressed) IP-Memory and a Connection Chip. The two copies of the IP-Memory
following called weight caches- serve the accumulation of weights during a time-slice. They have two functional role
One weight cache is receiver. From the connection list it receives weights and a corresponding target address. T
address corresponds to a certain memory location in the weight cache. If there is already a relevant value store
location (∆IP-tag=’1’), the weight needs to be added to that value. Otherwise the weight is simply written to that locatio
∆IP is set to ‘1’. Thereby all corresponding weights are accumulated at the appropriate location in the weight cache.
The other weight cache functions as a sender. According to the∆IP-tag, it reads out the relevant∆IP-values and sends them to
the Neuron Unit. Weight caches switch roles each time slice: one time-slice they preprocess the data which they r
from the connection list, the next time slice they supply this data to the Neuron Unit. Meanwhile the other weight
performs exactly the opposite operation.
Advantage of this concept is that the∆IP-values are generated one time-slice ahead, and therefore allow the parallelizat
the three steps of decay, propagation and output. Also a major benefit is that the IO-bandwidth requirements for the
Chip is further reduced: instead of sending each weight and target neuron address separately (see Fig. 4b),
accumulated∆IP-value needs to be transferred. If for example one neuron receives ten spikes during one time slice, ins
sending each weight with a corresponding target address separately ten times, it sends only one∆IP-value and some tag-bits.
Further reduction of the bandwidth requirements on the Neuron Chip is achieved by employing the efficient
addressing scheme1.
Obviously these advantages have to be payed with an extra complexity of the Connection Unit mainly by the weight
and its peripheral logic. Fast SRAMs may be used as weight caches and the logic function that needs to be impleme
simple read-accumulate-write action. However, for very high connectivity, the performance of the weight caches
become the bottle neck of the system and need to be designed carefully.

5. Performance Evaluation

The concept of weight caching and compressing the IP-memory lead to a speed-up compared to the system organ
Fig. 4a since the three steps2 to compute an SNN may be performed in parallel. Ideally, there would be a speed-up fac
three. However, this assumes that all three steps require the same processing time. In reality this is not the case an
with the longest processing time will determine the duration of the computation of a time slice. However, it is reason
assume the same order of magnitude for processing time of the three steps. The system organization allows a fully p
processing of the neuron function (Neuron Chip). Hence, in the ideal case each processing element has a throughp
IP-value (performing decay, propagation and output) per clock cycle. Assuming a MASPINN-Architecture employ
Neuron Chip with four processing elements, a performance estimation for the previously mentioned network [Rei93]
the results stated in Tab.1 for a network complexity of up to 106 neurons with three IP-values each.

Table 1: Performance of the MASPINN-architecture compared to various other hardware platforms (real-time requirement: time
1ms). Values marked by * are estimated, other values are measured (Assumption: max. 0.5% network activity, 20% va

1. The efficiency of the tag-bit addressing scheme depends of course on the number of∆IP which are relevant. If a
very small number only is relevant, the tag-bit scheme becomes inefficient. However, it would not matter, since
such a case bandwidth requirements would be extremely small anyway.

2. Learning is not considered.

Number
of
neurons

Number
of IPs

Ultra-Sparc
300MHz
1 PE

Pentium II
266MHz
1 PE

Alpha
500MHz
1 PE

CNAPS
50MHz
256PE

CM-2
10MHz
16KPE

NESPINN
50MHz
4PE

MASPINN
100MHz
4PE

16K 48K 11ms 10ms 9ms 1.5ms <0.01ms* 0.38ms* 0.06ms*

128K 384K 84ms 85ms 67ms ~1s* <0.1ms* (3.0ms)* 0.39ms*

512K 1,5M 380ms 427ms 291ms >>1s* ~1ms* (11.7ms)* 1.56ms*

1M 3M 730ms not avail. 650ms - not avail. (23.4ms)* 3.1ms*

VIDYNN’98 - Workshop on Virtual Intelligence and Dynamic Neural Networks - Stockholm 1998 9

neural
for an

potential
urther
caching
ms. The
internal
pensive
can be
is IO-

an event
stitute

N may
iled

s of

A

edings

",

e

ural

-

al
erns,
6. Conclusion

The neuron model which the MASPINN-system is based on was discussed. Typical characteristics of spiking
networks were outlined and basic concepts of neuroaccelerator design were pointed out. Two novel concepts
accelerator architecture for spiking neural networks have been proposed: weight caching and a compressed internal
memory. At the cost of additional memory units - the weight caches - the concepts of weight caching allow a f
parallelization when computing spiking neural networks and therefore leads to a speed-up. Furthermore, weight
admits a regular dataflow opposed to a naturally irregular dataflow due to unpredictable spike events in previous syste
regular dataflow facilitates the computation and a fully pipelined processing is feasible. The concept of a compressed
potential memory simplifies memory access. It is also a very attractive concept for designs where memory is very ex
(e.g. on-chip memory, embedded DRAM), since the required capacity of memory storing the internal potentials
reduced up to 80%. On-chip memory is attractive for accelerators for spiking neural networks as their computation
bounded. Weight caching and a compressed internal potential memory as well as previously applied concepts like
list protocol, a sender-oriented connection list, fixed-point arithmetic and neglecting irrelevant internal potentials con
the backbone of the proposedMemory OptimizedAccelerator forSpiking Neural Networks (MASPINN). The estimated
performance is compared to the performance of a variety of other hardware platforms and suggests that MASPIN
perform real-time simulation of up to 106 simple neurons with four fully pipelined processing elements. Currently, a deta
specification of the MASPINN-system is elaborated.

7. Acknowledgments

We would like to thank Ulrich Schott, Ulrich Jagdhold and Thomas Geiger for providing simulation result
benchmarkfiles.

8. References

[Eck88] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, H.J. Reitböck, “Coherent oscillations:
mechanism of feature linking in the visual cortex?”, Biological Cybernetics 60:121-130, 1988.

[Eck89] R. Eckhorn, H. J. Reitboeck, M. Arndt, P. Dicke, "Feature linking via stimulus-evoked oscillations:
Experimental results from cat visual cortex and functional implication from a network model",Proc. ICNN I:
723-730, 1989.

[Fra95] G. Frank, G. Hartmann, “An artificial neural network accelerator for pulse-coded model-neurons”, Proce
on International Conference on Neural Networks (ICNN), Perth, 4:2014-2018, 1995.

[Ger98] W. Gerstner, “Spiking Neurons”, In:Pulsed Neural Networks, W. Maas and C.M. Bishop (Eds.), MIT Press,
1998.

[Gra89] C. M. Gray, W. Singer, "Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex
Proc. Natl. Acad. Sci. USA 86: 1698-1702, 1989.

[Har97] G. Hartmann, G.Frank, M.Schaefer, C.Wolff, “SPIKE128K - An accelerator for dynamic simulation of larg
pulse-coded networks”,Proceedings of the 6th International Conference on Microelectronics for Neural
Networks, Evolutionary & Fuzzy Systems, Dresden, pages 130-139, 1997.

[Jah96] A. Jahnke, U. Roth, H. Klar, “A SIMD/Dataflow Architecture for a Neurocomputer for Spike-Processing Ne
Networks (NESPINN)”,MicroNeuro'96, pages 232-237, 1996.

[Jah98] A. Jahnke, U. Roth, T. Schoenauer, “Digital Simulation of Spiking Neural Networks”, In:Pulsed Neural
Networks, W. Maas and C.M. Bishop (Eds.), MIT Press, 1998.

[Laz93] J. Lazarro, J. Wawrzynek, “Silicon Auditory Processors as Computer Peripherals”, Advances in Neural
Information Processing Systems 5: 820-827, 1993.

[Mal81] C.v.d. Malsburg, “The correlation theory of brain function”, Internal Report 81-2, MPI für Biophysikalische
Chemie, Göttingen, 1981. Reprinted inModels of Neural Networks II, Domany et al. (Eds.), Springer, pages 95
119, 1994.

[Sch97] U. Schott, R. Eckhorn (Philips-Universität Marburg), internal communication, 1997.
[Wei97] L.Weitzel, K.Kopecz, C.Spengler, R.Eckhorn, H.J.Reitboeck, "Contour segmentation with recurrent neur

networks of pulse-coding neurons", In: Sommer, Daniilidis, Pauli: Computer Analysis of Images and Patt
CAIP Kiel, Springer Verlag, 1997.

	T. Schoenauer, N. Mehrtash, A. Jahnke and H. Klar
	Institute of Microelectronics, Technical University of Berlin
	Jebensstr.1, Sekr. J13, D-10623 Berlin, Germany
	Phone: +49 30 314-22640, Fax: +49 30 314-23029
	E-mail: {tim, nasser}@mikro.ee.tu-berlin.de
	1. INTRODUCTION
	2. Spiking Neural Networks
	2.1 Neuron Models
	(1)
	(2)
	(3)
	(4)
	(5)
	Figure 1: Graphical representation of the extended Spike Response Model.
	Figure 2: Time-discrete extended Spike Response Model with first-order filters.

	2.2 Network Topology and Characteristics

	3. Computing Spiking Neural Networks
	3.1 Basic Procedures
	3.2 Concepts of Efficient Simulation
	3.3 A Programmable Model of a Spiking Neuron
	Figure 3: A generic programmable model of a spiking neuron

	4. Concepts of the MASPINN-Architecture
	4.1 Simulation of Complex Spiking Neural Networks
	(6)

	4.2 Limitations of Accelerator Architectures
	Figure 4: Basic organization of an accelerator system employing a spike event list (‘ * ’ denotes...

	4.3 Novel Concepts: Weight Caching and Compressed IP-Memory
	Figure 5: Internal Potentials are stored in the IP-Memory. In a) each IP-value holds a fixed memo...

	4.4 Neuron-Unit
	Figure 6: Internal Structure of Connection Unit and Neuron Unit employing the weight caching and ...

	4.5 Connection-Unit

	5. Performance Evaluation
	Table 1: Performance of the MASPINN-architecture compared to various other hardware platforms (re...

	6. Conclusion
	7. Acknowledgments
	8. References
	[Eck88] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, H.J. Reitböck, “Coherent o...
	[Eck89] R. Eckhorn, H. J. Reitboeck, M. Arndt, P. Dicke, "Feature linking via stimulus-evoked osc...
	[Fra95] G. Frank, G. Hartmann, “An artificial neural network accelerator for pulse-coded model-ne...
	[Ger98] W. Gerstner, “Spiking Neurons”, In: Pulsed Neural Networks, W. Maas and C.M. Bishop (Eds....
	[Gra89] C. M. Gray, W. Singer, "Stimulus-specific neuronal oscillations in orientation columns of...
	[Har97] G. Hartmann, G.Frank, M.Schaefer, C.Wolff, “SPIKE128K - An accelerator for dynamic simula...
	[Jah96] A. Jahnke, U. Roth, H. Klar, “A SIMD/Dataflow Architecture for a Neurocomputer for Spike-...
	[Jah98] A. Jahnke, U. Roth, T. Schoenauer, “Digital Simulation of Spiking Neural Networks”, In: P...
	[Laz93] J. Lazarro, J. Wawrzynek, “Silicon Auditory Processors as Computer Peripherals”, Advances...
	[Mal81] C.v.d. Malsburg, “The correlation theory of brain function”, Internal Report 81-2, MPI fü...
	[Sch97] U. Schott, R. Eckhorn (Philips-Universität Marburg), internal communication, 1997.
	[Wei97] L.Weitzel, K.Kopecz, C.Spengler, R.Eckhorn, H.J.Reitboeck, "Contour segmentation with rec...

