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Abstract. We present the requirements for a neurocomputer for spike-processing neural networks. In a sim-
ulation study we investigated the performance of available hardware and showed, that there is still a need for
a specific neurocomputer dedicated to the simulation of spike-processing networks. On the basis of our sim-
ulation study and an investigation of the features of spike-processing networks we analyses the requirements
for the design of dedicated hardware. An efficient hardware architecture should contain an event-list mod-
ule, a sender-oriented connection module and a number of fixed-point processing units.

1 Introduction

Experimental results [1] [2] together with theoretical studies [3] [4] suggest that the time structure of neuronal
spike trains is relevant in neuronal signal processing. The synchronized firing of neuronal assemblies could serve as a
versatile and general mechanism for feature binding, pattern segmentation and figure/ground separation. This mecha-
nism could also be useful for machine vision, where robust scene segmentation is still a difficult and intricate problem
in a real world environment. Various model neurons and network architectures have been presented which allowed
the reproduction the essential phenomena of synchronized activity in simulation studies: [5]-[12]. These models
belong to two different categories: the basic units are either coupled oscillators or spiking neurons. In the following
we will solely concern ourselves with spike-processing neural networks.

Obviously, a serial processing general-purpose computer is not very well suited to the simulation of neural net-
works. On the other hand, the high acquisition and maintenance costs of high performance parallel computer justify
their use only for very few applications. Our first question was whether the available neurocomputers, which reach a
very high performance for back-propagation networks, are also appropriate for large networks of spiking neurons.
Networks with thousands of neurons are necessary in order to tackle low vision problems such as scene segmentation
or to model brain areas. We performed a simulation study on a parallel computer (CNAPS [13]) and investigated on
this basis the requirements for an efficient design of a digital accelerator for spike-processing neurons.

In section 2 we describe the specific properties of spiking neurons and the model network we chose for our inves-
tigations. Section 3 presents the results of our simulation study. Finally, in section 4 we summarize the requirements
for an efficient architecture of an accelerator for spike-processing neural networks.

2 Spike-Processing Neural Networks

2.1 Spiking Neurons

At a spiking neuron incoming spikes x(t)∈{0,1} are weighted and induce a time-varying potential u(t) at a syn-
apse which changes according to a response function on a time scale much longer than a single spike. The time course
of the response function at a synapse models a postsynaptic potential. This function may be composed of a sharp rise
and a following exponential decay or it be may be a solely decaying function. The second one can be easily imple-
mented as a leaky integrator or a first-order recursive digital filter in a discrete version with a relaxation factor
r = exp ((-T) /τ ), where T denotes the basic time unit for one simulation step. A combination function accumulates
the various potentials yielding the membrane potential um(t). A threshold function compares then the membrane
potential with the firing threshold to determine whether to emit a spike or not.

An outgoing spike is then transmitted to the connected neurons. Transmission and other delays can be combined to
axonal [6] or synaptic delay times [14]. Incoporation of a time-varying firing threshold results in a refractory period
for the model neuron. Setting the firing threshold to a infinite value for a fixed time leads to a absolute refractory
period. If a outgoing spike is fed back to induce a time-varying threshold potential a relative refractory period is
achieved [5]. This enables the model neuron to act as a local nonlinear oscillator.



2.2 Model network and Implementation Issues

As model network for the study of simulation times we chose a enlarged version of the neural network presented
in [15]. Our network consists of a two-dimensional layer of up to 256 x128 neurons. Each neuron receives an input
signal to its feeding input from its corresponding pixel in the input image. Furthermore each neuron is connected to
its eighty nearest neighbors via linking inputs in a square of 9x9 neurons. This type of interconnection is identical for
all neurons in the network, except for those close to a border of the layer. So, each neuron owns three time-varying
potentials or leaky integrators:feeding, linking andthreshold. Moreover, there is a global inhibitory neuron to which
all neurons of the layer are connected. If the network is presented an input image with two or more objects it is able to
bind together pixels which belong to one object and to separate one object from others.

When simulating spike-processing networks on digital computers, some specific features have to be taken into
account. 1.) The time t proceeds in discrete basic time units T. Usually, one basic time unit is chosen as T = 1 ms in
analogy to the duration of one action potential. 2.) Let us call the simulation of one basic time step atime slice. The
minimal realtime requirement is then that one time slice has to be computed in less then one millisecond. 3.) Each
time slice can be divided into two simulation steps.Step 1: The spike receiving neurons have to increment their corre-
sponding potential.Step 2: Each neuron has to accumulate its potentials to the membrane potential and to relax the
potentials. 4.) Let us call the average number of active neurons, which emit a spike in one time slice, divided by the
total number of neurons N thenetwork activity a. A low network activity is characteristic for spike-processing net-
works, because only the neurons representing one object are active at a time. 5.) It has been shown that a very effi-
cient representation of such sparsely-coded signals is theevent-list protocol, which contains for each time slice the
addresses of spiking neurons [16][17]. 6.) One method of representing the connectivity of sparsely connected net-
works is the use of lists, one for each neuron ni. The items in the lists are datasets consisting of weights, delays and
addresses. The addresses aj in the list denotes the neuron nj, to which ni, sends a spike or from which ni, receives a

spike. The former representssender-oriented, the laterreceiver-oriented connectivity [18]. For low network activity
the sender orientedconnectivity is significantly faster. 7.) Finally, we can take advantage of the deterministic connec-
tion structure of the network. Calculating the connectionson-line drastically decreases the storage effort.

3 Experimental results

3.1 Resolution analysis

In order to increase the simulation speed and in order to achieve a hardware realization, we wanted to use fixed-
point numbers. For our study of the requisite arithmetic precision [19] we used a simplified one-dimensional version
of the model network. A value exceeding the maximum representable number, the limitation value, was set to this
limitation value. Quantities smaller than the quantization step q (the minimum representable number) were truncated.
The results of this study showed that finite resolution has no significant influence on the performance of the network
as long as the wordlength does not falls below a certain limit. Going beyond the limit results in a break-down of the
network performance. There was no serious problem for any potentials except the threshold potential, when the limi-
tation value was slightly smaller than their peak value. The only potential which must never be limited is the thresh-
old potential, because a limited threshold potential results in a lasting firing of the neuron. The peak value of the
various potentials can be computed in advance [19].

Computation with truncation has two effects: weights with smaller magnitude are added (weight quantization) and
the values of the potentials are lowered after each multiplication with the relaxation factor r (arithmetic error). Thus,
the potentials are decaying faster and arrive at zero, when their value falls below q. The network performance was
only slightly impaired as long as the quantization step does not become greater than a certain limit value. We have

derived the following upper bound for the requisite quantization step:

where wmin denotes the minimal weight, which should have an influence at least for the time kinf [19]. Our simulation
results with different parameter settings have validated this upper bound for the quantization step and the lower
bound for the limitation value. For the model network described in section 2.2 we have calculated the minimal requi-
site word length for the various potentials. Our result was that 7 to 14 bits are sufficient.

3.2 Performance analysis

First of all, we examined, whether a single PE (processing element) hardware could be sufficient. For implementa-
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tion on a conventional workstation we used event-lists and calculated sender-oriented connections for each active
neuron. The results (SP-10 in fig. 2) indicated that the processing of the step 2 accounts for the major workload. Fur-
thermore, even very fast single PEs would not achieve the required performance, especially in the case of larger net-
works. Therefore we have to introduce some kind of parallelism.

Hence we implemented our network on a SIMD parallel computer with bus architecture, the CNAPS/256 with 256
16b PEs and 4KB local memory each [13]. A very efficient mapping of neural networks on parallel computer is such
that each PE represents several neurons with their corresponding synapses. This mapping can be called n(euron)-par-
allel in difference to s(ynapse)-parallel, where the synapses of one neuron are mapped to different PEs. The n-parallel
mapping is most efficient for step 2. However, its seems to be disadvantageous for step 1. Only a few neurons and
their corresponding PEs are active any given time step [20]. This could be overcome by mapping several neurons to
one PE. But this results in more difficulties when representing the sender-oriented connectivity. We have to know for
each connection not only the neuron address but also the PE to which the neuron is mapped.

It should be noted, that we have to calculate the connections due to the limited local memory. When connections
do not follow any simple deterministic rules, the CNAPS/256 would be limited to networks with less than 500 neu-
rons. However, the results of the investigations could be applied to similar hardware structures with more memory.

Therefore, in our first implementationCP1 receiver-oriented connections have been calculated. The simplified
algorithm for the step 1 is shown in fig. 1a. The results are shown in fig. 2. As one would expect the performance of
this algorithm is quite low. Especially for high network activity, the computation on a 256 PE computer takes more
time than on a single PE.

Our second implementationCP2 uses another approach. The network has been divided in sectors with the size of
256. Each neuron of one sector is mapped to another PEp, where the number p of a PE denotes the neuron position in

the sector. Neurons on a PE are distinguished by their sector number sn. The algorithm for step 1 is showed in fig. 1b.

Note, that it is a combination of receiver-oriented (S1-P1) and sender-oriented connectivity (S3-P2). The results (fig.
2) show the improved performance of CP2. The execution time is nearly independent from network activity and a
speed-up of about 15 compared to the serial implementation (with faster PE) has been achieved. However, the mini-

Fig. 1:  Simplified algorithm for step 1 (S denotes serial code, P parallel code)

S 1 for each PEj:
S 2 for each active neuron na
S 3 send address
P 1 for each neurons on PE
P 2 if connected to na
P3 update neuron

S 1 for each PEj:
S 2 if active neurons: send pj
P 1 calculate d = pj - p
S 3 for each active neurons:
S 4 send sector number
P 2 update neuron with corresponding sn

1a) receiver-oriented implementation (CP1) 1b) receiver/sender-oriented algorithm (CP2)

Fig. 2:  Computation times (in ms) for time slice vs. network
activity a (in percent), N = 16384:
SP-10 : single PE implementation (Sparc-10)
CP-1 : receiver-oriented impl. (CNAPS/256)
CP-2 : sender-oriented impl. (CNAPS?256)

Fig. 3:  Parallelization Speedup on a CNAPS vs. nPE

(Number of PEs) for different network sizes N
N = 128, 256, 2048, 4096
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mal real-time requirements formulated above were not met. Computation times less than the required 1 millisecond
per per time slice could eventually be achieved by the use of micro programming.

In order to evaluate the relative speedup through parallelization (independent of the performance of a single PE),
we measured computation time of our CP2 while varying the network size N and the number of PEs nPE . Figure 3
shows the behavior of the speedup for N = 256...32K and nPE = 2..256. The results indicate, that the speedup is
approximately linear to nPE up to a limit which is reached for less than 4 neurons per PE. The linear speedup is due to
the sparse signal coding and the completely parallelizable code for step 2.

4 Conclusion

For an efficient hardware design it is necessary to know the effects of wordlength limitation. The results of our
examination indicate that there is no need for floating-point precision and that the minimal requisite wordlength can
be estimated in advance.

On the other hand, we have to use some kind of parallel processing in order to meat the realtime requirements. Our
simulations indicates, that a parallel computer with bus architecture is well suited to such networks, but only when
sender-oriented connectivity is used. Either large memory and/or an efficient on-line calculation for a large class of
connections has to be available. Due to low network activity, the connectivity could be represented non-locally to
PEs. This would further simplify the representation of sender-oriented connectivity even for reverse dataflow, e.g. for
some kind of learning algorithm. Therefore, an efficient hardware architecture should contain an event-list module,
some sender-oriented connection modules and a large number of fixed-point processing units.
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