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Abstract

The time to detection of a visual stimulus by the primate eye is recorded at

100 – 150ms. This near instantaneous recognition is in spite of the considerable

processing required by the several stages of the visual pathway to recognise and

react to a visual scene. How this is achieved is still a matter of speculation.

Rank-order codes have been proposed as a means of encoding by the primate

eye in the rapid transmission of the initial burst of information from the sensory

neurons to the brain. We study the efficiency of rank-order codes in encoding

perceptually-important information in an image. VanRullen and Thorpe built a

model of the ganglion cell layers of the retina to simulate and study the viability

of rank-order as a means of encoding by retinal neurons. We validate their model

and quantify the information retrieved from rank-order encoded images in terms

of the visually-important information recovered. Towards this goal, we apply

the ‘perceptual information preservation algorithm’, proposed by Petrovic and

Xydeas after slight modification. We observe a low information recovery due

to losses suffered during the rank-order encoding and decoding processes. We

propose to minimise these losses to recover maximum information in minimum

time from rank-order encoded images. We first maximise information recovery by

using the pseudo-inverse of the filter-bank matrix to minimise losses during rank-

order decoding. We then apply the biological principle of lateral inhibition to

minimise losses during rank-order encoding. In doing so, we propose the Filter-

overlap Correction algorithm. To test the perfomance of rank-order codes in

a biologically realistic model, we design and simulate a model of the foveal-pit

ganglion cells of the retina keeping close to biological parameters. We use this

as a rank-order encoder and analyse its performance relative to VanRullen and

Thorpe’s retinal model.
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Chapter 1

Introduction

“A picture is worth a thousand words” — it is a well known saying, implying the

speed and vividness with which our eyes help us to perceive our surroundings.

Indeed we just have to glance at, for example, a picture on the wall to recognise

whether it contains a landscape, a face of a girl or an aeroplane. Although it

will take some time to see exactly how many trees the landscape contains, or to

read the expression on the face, or to see how many windows the aeroplane has,

yet, recognition is instantaneous. In fact, the survival of an animal often depends

on the speed with which the animal can detect its prey or predator. It is based

on this instant detection that the animal acts in accordance with the situation.

Thus rapid information recovery from the outside world by our eyes or other

sensory organs seems to be a result of evolution which has helped all the different

species of living things to be fit to survive in a hostile environment, and thus

to co-exist. So, how can the eye or the other sensory organs process informa-

tion so fast? To this day, there is no definite answer to this query. Presently,

this question poses a major problem for scientists and has encouraged a multi-

disciplinary approach across different scientific communities such as Biologists,

Computational Neuroscientists, Computer Scientists and Psychologists, to name

a few, towards finding a solution.

In this thesis, we concentrate on Rank-order code, which is a hypothesis

about how the eye achieves ‘near-instantaneous ’ recognition within a fraction of

a second. More specifically, we investigate the quantity of information that can

be recovered from a rank-order encoded picture, and more importantly,

the rate and time of such recovery. The basic flow of the work is summarised in

figure 1.1 and is listed below:
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• An input image is presented to a rank-order encoder.

• The rank-order encoded image is decoded by reconstructing the original

image from its encoded version.

• Our visual perception of the outside world follows a certain law, and cannot

distinguish between certain aspects of an image (which will be dealt with

in detail in chapter 5). We limit our present work to only those aspects

of an image which are visually perceptible, and we term those aspects the

visually-important information. Returning to the reconstructed image,

we compare it with the original image by quantitatively measuring the

visually-important information that is contained in the reconstruction as a

percentage of that in the original, using an objective measure.

• Based on the objective measure, we study the information loss in the rank-

order ‘codec’, shown in figure 1.1, i.e. losses incurred during both the pro-

cesses of rank-order encoding and decoding and experiment with ways to

– minimise the loss during decoding, and then

– minimise the loss during encoding.

We present the results and analyze them using the ‘umbrella’ phrase - in-

formation recovery from rank-order codes.

In this chapter, we start by giving a brief background to the the means of in-

formation processing in the nervous system, the neural codes, which will be

elaborated upon in subsequent chapters. Following this, we discuss the inspi-

ration behind carrying out the research presented in this thesis in relevance to

the present day research in this field. Subsequently, we state our hypothesis in

carrying out this work, followed by the research contributions made during its

course. We conclude the chapter by presenting a chapter-wise structure of the

thesis and the resulting publications.

1.1 On neural codes

The retina is the membrane lining the posterior wall of the eyeball where light

must fall to enable vision. It has been a popular area for neuro-physiological

research for reasons mentioned in chapter 3. The cells of the retina, as well as
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Information loss
 in encoding

Information loss
 in decoding

Rank-order ‘Codec’

Rank-order encoder

Rank-order decoder

Input image

Reconstructed  image

visually-important information 
      preservation algorithm

Rank-order encoded image

Objective Measure

Figure 1.1: The flow of events during the coding and decoding of a picture using
a rank-order ‘codec’ — coding-decoding model.

those of the other parts of the central nervous system, are known as neurons.

Photoreceptors are neurons in the retina which receive incident light from the

external environment and convert it into electrical signals. These are then passed

down several other layers of retinal neurons until they reach the ganglion cell

layer. The ganglion cells in the retina differ from the other cells in that they

convey information by generating sequences of voltage impulses, commonly re-

ferred to in the literature as spike trains, in response to different incoming signal

strengths. Due to this characteristic, the ganglion cells are also known as spik-

ing neurons, which encode information from the outside world into trains of

spikes. This information is transmitted to the brain when the spike trains travel

out of the ganglion cell layer and down the optic nerve to the brain. Such in-

formation about the external environment, encoded in trains of spikes generated

and transmitted by spiking neurons, is known as a neural code.

The brain is analogous to a ‘black box’ where sequences of spikes enter from

various sensory neurons, for example the neurons of the eye, the ear, the skin,

etc. The primary function of the brain, then, is to interpret these spikes, decide

upon the course of action based on such interpretation and act accordingly. So,

the obvious presumption is that the brain must have an exhaustive dictionary,
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whereby it maps a certain pattern of spikes to a particular stimulus. Alas, things

are extremely complex where the brain is concerned, much to the chagrin of the

people who are desperately trying to understand it. It has been observed experi-

mentally that the same cell gives out different spike train patterns in response to

the same stimulus, a fact which continues to baffle the neuroscience community

to this day. Thus, one of the major questions that is still to be answered, even

after years of research, is — how does the brain interpret the external world from

a pattern of spikes? Another way to frame the question is —

• how do ganglion cells encode information from the external visual environ-

ment into trains of spikes?

• how does the brain decode these spikes to understand the coded informa-

tion?

Answering either of these questions could be a strong indication, or even a solu-

tion, to the other. Experiments are continually being carried out towards that

end. Work that starts by trying to answer the first question and thus works to-

wards a solution to the second is known as a ‘bottom-up approach’. The reverse

is known as a ‘top-down’ approach.

1.2 Rank-order: a neural code?

Several theories about the neural codes have been proposed over the years, the

basis of which is either the frequency or the timing of spikes in a spike train. The

theory that the information is embedded in the frequency of firing of spikes by

an individual or a group of neurons is the first and the oldest, and was proposed

by E. D. Adrian based on empirical evidence [11]. Although evidence of such

means of encoding exists throughout the nervous system, over the years there

has been serious speculation about whether this is the only means of encoding

being followed by all parts of the brain. In fact, it is now believed that there are

a combination of various types of encoding techniques existent in the different

parts of the brain, depending on the primary function of each part. Of these, the

theory that spike times may play a role in encoding information is the most

popular hypothesis.

The rank-order code theory is a hypothesis about the neural encoding tech-

nique based on the time to first spike of a neuron and is discussed at length in
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chapter 2. Proposed by Thorpe et al, it suggests that information is encoded in

the order in which a population of ganglion cells fire their first spikes [75]. In

order to test the hypothesis, VanRullen and Thorpe designed and simulated a

simplified model of the retina, which they refer to as the retinal model, and

showed with empirical data that when a population of ganglion cells are stimu-

lated by different parts of an image, the most important information about the

image is encoded in the timing of the first spikes fired by the first 10% of

the ganglion cells in the population. Further, the input image is recognisable

by the time only the first 1 – 2% of the ganglion cells in the population have

fired their first spikes [81]. Thus, the rank-order code hypothesis of neural en-

coding gives a biologically plausible explanation of the ultra-rapid processing of

visual information in the retina. However, there is no firm evidence, to date, of

rank-order codes from neuro-physiological studies made on the ganglion cells or

the other neurons higher up in the visual pathway. Recently, though, empirical

evidence of spike time encoding, especially first spike times, has been obtained in

the somatosensory pathways, indicative of their playing a very important role in

rapid encoding and transmission of information about external stimuli [53, 35].

We base our work on VanRullen and Thorpe’s retinal model, and focus on

quantitatively estimating the visually-important information that can be re-

covered from rank-order encoded images. More importantly, we study the rate

of such recovery in terms of the percentage of information recovered, against the

number of cells that fire their first spikes [66]. Such an approach is indicative

of the time of information retrieval, an issue that is central to the rank-order

code hypothesis. Based on our observation of such a measure, we introduce a

novel decoding mechanism with the aim to achieve rapid recovery of as much

information as possible, or in other words — to maximise information recovery

from rank-order codes [67]. Subsequently, we optimise the information recovery

from rank-order codes by settling on a trade-off between the quantity and time

of information recovery. This we do by introducing the biological principle of

lateral inhibition to reduce redundancy in the encoded data obtained by rank-

order encoding using VanRullen and Thorpe’s retinal model. Continuing on such

a pursuit, we design and simulate a biologically realistic model of the retina for

testing the performance of rank-order codes in a set-up that is constrained by the

laws of biology. The model simulates the neurons of the foveal pit (defined in

section 3.1.3) of the retina. Empirical data show that visual data encoded using
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this model can be decoded more efficiently than VanRullen and Thorpe’s model

retina both in terms of time and quantity of information recovered.

So, why would we be interested in investigating the information recovery from

rank-order codes? Or more specifically, why use rank-order codes at all? The

reason and the motivation for doing so are discussed in the following section.

1.3 Motivation for studying rank-order codes

In spite of the speculation that revolves round rank-order codes, as to whether

they are utilised at all by the retinal neurons, there has been no proposed hypoth-

esis, nor any empirical evidence to date, that can provide an explanation for the

‘near-instantaneous’ visual perception that is observed by subjective empirical

tests on the primate visual system. A picture flashed for just 20ms is enough for

a human or a monkey to recognise the object in the picture [74, 19, 80]. The

only empirical evidence of a neural code — the rate codes — cannot explain

such speed of processing [22, 73]. Such a hiatus between ‘effect’ (the speed of vi-

sual processing) and ‘cause’ (the neural code that enable such efficient and rapid

message-passing) is an intriguing problem and raises interest in further research

on rank-order codes.

Our primary motivation for working on rank-order codes, though, is SpikeNET,

a system designed by Thorpe et al in order to test the feasibility of using rank-

order codes in simulating large-scale networks of asynchronously-spiking neu-

rons [70]. SpikeNET consists of a layered architecture of spiking neurons to

simulate a simplified version of the recognition circuit of the brain. With such a

set-up, it can process and analyze a 150 × 150 pixel image in 5.7ms on a 2 GHz

Pentium-IV machine [14]. Although the architecture of SpikeNET is far from

biologically realistic, it still illustrates the viability of using rank-order codes in

simulating hardware for fast processing of visual information [71]. Such models

are an inspiration for the new and emerging field of ‘biologically inspired com-

puter architecture’, whereby engineers are seeking to implement the principles of

efficient and intelligent information processing used by the brain in developing

novel computer hardware. Research on rank-order codes could, thus, be beneficial

to the computer engineer in that, if it helps to engineer a power efficient computer

architecture, it will be considered a significant achievement, even if rank-order

codes are proved to be of limited applicability in biology.
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Thus, having been motivated to study rank-order codes, our primary interest

was to study the decoding mechanism. The motivation in choosing this particu-

lar aspect of rank-order codes is the need to estimate the potential of rank-order

codes in encoding visually-important information speedily, and yet, efficiently.

VanRullen and Thorpe decoded rank-order codes to test the performance of the

codes in encoding visual information, both in terms of ‘picture fidelity’ as well

as ‘time-to-decoding’ for achieving such fidelity. However, as mentioned in sec-

tion 1.1, the behaviour of the human visual system is highly nonlinear and follows

the characteristic of a band-pass filter (to be discussed in chapter 5). A more re-

alistic approach to rank-order code performance evaluation with respect to vision

would be to obtain a quantitative estimate of visually-important information that

can be recovered from the codes. In order to do so, an important requirement is

to minimise the loss incurred during decoding the codes, so that the information

retained during rank order encoding can be recovered optimally. This would, in

turn, give a true estimate of the loss in information suffered during rank-order

encoding. The main motivation is, thus, to minimise the losses incurred with the

rank-order ‘codec’, as shown in figure 1.1, to obtain an optimal objective mea-

sure. Moreover, such an estimate would be a relevant study for any other mode

of neural encoding that may be discovered in the future.

1.4 Thesis hypothesis and questions

The primary hypothesis forming the basis of this work is that — “Rank-order

codes are a viable means of information encoding in applications that require

fast and efficient information transmission”. This hypothesis apparently over-

laps with that of Thorpe’s, when he proposed rank-order codes as a viable means

of information encoding taking place in the visual system. However, in Thorpe’s

work, the main emphasis is on showing the superior performance of rank-order

codes in providing an explanation of the tremendous speed of information process-

ing taking place in the human visual system, as opposed to the widely accepted

and empirically proved rate code theory of neural encoding [81]. We, on the other

hand, study rank-order codes from a very different perspective — the thrust be-

ing to engineer a model inspired by the high efficiency and speed of working of

the asynchronously firing biological neuronal populations. To that end, the main

aim of the thesis is to find an answer to the query — whether rank-order codes
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are, at all, able to represent input information efficiently, and if so, then how

fast can that information be read from the codes? The presumption we made in

framing the hypothesis is, in fact, a prediction towards an affirmative answer to

this query, i.e. , saying — “yes, it does”. To prove our hypothesis, the first ques-

tion would then be — “How can we quantitatively measure the performance of

rank-order codes with respect to vision?”. Although quantitative measures using

mean-square errors and information theory were produced by Thorpe et al in their

study, the measures do not account for the non-linearity observed in the human

visual system [81]. In our quest to explore the performance of rank-order codes

in retrieving visually-important information, we found an objective measure, pro-

posed by Petrovic and Xydeas, that suited our work [59]. Since such an objective

measure of visually-important information content in rank-order codes was not

carried out before, a corollary to our previous question would be — “What effect

does this measure have on the results of VanRullen and Thorpe?”.

Based on the empirical results obtained while studying the above queries

(elucidated in chapter 5), we pose a third question — “Can the quantity of infor-

mation retrieved from rank-order codes be maximised by improving the rank-order

decoding techniques used by VanRullen and Thorpe?”. Thus, our quest for a

suitable decoding technique is to minimise the information loss incurred during

decoding the rank-order encoded data, as indicated in figure 1.1, so that infor-

mation recovery can be maximised. The main evaluating criterion here is the

amount of information recovered in minimum time; the two extreme cases being

either (a) perfect information recovery in a time which is beyond the permissible

limits for rank-order codes, thus rendering them unsuitable for fast information

recovery, or (b) very low information recovered within such time limits. A trade-

off between the quantity of information recovered and the time to achieve such a

recovery would be an ideal mechanism for a rank-order ‘codec’. Thus the corol-

lary to the third question above would be a fourth question — “How can the

information recovery from rank-order codes be optimised?”.

Until this point in our work, we based our empirical studies on the performance

of rank-order codes on the retinal model designed by VanRullen and Thorpe.

However the model is far from being biologically realistic in terms of the design

and layout of the basic components used to simulate visual processing. This

brings us to a fifth and final question — “Do rank-order codes perform better in

a biologically realistic model?”.
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In the following chapters, we deal with the questions stated above in the

same sequence as they are posed, and give a detailed empirical analysis of the

performance of rank-order codes with respect to vision.

1.5 Thesis contribution

The overall contribution of the thesis is to provide a detailed analysis of visually-

important information recovery from rank-order codes, supported with empirical

data. The contributions made while working towards the larger aim are as listed

below:

• Empirical work to validate the retinal model of VanRullen and Thorpe.

This is the basic model used in the preliminary studies made during our

work (chapter 4).

• The application of an objective measure to form a quantitative estimate of

the information recovery from rank-order encoded images (chapter 5).

• Improving on the decoding mechanism used by VanRullen and Thorpe in

their retinal model in order to retrieve the maximum possible information

from a rank-order encoded image with respect to the input image. This is

done by application of a pseudo-inverse algorithm to obtain the inverses of

singular matrices encountered during decoding of the codes (chapter 6).

• Improving on the encoding mechanism used by VanRullen and Thorpe in

order to retrieve maximum possible information in minimum possible time.

Thus, we optimise the information recovery from rank-order codes. This

is done by application of the biological principle of lateral inhibition to

re-order the rank-ordered ‘spikes’ prior to decoding using VanRullen and

Thorpe’s method (chapter 7).

• The design and simulation of a model of the foveal-pit of the retina to

test rank-order code performance in a biologically realistic environment

(chapter 8).

• Empirical evidence of better performance of our foveal-pit model in

terms of information encoding using rank-order codes, as compared to the

retinal model of VanRullen and Thorpe (chapter 8).
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In addition, the thesis presents a literature review encompassing neuro-physiology

(chapter 2), retinal-physiology (chapter 3), physiology and characteristics of gan-

glion cell (chapter 3) and neural codes (chapter 2).

1.6 Structure of the thesis

In chapter 2, we present a review of the basic structure of a neuron in section 2.1,

and the mechanism of spike generation in section 2.2. Following this, in sec-

tion 2.3, is a review of existing theories of neural encoding and an introduction

to the rank-order codes.

In chapter 3, we review the basic structure of the retina. The main purpose of

a literature review in this area is to become familiar with the neurons of the retina,

especially the ganglion cells. The retinal model built by VanRullen and Thorpe

consists only of layers of simulated ganglion cells. Thus, a preliminary review of

these cells help in gaining a basic knowledge of their structure, characteristics and

functioning, before proceeding towards the validation of VanRullen and Thorpe’s

retinal model. Further, to be able to design a model of the foveal-pit of the

retina as presented in chapter 8, a wide literature review on the size and density

of the cells is presented in this chapter. In this context, we also do a literature

review on the principle of lateral inhibition used by the sensory neurons to reduce

redundancy in the sensory input stimuli.

In chapter 4, we present the empirical results of our validation of VanRullen

and Thorpe’s retinal model, and show a qualitative estimate of the information

recovered on decoding rank-order encoded images.

In chapter 5, we present an objective measure proposed by Petrovic and Xy-

deas, which we have used on VanRullen and Thorpe’s retinal model to make a

quantitative estimate of the performance of rank-order codes in information re-

covery. Petrovic’s objective measure is based on subjective tests made on the

non-linearity of the human visual system. Thus, the objective metric used on the

information recovery is, in effect, a measure of the perceptually-important

(which is same as visually-important and these terms are used interchangeably in

this work) information content in the decoded picture with respect to the original.

Such an approach to evaluate the performance of the rank-order codes is done

for the first time.
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In chapter 6, we present a novel method of using filter-banks and a pseudo-

inverse technique for matrix inversion for decoding rank-order codes, the larger

aim being to maximise the objective measure obtained while evaluating the rank-

order code performance, as described in chapter 5. We present a detailed theo-

retical analysis of the method followed by empirical results.

Chapter 7 is a pursuit of means to optimise visually-important information re-

covery from rank-order codes. We introduce a novel algorithm — Filter-overlap

Correction algorithm (FoCal) — based on the mechanism of lateral inhibition

used by sensory neurons, in order to improve the method of rank-order encoding

used by VanRullen and Thorpe. We present a theoretical and empirical analysis

of the algorithm as applied to VanRullen and Thorpe’s retinal model. Subse-

quently, we review the Matching Pursuit (MP) algorithm, which is observed

to be mathematically the same as FoCal. This algorithm was used previously by

Perrinet et al with the purpose of improving the quality of the decoded image

from VanRullen and Thorpe’s retinal model [54]. However, application of the MP

algorithm to the retinal model as done by Perrinet et al is very different from

that of applying the FoCal, the latter being very similar to the actual biological

process of lateral inhibition.

In chapter 8, we present a new model, that of the foveal pit of the retina, with

the motive to test the performance of rank-order codes when encoding is carried

out with a biologically realistic retinal model. In other words, after settling on an

optimal encoding technique using the biological principle of lateral inhibition, we

now attempt to improve on the retinal model designed and used by VanRullen

and Thorpe as a rank-order encoder by designing a foveal-pit model on the

basis of available factual data about the primate retina. In section 8.1, we review

and indicate the actual biological parameters on which we base our choice of the

simulation parameters. In section 8.2, we present the empirical results and analyse

the performance of the foveal-pit model with respect to that of VanRullen

and Thorpe’s retinal model.

Since evaluation of information recovery from rank-order codes using Petro-

vic and Xydeas’s objective measure is a novel application used in this work,

we deemed necessary a benchmarking of the above-mentioned measure against

standard image fidelity measures in digital image processing. In chapter 9, we

benchmark the objective measure with the more common methods of Root Mean

Square Error and Fourier Transform in sections 9.1 and 9.3 respectively. Further,
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we also obtain objective measures for out-of-sample images in section 9.2.

Finally, in chapter 10, we summarize the work presented in the earlier chap-

ters, and elaborate upon the scope of work that can be carried out as a contin-

uation of the investigation carried out in this thesis. Possible future research on

related areas is also discussed.

1.7 Publications

The following publications are based on work presented in this thesis:

• [66] Basabdatta Sen and Steve Furber

“Information Recovery from Rank-order Encoded Images”,

Proceedings of the International Workshop on Biologically Inspired Infor-

mation Fusion, pp. 8–13,

Guildford, U.K. August 2006.

• [67] Basabdatta Sen and Steve Furber

“Maximising Information Recovery from Rank-order Codes”, Proceedings

of SPIE Defense and Security Symposium, Vol. 6570, pp. 65700C - 1 – 12,

Orlando, Florida, U.S.A. April 2007.



Chapter 2

Neurons and Neural

Communication

The brain is made up of two types of cell, viz. neuroglia and neurons. Neuroglia,

meaning ‘nerve glue’, are also called glial cells and their population exceeds that

of neurons. One of their main functions is to hold the neurons in place. Neurons

are involved in information processing in the brain. Sensory neurons are the

receptor neurons in the sensory organs and receive information from the outside

world, for example the photoreceptors of the retina in the eye. This information is

transmitted via other neurons to the brain. Conversely the brain sends messages

to different parts of our body through cascades of neurons and ultimately on to

the motor neurons from where the message is transmitted to the muscle fibres.

Some neurons, such as the ganglion cells in the retina, have long axons to carry

signals over long distances in the central nervous system and are called principal

or relay neurons. These neurons propagate signals by generating voltage impulses

and are also known as spiking neurons; other neurons such as the bipolar cells in

the retina are concerned only with local processing and are called interneurons,

some of which, like some amacrine cells in the retina, also spike.

A nerve comprises a bundle of nerve fibres, each of which is an axon of a

spiking neuron. A nerve fibre is thus the basic conducting unit of the brain,

transporting information by carrying voltage impulses generated in response to

external stimuli or other neurons. There is an ‘all or nothing’ relationship between

the stimulus and neural response. For example, if the stimulus is an electrical

current applied to a single neuron, then, if that current is very weak, or if its

duration is extremely short, it is unable to excite the neuron and no impulse is

33
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generated. However, when the electric current is increased beyond a certain value,

a voltage impulse is generated by the neuron. This is analogous to the pressure on

the trigger of a rifle — either it is strong enough to fire the bullet or it is too weak

to do anything. It is not possible to vary the intensity of the impulse by changing

the strength of the stimulus. Further, if two consecutive stimuli are applied to the

same neuron in rapid succession, the impulse generated in response to the first

stimulus renders the fibre completely inexcitable to the second stimulus. This

‘refractory’ state lasts until the response to the first stimulus has subsided. The

implication of this characteristic is that in response to a constant stimulus, a

neuron transmits a series of impulses which cannot recur at more than a certain

frequency. This phenomenon is analogous to a stream of bullets from a machine

gun, rather than a continuous stream of water from a hose [11].

Then the question arises — how can we distinguish between the different

strengths of stimuli, which can activate a nerve fibre, but do not affect the ampli-

tude or strength of the reaction? In such a case, the pattern of spike generation

could carry a message about the stimulus. Ideally, a dictionary for neural codes

would relate a certain spike train pattern to a single input stimulus. In practice,

however, there is nothing unique about a pattern of spikes generated by a neuron

in response to a particular stimulus and there is no one-to-one mapping. Re-

peated presentations of the same stimulus give out different spike train patterns

from a single neuron; however, the firing frequency has been found to vary with

the stimulus strength and this concept gave rise to rate code theory (discussed in

section 2.3.1). More recently, rate codes have been described as too complex and

time consuming with respect to the tremendous speed of visual processing in the

primate eye and this has led to a proposal of alternative coding schemes based on

spike times to explain the fast processing techniques of the primate visual system

(discussed in sections 2.3.2 and 2.3.3).

We present a brief description of the physiology of a neuron in section 2.1,

followed by a discussion of how a neuron generates Action Potentials in sec-

tion 2.2.1. In section 2.2.2, we present a brief overview of synapses used by

neurons to transmit information for inter-neuron and neuro-muscular communi-

cation. In section 2.3, we discuss how a neuron encodes information about the

external world in sequences of Action Potentials, thereby introducing the theory

of rank-order codes in section 2.3.4.
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Figure 2.1: A neuron and its different parts [6].

2.1 Physiology of neurons

We start this section by a brief introduction into the basic structure of a neuron

and the elementary role of each part in signal processing (section 2.1.1). This is

followed (section 2.1.2) by an overview of the balance of electrical charges inside

and outside the neuron, which is the cause of generation of neural spikes.

2.1.1 Structure of a neuron

Like all other cells in a living organism, neurons have a cell body called the

soma, which consists of the nucleus and other substances required to maintain

the metabolic activities of the cell. The shell of the soma is known as the plasma

membrane. Additionally, there are some parts unique to neurons which enable

them to function as the signal processors of the brain. These are shown in fig-

ure 2.1 and are listed below [6]:

• Dendrites are thin fibres extending from the soma, and are often highly

branched so as to form a dense network known as a dendritic tree. The

primary function of the dendrite is to receive and integrate information.

• An axon is a thin, tube-like fibre that originates from the soma and extends

for distances ranging from microns to meters before branching out into
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strands and sub-strands, each of which terminates at a synapse and is known

as a synaptic terminal [6]. The main function of the axon is to propagate

electrical signals from the soma to the synaptic terminals.

• An Axon Hillock is a specialised cone-shaped region adjacent to the exit

point of the axon from the cell body. It is the site of generation of an Action

Potential in spiking neurons.

• A synapse is a highly specialised structure to carry out the task of inter-

cellular information transfer. The neuron which transmits information from

its axon terminals is termed as pre-synaptic, while the neuron receiving

the signal at its dendritic terminals is termed as post synaptic. The

extracellular space separating the pre-synaptic and post-synaptic junctions

is called a synaptic cleft and is 20–40nm in width. A synapse ensures

unidirectional information transfer from the axon of the pre-synaptic cell

to the dendrites of the post-synaptic cell. Synapses are further discussed in

section 2.2.2.

2.1.2 Transmembrane potential of a neuron

The plasma membrane of a neuron acts as an impermeable barrier to ions found

in the fluids inside and outside the membrane. However, the membrane has

some pores that selectively allow certain ions to cross over from one side of the

membrane to the other, and are commonly referred to as ionic channels in the

literature [85]. These channels are characterised by the set of ions that can pass

through them e.g. Potassium channels are those which allow movement of Potas-

sium ions but are impermeable to any other type of ion. The main contributors to

the extracellular charge are Sodium (Na+), Calcium (Ca2+) and Chlorine (Cl−)

ions, which exist in much higher concentration than in the cell interior. The cell

interior has a higher concentration of Potassium (K+) ions than that in its ex-

terior, and a group of anions, denoted as A−. The ionic channel is impermeable

to A− at all times. Because of the unequal distribution of the ions, there exists

an electrical gradient as well as a concentration gradient across the plasma mem-

brane. The electrical gradient is also known as transmembrane potential. The

permeability of some of the ion channels is regulated by the transmembrane po-

tential. In this sense, the ionic channels are referred to as ‘gates’, which are open

or closed depending on the potential fluctuations across the cell membrane [15].
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In normal conditions, the K+ ion channels are open, i.e. they are permeable to

K+ ions. Due to the higher concentration of K+ ions in the cell interior, the ions

try to diffuse through these channels to pass over to the outside of the plasma

membrane. As the K+ ions leave the cell, the cell interior gets more negatively

charged than normal. The excess negative charges attract the leaving K+ ions,

and this action slows down the rate of K+ ion diffusion. At a certain point,

the diffusion of K+ ions due to the concentration gradient is exactly offset by

the attraction of the negative charges on K+ ions. This is known as the point

of equilibrium for K+ ions. Similar equilibrium potentials exist for other ions

also, so that in normal conditions, the cell is in a state of equilibrium, and the

cell interior is at a negative potential of approximately -70mV with respect to

the cell exterior. Under such a state, the net current flow across the plasma

membrane is zero and the neuron is said to be in a state of rest. Thus the

equilibrium potential is also known as the resting potential.

2.2 Signal processing in a neuron

In this section, we discuss how a neuron reacts to incoming signals from the

outside world or from other neurons by generating spikes (section 2.2.1), which

propagate down the axon before being transmitted on to other neurons or muscles

using synapses (section 2.2.2).

2.2.1 Action Potential

Action Potentials are voltage impulses and are also known as ‘spikes’ because of

their shape. These are used for signal transfer over long distances, for example

in the axon of a ganglion cell of the retina which runs from the frontmost layer of

the retina, through its whole depth down the optic nerve (shown in figue 3.1) to

the Lateral Geniculate Nucleus (LGN) in the brain. The neuron generating the

Action Potential is known as the spiking neuron; how a neuron generates a spike

is described below.

Mechanism of Action Potential

As mentioned in section 2.1.2, in a state of rest, the interior of a neuron is

negatively charged with respect to its exterior, maintaining a resting potential of
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-70mV. The cell membrane is impermeable to the Na+ ions and the gates of the

Na+ ion channels are closed.

When a cell is stimulated by an external signal, the conductance of the Na+

ion channels increases and they open, and the cell becomes permeable to Na+

ions, the flow of the ions being from the cell exterior to the cell interior. This

increases the total positive charge inside the cell, and the phenomenon is known

as depolarisation.

At the same time, the K+ channel conductance also increases by a margin

than during the state of equilibrium, making the efflux of K+ ions more than the

influx of Na+ ions. The overall result of these changes due to the application of an

external stimulus is a change in the transmembrane potential of the neuron. As

long as this change in the transmembrane potential is below 15mV, the neuron

regains its resting potential on removal of the stimulus. This phenomenon of

going back to the neutral state is known as repolarisation.

However, if the external stimulus causes the transmembrane potential to rise

from its resting potential of -70mV to around -55mV, there is a sudden increase

in the Na+ ion channel conductance, resulting in a heavy influx of Na+ ions into

the cell. The rate at which Na+ ions enter the cell exceeds the rate at which K+

ions leave the cell; this further increases the depolarisation, which in turn leads to

a further increase in the channel conductance causing more Na+ ions to enter the

cell. The process is thus regenerative, giving rise to a huge surge in transmem-

brane potential that rises to around +50mV within 1ms. Such a voltage surge

of small duration is called an Action Potential and the threshold transmembrane

potential of around -55mV at which the Action Potential is initiated is termed

the threshold voltage.

Following this sudden surge in transmembrane potential, the cell membrane

starts repolarising. The Na+ ion channels are closed, and the cell membrane once

again becomes impermeable to the Na+ ions. The K+ gates however remain in

a state of increased conductance even when the cell is repolarising. Thus, with

the Na+ ion channels closed and the increased K+ current flow towards the cell

exterior, the transmembrane potential rapidly moves towards equilibrium.

However, the K+ ion channel conductance remains high for longer than is

required to reach equilibrium, causing more K+ ions to leave the cell than under

equilibrium conditions. This results in the transmembrane potential shooting

below the resting potential and the phenomenon is known as hyperpolarisation.
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Following the hyperpolarisation state, the K+ ion channel conductance falls

and the neuron eventually returns to its state of equilibrium, and the Action

Potential is completed. The neuron is now ready to generate a second spike in

response to an appropriate stimulus [15].

Refractory state

The time from when the cell membrane crosses the threshold voltage and the

Action Potential is initiated, until the Action Potential reaches its peak within

an interval of 1ms, is known as the absolute refractory period [15]. Any other

stimulus acting on the neuron during this time will fail to generate an Action

Potential. The time from when the cell moves towards repolarisation until it

comes back to its neutral state is known as the relative refractory period.

During this time, a stimulus that is larger than normal can elicit an Action

Potential in the neuron.

Spike propagation

From the Axon Hillock, the Action Potential propagates down the axonal mem-

brane by continuous regeneration of the Action Potential towards the direction of

motion [15]. This is because when a portion of the membrane undergoes depolar-

isation and generates an Action Potential, the portion of the membrane adjacent

to it also gets depolarized, and in turn generates an Action Potential, and so on.

The membrane adjacent to the depolarising membrane in a direction opposite to

the impulse propagation will not be depolarised as it will still be in the refractory

state during that time. Therefore, the propagation of the Action Potential is uni-

directional. Also, regardless of the axon length, the signal strength is constant

from when it was initiated to when it terminates at the synapses.

2.2.2 The synapse

A synapse is always initiated only when the presynaptic neuron is depolarised.

Depending on the method adopted by the synaptic junction to transmit a sig-

nal, synapses can be classified as either electrical or chemical synapses. The

electrical synaptic cleft is commonly referred to as the gap junction. Intercel-

lular communication through gap junctions is believed to be the simplest form of

cell-to-cell interaction; small molecules and ions in one cell diffuse through pores
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in the plasma membrane directly into the cell body of a neighbouring cell [15].

Chemical synapses are the more common synapses found in the brain, where

a presynaptic neuron signal to the post-synaptic neurons by releasing certain

molecules called neurotransmitters in the synaptic cleft. When these neurotrans-

mitters reach the post-synaptic dendritic terminals, they cause the opening or

closing of ionic channels in the post-synaptic cell membrane, which in turn causes

a change in the transmembrane potential of the post-synaptic cell. If this change

in transmembrane potential causes depolarisation in the post-synaptic cell, the

synapse is excitatory and the change in potential is known as an Excitatory

Post-Synaptic Potential (EPSP). Since a synapse is always initiated by a pre-

synaptic terminal depolarisation, the excitatory synapse causing the post-synaptic

cell to depolarise is also referred to in the literature as a sign-conserving synapse.

On the other hand, a hyperpolarisation at the post-synaptic terminal is known

as an Inhibitory Post-Synaptic Potential (IPSP) and the synapse is said to

be inhibitory or sign-inverting. All synapses in the brain are either excitatory or

inhibitory, and at every site of synaptic transmission, either an IPSP or an EPSP

is elicited [85, 15].

There can be very high convergence of input information from hundreds or

thousands of pre-synaptic neurons on to a single post-synaptic neuron. A pre-

synaptic neuron, on the other hand, may synapse on up to hundreds of post-

synaptic neurons due to its axonal branching [6]. On its own, an EPSP or an IPSP

at a synaptic junction is too small to generate an Action Potential. But when all

the potential changes caused by all the synapses at the dendritic terminals of the

postsynaptic cell are summed, the transmembrane potential of the post-synaptic

cell may change considerably so as to cross the threshold voltage and result in an

Action Potential being generated. In such a case, the net effect of the potential

changes at the input terminals of the post-synaptic cell is said to be excitatory,

and the cell is said to have ‘fired’ (a ‘spike’). If the net effect is inhibitory, the

cell membrane potential falls below the resting potential and the cell is restricted

from firing a spike; the cell is said to be inhibited. For non-spiking neurons, the

axons are shorter, and there is no generation of spike. However, the mechanism of

synaptic transmission is the same and it is the change in transmembrane potential

that is passed on to the post-synaptic cell dendritic terminals as an EPSP or an

IPSP.

Thus far, we have discussed the basic structure of a neuron that plays a role
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in the generation, propagation and transmission of a signal. In section 2.3, we

discuss how a neuron encodes information about the outside world into sequences

of Action Potentials. We review the existing literature on the various hypothesis

about neural codes and discuss their pros and cons (section 2.3.1 to section 2.3.3).

Finally we introduce rank-order codes as a hypothesis about neural encoding and

discuss the possibility of their playing a role in sensory pathways involved in fast

information transmission (section 2.3.4).

2.3 Language of spikes

Every sensory organ of sight, sound, smell, etc. communicates to the brain in the

same ‘language’ — a pattern of spikes. One would be tempted to presume that

there is a dictionary where every pattern of spikes conveys a distinct meaning, yet

there is no such dictionary. A neuron getting the same stimulus at different times

generates different patterns. What then would be the ‘language of the spikes’,

and how is information about the sensory world encoded in these spike patterns?

This is a question which is yet to be answered in spite of ongoing research since

the early twentieth century. Pioneering work in this regard was done by Adrian,

where he proposed that a neuron encodes information about the external world in

the frequency of occurrence of spikes in its spike train [11]. His observations were

based on studies carried out on a sensory muscle of a frog which was connected to

the sciatic nerve, such that any stretching or contraction in the muscle induces a

response in the nerve. By stimulating the muscle with variable loads, he observed

the patterns of spikes generated in the nerve. His observations are listed below:

• When there was no load on the muscle, there was no response from the

nerve, as expected.

• When a load of 10 gm was put on the muscle for 10 sec, a train of voltage

spikes was seen.

• When the load was maintained at 10gm but applied for 20 seconds; the

number of spikes in the train increased.

• When the load was increased in steps up to 40gm and applied for vary-

ing times, for each increment in either load or time the number of spikes

increased.
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Figure 2.2: Neural response from (A) the optic nerve of a conger eel and (B) the
sciatic nerve of a frog as recorded by E. D. Adrian [11].

Adrian performed similar pioneering experiments on the optic nerve of a conger eel

with light as the input stimulus [11]. The records are of many fibres together, but

they show well the general pattern of activity. In darkness, there is “a complete

or almost complete absence of electric responses in the nerve”. On illumination,

a discharge which is irregularly oscillatory in nature and very similar to that of

the sciatic nerve is observed and is shown in figure 2.2. Thus he observed that

the message sent from the visual receptor through the optic nerve does not differ

much from that sent out by the muscle through the sciatic nerve.

To summarise, Adrian observed that sensory messages travel to the brain at

the onset of an external stimulus such as a muscle stretching for the sciatic nerve

or an exposure to light for the optic nerve. The message consists of a succession of

impulses. Although the size and shape of the impulses do not vary, the frequency

with which they travel depends on the strength of the stimulus. Thus, a neuron

encodes information about a stimulus by varying its rate of firing in response to

the stimulus. This method of neural encoding came to be termed as the rate code

theory and is defined below.

2.3.1 Rate code

Let a neuron be stimulated by an external stimulus, and its response be studied

over a time window T . If N is the total number of spikes fired by the neuron in
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this time window T , then the firing rate R of the neuron is:

R =
N

T
.

However, in certain sensory pathways, the information transmission from the

sensory neurons to higher centres of the brain is very fast. To simulate such

fast information transfer, the above method of spike rate calculation may be

optimised by considering only two consecutive arriving spikes. In such a case, the

firing frequency R will be R = 1
tisi

, tisi being the inter-spike interval.

Since single neuronal responses are typically random and noisy, a probabilistic

treatment is more common, where the average firing rate over a number of trials

(defined below) is considered. With passage of time, the theory has acquired

different definitions depending upon the different averaging procedures [13]. Two

methods commonly used in determining the neuronal response are [52]:

• Average firing rate: A neuron is subjected to the same stimulus more than

once, each such occasion being termed a trial. The rate of firing in each

trial is calculated. The firing rate of the neuron is expressed as an average

of the average rate of firing R at each trial for the total number of trials.

• Time dependent firing rate: The stimulus in the external environment is

mostly dynamic and changes with time. Since the firing frequency of a

neuron varies according to the strength of a stimulus, a more practical

approach is considered to be one which calculates the firing rate of a neuron

over a number of trials in a short time window, and this in turn is done for

several other time windows. The result is expressed as a post-stimulus time

histogram, which gives the probability of occurrence of a spike in a certain

time window in response to a certain stimulus.

A Poisson model is commonly used to simulate the firing rate model of a

neuron. The model assumes that each spike in a time bin is independent of the

past activities of the neuron. Although the model is not realistic, it is a good

descriptive model as it can be used to generate spikes with exactly the same time

dependent firing rate as the real data [52].

Based on evidence from ongoing research on neural encoding techniques it is

speculated that in some parts of the brain, instead of a single neuron carrying

all the message in its spike train response, spike trains from an ensemble of
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neurons carry significant information about the stimulus [13]. Such a combined

response by a population of neurons in encoding information is termed as the

populational code. Several models exist that represent neuronal encoding using

population codes, as well as several which are being suggested as a result of

ongoing active research in this area. The models use firing rate as the basic

spiking currency.

Even though firing rate code is an established neural encoding theory, there

are other theories proposed, the most prolific of those being the concept of spike

times. There is a strong lobby of scientists who believe that in certain parts of

the brain, the population of neurons encode information in their relative spike

timing. It is speculated that spike times may have important implications on

the message conveyed by neurons. The bat auditory system and primate visual

system are the two most cited areas [73].

In the following sections, we discuss several temporal codes (neural codes that

are based on spike times) proposed as alternatives to rate codes. We start the

discussion with the severe time constraints observed by subjective empirical tests

on the primate visual system, which has led to these alternative theories.

2.3.2 Time constraints in vision

Pioneering work on the time taken for perception of a complex scene by humans

was done during the 1970s. A novel technique of Rapid Sequential Visual Pre-

sentation (RSVP) using natural images was introduced whereby sequences of 16

colour images were presented to human subjects for 113ms per image [76]. The

subjects were asked to press a button whenever they saw a certain picture, e.g.

, ‘a bat and a ball’, placed randomly in the sequence. The results showed that

60% of the time the subjects were able to correctly respond to the target image

within this 113ms. This near instantaneous identification of objects by human

vision encouraged further work on this area.

Thorpe et al used event-related potential (ERP) for the first time to record

response times of subjects in a scene categorization task [74]. Subjects were

presented with images, about which they had no a priori information, at the rate

of 20ms per image. They were then asked to identify if a picture contained an

animal or not. This method was termed a ‘go/no-go categorisation’. The results

showed that approximately 95% of the subjects responded correctly with a mean
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reaction time of 445ms, with a bias towards correct responses starting from 280–

290ms after stimulus onset. Similar experiments on rhesus monkeys show even

faster reactions of 250ms, with a bias towards correct response starting from

200ms. Categorisation tasks on other natural images such as ‘food versus non-

food’ and ‘trees versus non-trees’ could be performed by trained monkeys within

250ms [72].

However, these reaction times involve (i) latency after stimulus onset, (ii) time

taken by the signal to travel from the retina to the brain through the afferent

nerves, (iii) decision making and (iv) time taken by the message to travel from

the brain to the motor neurons through the efferent nerves. Thus the effective

time for visual processing alone, which is the time needed in (ii) above, will be

much less than 250ms [72]. ERP recordings, which reveal the signs of neural

processing well before the motor output, showed that visual processing in the

above task can be achieved in under 150ms [80, 72].

Later, Fabre-Thorpe et al used the same procedure as above to test human

subjects after training them with images that they would be showed for the

trials [19]. Each subject was trained for 14 days with a subset of randomly selected

images. Results showed that although such a ‘familiarity training’ improved the

accuracy and overall reaction time, there is no improvement in the initial response

time. Evidence of better performance in the trained case was observed only after

400ms. Thus, it can be said that there was no significant improvement in visual

processing times even when subjects were looking at a data-set about which they

had ‘some’ a priori knowledge. This specific mode of biological visual processing

that cannot be improved in spite of extensive training was termed Ultra-Rapid

Visual Categorisation (URVC) [74].

In the results presented above, the target was of high biological relevance to

the behaviour of the subjects. Animals, food and trees have been present in

the environment of primates for millions of years and it might be possible that

sensory pathways are hard-wired to perceive such objects faster [80]. Thus the

results above cannot be generalised to categorisation of all kinds of complex visual

scenes. On such grounds, VanRullen and Thorpe performed URVC experiments

on human subjects with coloured images of ‘means of transport’ as target ob-

jects [80]. Further, to compare the results of this task with ‘natural’ targets, they

alternated these images with those of animals.

The results show that the percentage of correct responses in both tasks of
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identifying natural and artificial targets was 95%, while the median reaction

time was 350 ms. The primary demonstration of such a result is that visual

categorisation of artificial objects in complex scenes is neither slower nor less

accurate than categorisation of natural images. This implies that, contrary to

speculation prior to the experiment, the time for visual categorisation of complex

scenes can indeed be generalised, and that there is no prior ‘hard-wiring’ in favour

of natural objects in the visual pathway. It can be reiterated here that the

reaction times obtained in all of the above experiments include not only the

visual processing time but also the latency to stimulus onset, the time for decision

making, and the time to motor output.

The reaction times obtained from the above experiments provide severe con-

straints on the visual processing time in primates, considering that even if the

visual information collected by the photo-receptors in the retina takes the shortest

route to the brain, it will have to cross at least 10 synaptic stages [76]. Further,

the response latency increases at each step through the pathway from the retina

to the cortex, with the approximate shift in latency being 10ms at each con-

secutive stage [72]. Such data is also supported by the experimental results of

ERP showing less than 150ms as the time for visual processing, which will allow

roughly 10ms delay at each synaptic stage, presuming the shortest feed-forward

path from retina to cortex. Again, it is not possible to rule out the use of feedback

loops even though the use of feed-forward loops seems to be critical and more

widely used by primates in early visual processing [19]. But then, a feedback

loop processing time within 150ms will impose further constraints on the time of

processing at each synaptic stage. On the other hand, neurophysiological data

suggest that cortical neurons rarely fire at rates above 100 spikes/sec. This im-

plies that within a time window of 10ms, a neuron will fire at most 1 spike, or will

not fire at all. But to estimate the firing rate, at least 2 spikes are required in a

time window . Thus, rate codes fail to provide an explanation of the ultra-rapid

early visual processing times [76, 73].

However, there are situations where the use of rate coding would seem to

be the best choice for the nervous system, e.g. the amount of force developed

by a muscle will depend on the firing rate of the motor neurons. Yet, it looks

highly unlikely, due to the various reasons mentioned above, that rapid sensory

processing can be achieved using rate coding. Such observations prompted the

need of alternative coding schemes that are perhaps being used in conjunction
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Figure 2.3: A population of 10 neurons that are subject to a stimulus. The
information contained in the spike timings are encoded using the count, latency
and rank-order codes [73].

with rate codes. For quite some time, it was speculated that spike times could be

used by the neurons to encode information. Thus, temporal codes were proposed

which opened up a broad scope for different novel coding schemes, some of which

are discussed in the following sections.

2.3.3 Temporal codes

In this section, we discuss some of the viable options of coding using spike times

as the basic coding currency as suggested by research in this area [73].

Let a stimulus be presented to a population of 10 neurons, and the response

of each observed during a 10ms time window as shown in figure 2.3. Three of the

different ways in which this population could encode and transmit information

are [73]:

• Count code

This is a population rate code as discussed in section 2.3.1. Since 9 of the 10

neurons fire during the 10ms time window, the rate will be 0.9 spikes/10ms,

which is 90 spikes/s. Since the total number of possible states is 11 in this

case, the amount of information that can be transmitted using 10 neurons

will be log2(11) = 3.46 bits. Thus, for N neurons, it will be log2(N + 1)
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bits.

• Latency code

The maximum information of all the coding schemes proposed so far is ob-

tained if the precise latency of each spike can be determined for each neuron

in a population over the 10ms time window. For example if the spikes can

be timed at a precision of 1ms, the maximum amount of information that

could be transmitted in 10ms by a population of 10 neurons would be 10 *

log2(10) = 33.2 bits of information. Thus, for N neurons in a population

over a time window of t ms, the information will be N ∗ log2(t) bits. The

drawback of this code is that it would be very difficult for an experimenter

to determine the precise latency of firing in real neurons.

• Relative latency code : Rank-order

The drawback of the above method may be removed if the relative latency

of the spikes in a certain time window is considered, as shown in figure 2.3.

This is the same as determining the rank of each firing neuron in a popula-

tion. The code is termed as rank-order code. The order of firing of the cells

is C, then B,D,A, E, F, G, J and finally H. For different stimulus intensity

distributions, there could be 10! different ways in which the 10 cells can

be rank-ordered. Thus the maximum information that can be transmitted

using 10 neurons is log2(10!) = 21.79 bits. For N neurons, log2(N !) bits of

information can be transmitted.

Rank-order codes are discussed in more details in the following section, as

abstracted from the works of Thorpe et al [75, 73].

2.3.4 Rank-order codes

Some sensory systems use the relative difference in stimuli arrival times or stimuli

intensity at different receptors to process information [73]. For example we un-

derstand that a sound is coming from the left because the sound reaches the left

ear before it reaches the right ear. In vision, the spiking neurons in the retina,

the ganglion cells, have an onset latency that depends on the contrast1 in the

input stimulus, thus making our visual perception to be ‘luminance invariant’.

1variation in the intensity of light about the mean luminance.
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Figure 2.4: Decoding rank-order codes. The neurons A, B, C, D, E are pre-
synaptic to the spiking neuron N.

The neurons corresponding to different intensity points in the input stimulus fire

with different latencies; the one firing the earliest corresponding to the point of

maximum intensity in the input stimulus.

Thorpe and Gautrais proposed that a simple way to encode this asynchrony

in the firing times among the different neurons in a population is to use the order

in which the neurons spike. The exact latency at which a neuron fires is not

critical here. Rather, the relative rank of each spiking neuron in a population is

important. Because of the intensity-to-latency transformation, the neurons will

tend to generate spikes in an order which corresponds to the distribution of the

applied stimulus. They termed this as the ‘rank-order code’.

With respect to visual stimulus, although the absolute latency of the first spike

of each neuron within a time window will vary with both luminance and contrast,

there will be no change in the rank-ordering of the relative spiking latency. Thus,

there will be an automatic normalisation of the inputs. The rank-order code is

thus insensitive to variance in input luminance and contrast.

Decoding the codes.

The hypothesis of the rank-order code can only be tested if a rank-order encoded

stimulus can be decoded. The purpose of decoding is multifarious, one of them

being to enable the post-synaptic neurons to react to stimulus characteristics

that are encoded in the firing patterns of the pre-synaptic neurons. Another
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purpose, specific to application of rank-order codes in vision, is to be able to

reconstruct the visual stimulus to evaluate the efficiency of the rank-order codes

in encoding the stimulus. Moreover, the time to reconstruction and information

retrieval from the rank-order encoded stimulus provides an estimation of the time

to similar information recovery from a rank-ordered visual stimulus by neurons

in subsequent heirarchy to the sensory neurons that are generating the codes.

We will discuss more about rank-order codes with respect to vision in subsequent

chapters of this thesis.

Basically, rank-order decoding is done by making a post-synaptic neuron sen-

sitive to the order in which its pre-synaptic neurons fire, the sensitivity decreas-

ing over time as a function of the rank of a spike [75]. One of the common

methods cited in literature uses a decoding that has the sensitivity of the post-

synaptic neuron decreasing monotonically in geometric progression [75, 73]. Let

{nai ∈ Na : i = 1 . . . p} be an ensemble of neurons which are pre-synaptic to

a neuron nf . Let the ‘sensitivity factor’ of the post-synaptic neuron nf be a

number 0 < Snf
< 1, and wi be the weight of the connection between the post-

synaptic neuron nf and the ith pre-synaptic neuron nai in the ensemble Na, and

{wi ∈Wn : i = 1 . . . p}. The pre-synaptic neurons in Na can fire in rank-order in

p! ways. The strength of activation produced as an output by the pre-synaptic

neurons for a certain order of firing Oi is:

VOi
=

p∑
i=1

Srank(nai)
nf

∗ wi, (2.1)

where rank(nai) is the firing rank of the neuron nai when the cells in Na follow

the firing order Oi. The magnitude of the activation will be maximum VOmax

when the firing order Omax of the neurons in Na is in the same as the order of the

weights associated with them. Any other firing order will have a VOi
< VOmax .

The above decoding method may be described by an example shown in fig-

ure 2.4, where five pre-synaptic neurons A− E make excitatory synapses on the

post-synaptic neuron N , and have synaptic connections so that the order of fir-

ing Omax = DAEBC will produce the maximal activation strength for N . If the

sensitivity factor of the neuron N is 0.25, then:

VOmax = (5 ∗ 0.250) + (4 ∗ 0.251) + (3 ∗ 0.252) + (2 ∗ 0.253) + (1 ∗ 0.254) = 6.22
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However, if the order of firing is Oj = ABCDE, the activation will be:

VOj
= (4 ∗ 0.250) + (2 ∗ 0.251) + (1 ∗ 0.252) + (5 ∗ 0.253) + (3 ∗ 0.254) = 4.61

The minimum activation will be produced for a firing order which is exactly

reverse of Omax, i.e. Omin = CBEAD. Furthermore, by adjusting the threshold

level of the post-synaptic neuron N , it can be made selective to the order of firing

of the pre-synaptic neurons. In the case in figure 2.4, there are a total of 5! = 720

ways in which the five pre-synaptic neurons can fire. By setting the threshold

of N to 6.212, say, no ordering other than Omax can make N fire. Thus, the

post-synaptic neuron can be made to be highly selective to the input stimulus

features.

With respect to vision, a rank-ordered stimulus is decoded by assigning weights

of decreasing magnitude to spikes firing later in time. The decreasing weights are

observed to follow a power law up to the first 10% of the spikes (discussed in chap-

ter 4). It has been demonstrated by Van Rullen and Thorpe that this mehod of

rank-order decoding used for reconstruction of visual stimulus allows stimulus

identification when only as few as 1% of the cells have fired their first spike [81].

Rank-order decoding with respect to vision is discussed in section 4.1.4.

2.3.5 Evidence of first-spike times

Recently, timing to first spike has been demonstrated to play a crucial role in

whisker representation in the rat somatosensory cortex [53]. It is shown that

many cells contain information in the timing of their spikes, most of this being in

the time to first spike following each whisker deflection. Further, it was observed

that patterns within the spike trains of cells corresponding to each whisker play

a less important role. From such observations, it is inferred that the timing

of the first spikes in the rat somatosensory cortex contributes to the coding of

the spatially and behaviourally relevant features of the external environment.

Recently, Johansson and Birznieks studied information conveyed by ensembles

of afferent neurons about the direction of fingertip force and the shape of the

surface contacting the fingertip [35]. They observed that the relative time of the

first spikes evoked in a population of tactile afferent neurons contain rich and

reliable information about the stimulus. Further, the information is transmitted

much faster than it could be by rate codes. In another study made recently,
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it was observed that retinal ganglion cells act as analog-to-delay units [79]. It

was further observed that the first spike times make sense only with respect to a

reference ‘event’, e.g. the first spike after stimulus onset. It is believed that the

time of the very first spike following a certain ‘event’ is much more reliable than

that of the following spikes in a spike train elicited by a certain sensory input.

2.4 Chapter summary

In this chapter we first reviewed the basic structure of a neuron, and made a

study of its functioning in generating and propagating spikes. We reviewed the

synaptic mechanisms of a neuron and then studied the encoding techniques used

by the neurons to encode information from the external environment into trains

of spikes. Further, we reviewed the literature on neural codes, and presented an

analysis of their performance with relevance to the speed of information process-

ing. Subsequently, we studied the rank-order codes proposed by Thorpe et al and

presented a review of the encoding and decoding schemes.

Having reviewed neurons in general and some of the proposed neural encoding

theories, we now move on to a review of the retina and its neurons. Our present

work is based on the information processing by the spiking neurons in the retina,

viz. the ganglion cells. In chapter 3, we study the structure and functioning

of the neural and synaptic layers of the retina. This is followed by a review

of the physiology and structure of the ganglion cells and their receptive fields

in the primate retina. In chapter 8, we build a foveal-pit model where we

concentrate on simulating the ganglion cells corresponding to the cones of the

foveal-pit in the primate retina. For the purpose of designing such a model,

we review the foveal-pit and particularly the ganglion cell types and structures

corresponding to the cones in the foveal-pit.



Chapter 3

Retina and Ganglion Cells

In the previous chapter, we discussed the basic structure of the neuron and how

neurons communicate. As has been mentioned earlier, our present work is based

on the retinal model by VanRullen and Thorpe. The model consists of several

layers of ganglion cells, which are spiking neurons and the output cells of the

retina. In this chapter we do a literature review on the retina, with special

emphasis on the structure and functioning of the ganglion cells.

The retina is a thin transparent membrane forming an internal layer to the

eyeball [65]. Due to its location, it is easily accessible for undertaking intra-

cellular recordings to study and analyse neural mechanisms [90]. Further, the

cells in the retina are arranged in distinct layers and in a regular fashion, which

aids the study of the physiology and function of each cell type. Since the input

to the retina is known, it is easy to understand what the cell outputs represent.

Moreover, it is easy to stimulate the retina with a visual input, as this is the

retina’s natural stimulus [51]. It is for these and several other reasons that, for

almost a century now, the retina has been a very popular area for scientists

for carrying out histological analysis to investigate the principles of elementary

information processing in the brain [85, 39, 25, 23].

We start by giving a brief introduction to the structure of the retina in sec-

tion 3.1. We discuss briefly the several neural and synaptic layers in the retina

that play a role in the passage of light from the photoreceptors to the ganglion

cells. Such a discussion also helps in understanding the role of the other neu-

rons in the retina in forming the basic structure of the ganglion cell receptive

fields, discussed in section 3.3. Later in our work (chapter 8), we will describe

a model of the foveal-pit in the retina, in anticipation of which we do a review

53
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of the fovea and the arrangement of neurons in the foveal region in section 3.1.3.

This is followed by a revisit of the ganglion cells in section 3.2 where we focus on

the ganglion cells of the primate retina and discuss their morphology, layout and

structure.

3.1 Structure of the retina

3.1.1 Retinal neural layers

A block diagram of the different layers of the retina is shown in figure 3.1. There

are five main classes of neurons in the retina viz. photoreceptor cells, hori-

zontal cells, bipolar cells, amacrine cells and ganglion cells. These cells

are grouped into three distinct layers consisting of the cell bodies:

• The outer nuclear layer (ONL) contains the ‘perikarya’ 1 of the photore-

ceptor cells. The retina has two kinds of photoreceptors viz. rods and

cones. Cones aid visual acuity, colour vision and vision in bright light.

Rods are mainly responsible for vision in dim light, peripheral vision and

motion detection. There are an estimated 6.3–6.8 million cones and 110–

125 million rods in the retina [65, 85]. The density of rods and cones is not

uniform across the retina and varies with retinal eccentricity. The cones

show a peak spatial density at the foveal centre. For the purpose of this

work, we ignore the rod and restrict our discussion to cone and its related

pathways in the retina.

• Horizontal cell perikarya lie along the outer margin of the inner nu-

clear layer (INL). In the middle portion of the layer lie the bipolar cell

perikarya, while the perikarya of amacrine cells lie along the inner mar-

gin. 80% of the total population of amacrine cells in the retina lie in this

layer.

• The ganglion cell layer (GCL) consists of the perikarya of the ganglion

cells as well as 20% of the total population of amacrine cells in the retina.

Each axon of a ganglion cell is a nerve fibre. These fibres collectively form

the optic nerve. Information collected by the dendrites of the ganglion cells

is transmitted down the axon of the cells through the optic nerve on to

1cell body of a neuron, minus its synaptic terminals.



CHAPTER 3. RETINA AND GANGLION CELLS 55

Figure 3.1: Layout of the neural and synaptic layers of the retina. The retina
is the inner lining of the eyeball. Incident light passes through the thickness of
the retina to stimulate the photoreceptor cells, which convert the light to electric
signals. This transformed light energy then traverses the retina in the reverse
direction, is processed at each step of its passage, and finally is transformed into
electrical spikes by the ganglion cells, whose axons form the optic nerve. The
optic nerve pierces the retina at the blindspot and travels through its entire
depth before leaving the eyeball to transmit the information about the incident
light to the brain.
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Figure 3.2: The cone-pedicle and its synapses to horizontal cell and bipolar cell
dendrites in the OPL.

the brain in the form of electrical spikes. Thus, the ganglion cells form the

output neurons of the retina.

We do a more detailed review of the ganglion cells, specifically the primate

ganglion cells, in section 3.2.

3.1.2 Retinal synapses and synaptic layers

These three neural layers are interspersed with two plexiform layers constituting

the sites of functional contact between the neurons as shown in figure 3.1 and

described in the following sections.
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Outer Plexiform Layer (OPL)

The Outer Plexiform Layer (OPL) consists of the connections between the

photoreceptors in the ONL, which are the pre-synaptic neurons, and the bipo-

lar and horizontal cells in the INL, which are the post-synaptic neurons. The

synaptic terminal of a cone is known as cone-pedicle and it consists of multiple

pocket-like openings at its base, which are known as invaginations, as shown in

figure 3.2. Each of the invaginations of a cone-pedicle is associated with dendrites

of horizontal cells that surround the dendrites of bipolar cells. The invaginating

dendrites of the bipolar cells are known as invaginating processes and may be

from the same or different cells in a single invagination. Similar for the horizon-

tal cells. Bipolar cells which do not penetrate the invaginations are associated

with the base of the cone-pedicle. We follow the behaviour of the synapses in

the OPL with diagrams shown in figures 3.3 and 3.4. Cones hyperpolarize by

the presence of light, i.e. when illuminated, and are said to be in off state, while

they depolarize with an absence of light, i.e. in darkness, and are said to be in

on state [85], as shown in figure 3.3. A cone makes a sign-conserving synapse

(defined in section 2.2.2) with the horizontal cell dendrites in its pedicles as shown

in figure 3.2. Thus the invaginating horizontal cells connected to a cone-pedicle

are hyperpolarised (off) by the presence of light and depolarised (on) by the

absence of light, shown in figure 3.3. A post-synaptic horizontal cell provides a

negative feedback to its presynaptic cone, i.e. the horizontal cell is presynaptic

in a sign-inverting manner to the cone from which it obtained its input. The

exact mechanism and reason for the feedback connection is still a matter of de-

bate [39, 85]. It is speculated that this feedback modulates the cone output so

that it responds to the contrast rather than the wide variations of light intensity

in our natural surroundings. In this manner, the horizontal cell output indirectly

affects the bipolar cells that are fed by the cone, which in turn modulate their

outputs to the ganglion and the amacrine cells in the IPL. Further, the horizontal

cell is also known to be presynaptic in a sign-inverting manner to the bipolar cells

in its vicinity, which has a direct effect on the bipolar cell outputs.

It is experimentally observed that invaginating bipolar cells make sign-inverting

synapses with their respective cones (shown in figure 3.2) and are depolarised with

an increase in light, [91, 85, 39]. These cells are called on bipolar cells, and con-

stitute the on cone-pathway of light (figures 3.3 and 3.4). On the other hand,

bipolar cells which are associated with cone-pedicle bases make sign-conserving
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Figure 3.3: A simplified timing diagram of the effect of light on the various
retinal neurons, and an antagonistic effect on the bipolar and ganglion cells due
to direct and indirect negative feedback from the horizontal cells on to the bipolar
cells. The on-centre/off-surround and off-centre/on-surround receptive field
structures are discussed in section 3.3.1. The amacrine cells are not mentioned
here but are shown in figures 3.4 and 3.8.
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Figure 3.4: The synaptic connections in an on- and off- cone pathway. The sign-
conserving synaptic connections are shown with a ‘+’ and a blue arrow while the
sign-inverting connections are indicated by a ‘–’ and a red arrow.
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synapses with their respective cones, and are hyperpolarised by an increase in

light. These are called the off bipolar cells and constitute the off cone-pathway

of light [39].

Inner Plexiform Layer (IPL)

The Inner Plexiform Layer (IPL) consists of the connections between pre-

synaptic bipolar cells and post-synaptic ganglion and amacrine cells. This layer

has two distinct strata as shown in figure 3.1. The axons of on and off bipolar

cells terminate at different layers in the IPL, viz. the on-sublamina and the off-

sublamina respectively, and are pre-synaptic to the ganglion cells. The bipolar

cells make sign-conserving synapses to the ganglion cells, shown in figures 3.3

and 3.4. Thus, on ganglion cells are post synaptic to on bipolar cells and their

dendrites arborise in the on sublamina of the IPL. Similarly, the off ganglion

cell dendrites arborise in the off sublamina of the IPL and are postsynaptic to

the off bipolar cells. The behaviour of the ganglion cells to bipolar cell inputs

is shown in figure 3.3.

The amacrine cells are postsynaptic in a sign-conserving manner to the bipolar

cells, while they are presynaptic in a sign-inverting manner to the ganglion cells,

shown in figure 3.4. The amacrine cells are also pre-synaptic to the bipolar cells

in a sign-inverting manner, and thus provide a negative feedback. This modulates

the direct input of the bipolar cell to the ganglion cell. Further, the amacrine

cells also have sign-conserving lateral connections with other amacrine cells. The

exact chemistry of the amacrine cell synapses and their varied functionalities are

still in active research domain; much is now known about them, but much more

still needs to be known [91, 90, 39, 25, 85].

In the following section we discuss the foveola, also known as the foveal pit,

its structure and location with respect to the retina. This helps in forming a

background to the discussion of the ganglion cells in section 3.2.

3.1.3 Foveal pit

At the centre of the retina on the posterior wall of the eyeball is a depressed area

of 1.5mm diameter, which is responsible for the most distinct vision. The floor

of the depression is termed the foveola or the foveal pit, and the sides of the

depression are called the clivus or the foveal slope. The rim of the foveal slope
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Figure 3.5: The foveal pit and the clivus. The outer rim of the foveal slope is
termed the parafovea. All these regions constitute the fovea which is a part of
the central retina [65].

is called the parafovea. Together, the whole area is termed the fovea [65].

The foveola is a circular region of about 400µm in diameter (1.4 degrees of

visual angle2) shown in figure 3.5 [65]. It is devoid of any blood vessels, and the

only photoreceptors available here are the cones. The retina is at its minimum

thickness in this region. Such an arrangement provides a direct access of the

photoreceptors to the incoming light. This is unlike elsewhere in the retina, where

the light has to pass through all the other neural layers of the retina to reach the

photoreceptors, since the retina is inside out. This helps make the fovea the region

of highest visual acuity. The cone-pedicles connected to the cones of the foveola

are displaced radially outwards from the foveal centre, so that they are closer to

the capillaries of blood vessels surrounding the fovea to meet their nutritional

requirements. The cone-pedicles of the cones within 300µm of the centre of the

fovea are found to be displaced by about 350µm, while the bipolar cells and

ganglion cells connected to these pedicles are displaced by another 50µm [92].

The primate foveal cones are arranged in a very dense and fairly regular

triangular mosaic. The minimum centre-to-centre spacing between cones in the

human fovea is found to be 2.8–3.0µm, while the maximum density of cones at

the foveola is found to be 225, 000/mm2 [92].

21 degree of visual angle is equal to 288 microns on the retina [40].
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3.2 Ganglion cells in the primate retina

The ganglion cells are spiking neurons and are the output cells of the retina. There

are around 10–15 different morphological types of ganglion cell in the mammalian

retina. The classification is based mainly on the size and the branching pattern

of the dendritic trees [90]. Empirical data obtained from neuro-physiological

experiments indicate that all the ganglion cell types provide complete coverage

of the retina (except the blindspot3) with their dendritic trees. Consequently, a

light spot projected onto the retina can stimulate at least one ganglion cell of any

given type. Since the different types of cell process different aspects of the visual

stimulus, such as contrast, size and movement, there is simultaneous processing

of the stimulus by 10–15 parallel channels [91].

Pioneering work on the mammalian retina was done by Kuffler when he stud-

ied the characteristics of the ganglion cell receptive field of the cat retina [83].

Subsequently, ganglion cells in the retina of primates and non-primates such as

mud-puppy, rabbit, frog, turtle, rat, were studied. The ganglion cell types across

these retinas are observed to vary according to the food habits and survival strate-

gies of the animal.

The main types of ganglion cell in the primate retina are the midget and

the parasol ganglion cells which make up 80% and 10% of the total popula-

tion of ganglion cells respectively. These two cells have been distinguished in

the retinas of all primates studied so far. The very high spatial density of these

two cell groups is the most distinctive feature of the primate retina. The fol-

lowing sections give a brief description of the morphology, spatial distribution

and some functional properties of the midget and parasol ganglion cells of the

primate retina. The contents are abstracted from the published works of Dacey

and others [47, 41, 46].

3.2.1 Midget ganglion cells

Midget ganglion cells constitute 80% of the total ganglion cell population in the

human retina. In the foveal region, they constitute around 95% of the ganglion cell

population, whereas in the peripheral region, 45% of the ganglion cells are midget

cells, as shown in figure 3.6. Compared to other types of ganglion cell in the

3The region where the optic nerve leaves the retina is devoid of any retinal photoreceptors,
making the region insensitive to light (shown in figure 3.1).
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Figure 3.6: Percentage of midget cells at different retinal eccentricities [47].

primate retina, midget cells have the smallest dendritic field sizes. Consequently,

they have a very high density in the central retina. They make up the dominant

projection to the parvocellular layers of the lateral geniculate nucleus (LGN) in

the brain and are also known as P cells. These cells are associated with colour

vision and define the limit of spatial resolution across the visual field.

Depending on the layer of stratification of the dendritic trees, the midget

cells are classified as on- or off-centre cells. On-centre cells branch out in the

inner section of the IPL and receive their input from the on midget bipolar cells,

while the off-centre cells are post-synaptic to the off midget bipolar cells and

stratify at the outer half of the IPL. At a certain retinal eccentricity, the on-centre

cells have an average dendritic field diameter 30% greater than their off-centre

counterparts, and thus a greater dendritic overlap between the neighbouring cells.

These characteristics are found to be consistent across the whole of the retina.

The on- and off-centre cell mosaic are independent of one another because of

their different layers of stratification. The arrangement of the cell bodies in each

mosaic is highly regular, with neighbouring dendritic trees showing very little

overlap in each independent mosaic. There is an increase in dendritic field size

with increasing retinal eccentricity which is more or less matched by a decrease

in spatial density, keeping the ‘dendritic overlap’ (defined as dendritic field area

× cell density [46]) approximately constant over most of the retina. For example

if dendritic overlap is to be maintained, then a reduction in dendritic field size
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by a factor of 3 implies an increase in spatial density by a factor of 9. Thus

evolutionary pressure for higher spatial acuity can result in a great increase in

the number of cells that subserve this aspect of vision.

3.2.2 Parasol ganglion cells

The parasol ganglion cells constitute 10% of the total ganglion population in the

primate retina. Also known as the M cells, the parasol ganglion cells project on

to the magnocellular layer of the LGN.

The mosaic of the on-centre and the off-centre parasol ganglion cells are

independent and they can be distinguished by their distinct stratification layers as

with the midget cells. The on-centre parasol cells have 30− 50% larger dendritic

fields and thus a lower spatial density than those of the off-centre cells. This

trait is found to be consistent at all retinal eccentricities. The dendritic fields of

all the cells increase with eccentricity, but in midget cells this increase is steeper

than that of the parasol cells. Consequently, the difference in size between the

midget and parasol cells increases towards the fovea, thus maintaining a constant

dendritic overlap, which appears to be a characteristic feature of the ganglion cell

mosaics. At 50 degree retinal eccentricity, the ratio of the dendritic tree diameters

of the parasol and the midget cells is recorded as ∼ 3 : 1 while the ratio is ∼ 10 : 1

at 3 degrees from the fovea. Thus, the corresponding ratio of dendritic field area

will range from 9:1 to 100:1. The dendritic overlap for parasol cells in the monkey

retina is recorded as 3.4, while that for the midget cells is 1, the same as in the

human retina. Thus the ratio of the densities of the parasol to that of the midget

cells ranges from 1:3 to 1:30 from the retinal periphery towards the fovea.

3.2.3 Ganglion cell to cone ratio

The data presented in this section is taken from a study carried out by Wassle

et al on a region of up to 3mm eccentricity in the monkey retina to measure

the densities of cone, cone-pedicles and ganglion cells in the region [92]. In a

25µm sampling window, the density of cones at the central fovea was found to

be 250, 000/mm2 as shown in the plot in figure 3.7(a). Since the retina is very

thin at the foveal pit, cones packed in high density are the only neurons found

in this region. The cone-pedicles corresponding to these cones are shifted by

about 350µm away from the centre of the fovea. The location of the ganglion
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(a)

(b)

Figure 3.7: (a) The plots show the density of cones, cone-pedicles and ganglion
cells at different eccentricities in the central retina. (b) The displacement of the
cone-pedicles and the ganglion cells corresponding to cones that lie within an
eccentricity of 150µm radius of the centre of the fovea. Both the pictures are
taken from [92].
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cells connected to these cone-pedicles are further shifted by about 50µm due to

oblique layout of intermediate bipolar cells and ganglion cell dendrites. In spite of

this shift, the layout of the cone to the ganglion cell connection has a very orderly

mapping. In a circular region of 150µm radius around the fovea, 9530 cones were

found. Connected to these cones were approximately the same number of cone

pedicles (9874) in a circle of 500µm radius (150µm radius +350µm shift) around

the fovea. Within a further shift of 50µm, i.e. in a circle of radius 550µm round

the fovea, the total number of ganglion cells was found to be 33000. From this

data, the ganglion cell to cone ratio is calculated to be 3.34 : 1. This displacement

is shown in figure 3.7(b). A smaller circle round the fovea with 50µm radius

showed a ganglion cell to cone ratio of 4 : 1. Thus, it is anticipated that the ratio

may be even higher in the centre of the fovea.

3.3 Ganglion cell receptive field

The term receptive field was coined by Hartline, who first discovered them while

experimenting on ganglion cells of the vertebrate retina. He defined receptive field

of a ganglion cell as the area of the retina which must receive illumination in order

to cause a discharge in the particular ganglion cell or nerve fibre [64]. Study on

visual receptive fields in mammals was first done by Kuffler on the cat retina [83].

The physical dimension of the receptive field centre is defined by the dendritic

field size of a ganglion cell [92]. The surround dimension, on the other hand,

depends on the horizontal and amacrine cells and their synapses. The properties

of the receptive field essentially determine the role that a ganglion cell might play

in processing visual information.

Below, we present our interpretation of how the ganglion cell receptive fields

are formed in the cone-pathway, based on factual data collected by reviewing

various sources.

3.3.1 Receptive field structure

The receptive field of a cell is defined as the area on which light must fall to

elicit response from the cell [39]. The receptive fields of cones are very narrow

and react to light directly over them. Generally, there are no cones dedicated to

particular bipolar cells, and the latter connect to the cone-pedicles of more than

one neighbouring cone, exceptions being some bipolar cells in the midget pathway
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of the primate fovea, which have a one-to-one connection with the corresponding

cone. Thus the bipolar cells generally have a wider receptive field than the cones,

as shown in figure 3.8. An on-bipolar cell depolarises when light falls on cones

that fall within this receptive field. Similarly, the off-bipolar cells hyperpolarise

to incident light on any cone within its receptive field. It is observed that the

horizontal cells connect to all cones within their dendritic field [91, 39]. More-

over, the horizontal cells also communicate laterally in a sign conserving manner

through gap junctions, shown in figure 3.8, and are therefore affected indirectly by

synapses from neighbouring cones. Those cones also form a part of the horizontal

receptive field. Thus, the horizontal cells have very large receptive fields. The

sign-inverting synapses made by a horizontal cell on the connected cones affect

all the cones that lie within its receptive field due to the lateral connections. This

feedback is fed forward by each cone to their respective bipolar cells. This has

two implications on the bipolar cell receptive fields:

• Firstly, this provides an ‘antagonistic’ signal to the bipolar cells. This can be

explained with an example thus — When a spatially uniform light is incident

on a certain area encompassing some cones, the cones get hyperpolarised, as

shown in figures 3.3 and 3.8. This makes the horizontal cells connected to

these cones (directly and indirectly as explained above) hyperpolarized and

the corresponding on-bipolar cells depolarised, while the off-bipolar cells

gets hyperpolarised. However, the cones get a sign-inverting feedback from

the horizontal cells, which has the effect of reducing the hyperpolarisation

in the cone. This ‘negative’ hyperpolarisation, when fed to the on-bipolar

cells in a sign-inverting manner, gives rise to a ‘positive’ hyperpolarisation

signal. This affects the bipolar cell by reducing the depolarisation caused

by the incident light on the cones on its receptive field. On the other hand,

the ‘negative’ hyperpolarisation, when fed to the off-bipolar cells in a sign-

conserving manner, gives rise to a ‘negative’ hyperpolarisation signal. This

affects the off-bipolar cell by depolarising it partially so as to reduce the

hyperpolarisation caused in it by the incident light. Thus, the feedback

signal provides antagonistic inputs to the bipolar cells.

• Secondly, since the horizontal cells integrate light from a large area as

mentioned above, the bipolar cell receptive fields have a centre-surround

structure, where the surround is antagonistic to the centre. This can be

explained thus — Let us refer to the cones which provide direct input to
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Figure 3.8: A simplified block diagram of the synaptic connections of the retinal
neurons, and the formation of the centre-surround structure of the bipolar and
ganglion cell receptive fields. The right hand side horizontal cell feedback con-
nections from the surround on the cones in the centre are not shown explicitly
for clarity of the diagram.
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Figure 3.9: (a) on-center/off-surround structure, (b) off-centre/on-surround
structure of ganglion cell receptive fields.

the bipolar cells as ‘the cones of the central area’. Since direct inputs of

the cones of the central area to the bipolar cells are much stronger than

their feedback signals, light falling on these cones depolarises the bipolar

cells and the area covered by these cones is known as the on-centre of the

on-bipolar cell receptive field. However, if light falls on the surrounding

areas of these cones, the cones in these surrounding areas will antagonise

the horizontal cells which are also connected to the cones of the central

area (since horizontal cells have a much wider reach). These horizontal

cells in turn provide a negative feedback to the cones of the central area.

This will elicit a hyperpolarising response from the bipolar cells, which is

‘antagonistic’ to their normal behaviour. This surrounding area that elicits

antagonistic response from the bipolar cells is called the off-surround of the

on-bipolar cell receptive field. Thus, the bipolar cell receptive fields have a

centre-surround structure; the on-centre cells have an on-centre/off-

surround receptive field (figure 3.9(a)), while the off-centre cells have an

off-centre/on-surround receptive field. (figure 3.9(b)).

The ganglion cell receptive fields are direct ‘descendents’ of the bipolar cells;

the on-ganglion cells inherit the on-centre/off-surround structure of the on-

bipolar cells, while the off-ganglion cells inherit the off-centre/on-surround

structure of the off-bipolar cells. However, the centre and the surround of the

ganglion cell receptive fields are wider than those of the corresponding bipolar

cells. This is because the dendrites of the ganglion cells receive inputs from several

bipolar cells. The combined effect of the receptive field centres of all these bipolar

cells constitutes the centre of the ganglion cell receptive field. Again, each of these

bipolar cells has a surround region, which adds up in constituting the receptive

field surround of the ganglion cells. It is speculated that the inhibitory synapse

from the amacrine cells on the ganglion cells helps in sharpening the antagonistic
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surround of the ganglion cell receptive field [39]. Furthermore, due to the lateral

synapses provided by amacrine cells upon themselves, the negative feedback of

an amacrine cell on a ganglion cell is affected by bipolar cell signals from a much

wider area, which further adds to the width of the receptive field surround of the

ganglion cell, shown in figure 3.8.

The centre-surround structure of the receptive fields due to the negative feed-

back of the postsynaptic cells on presynaptic cells give rise to a very interesting

phenomenon in the retina of the vertebrates that is termed ‘lateral inhibition’.

In section 3.4, we introduce this mechanism used by the sensory neurons to re-

duce data-redundancy in the input stimulus. We have later used this principle to

rank-order encode visual stimulus efficiently (chapter 7). Prior to that, we discuss

below some data regarding the actual dimensions of the ganglion cell receptive

field centre and surround as found in the mammalian and primate retina, as a

background to our work in chapter 8.

3.3.2 Receptive field centre

It has been observed that in the primate retina, the ratio of the average radius of

the midget cell receptive field to the average radius of their respective dendritic

trees is 1.65 at 0−10◦, 1.46 at 10−20◦, and 1.06 at 20−30◦ eccentricity. A possible

reason for the receptive field being actually greater than the dendritic field of a

ganglion cell is that these cells are not directly connected to the receptors. There

are three layers of cells, the horizontal, bipolar and amacrine cells which might

add to the spatial extent of ganglion cell dendrite tree to form the centre of the

receptive field. As seen from the data above, this difference in size is greatest near

the fovea and decreases with increasing eccentricity. A possible reason could be

that, due to an increase in the inter-receptor space with increasing eccentricity,

cells connected to these receptors may be less likely to contact one another via

gap junctions. This could result in the narrowing of the area from which signals

are drawn into bipolar cell, thus narrowing their receptive fields [89].

3.3.3 Receptive field surround

It is observed that there is a significant scatter in the surround sizes of neigh-

bouring midget and parasol cells at a certain eccentricity in the primate retina.

Also, unlike the central regions, the surrounds of both cell types cover the same
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range of sizes. On average, the ratio of the radii of a midget cell dendritic tree

to its receptive field centre will be 0.15, so that the surround of the cell is on

average 6.7 times wider than the centre of the same cells, and is thus about 45

times larger in area. A similar ratio for the parasol cells is recorded as 0.21, so

that the surround radius is on an average 4.8 times that of the centre, and is

about 23 times larger in area [89].

3.4 Linking redundancy and lateral inhibition

In this section, we give a brief overview of the redundancy in our natural envi-

ronment and how it is handled by the retinal cells using the lateral inhibition

technique.

3.4.1 Redundancy reduction: goal of sensory processing

Gibson suggested that to understand the nature of visual perception, we must

understand the nature of the environment around us. He suggested that the per-

ceptual capabilities in an organism have evolved with the purpose of exploiting

the laws of its surrounding environment in order to take decisions and act ac-

cordingly for its survival [34]. In other words, to understand fully the principles

behind our visual perceptual mechanism and why it behaves the way it does, we

need to understand the laws of the surrounding environment that is being sensed

by our retinal cells.

Following such ideas, Attneave used Shannon’s information theory to quan-

tify the information in a visual stimulus [3]. He found that while the information

carrying capacity of the optic nerve from the retina is constrained by the number

of nerve fibres, yet the combination of the range of luminances in our visual envi-

ronment is astronomical. At the same time, he demonstrated that certain visual

stimuli are such that information obtained from them are highly redundant, i.e.

portions of a stimulus are highly predictable from knowledge of its other por-

tions. Any such physical invariance in a scene is a source of redundancy for the

eye because the eye is capable of abstracting the invariance and extrapolating

the redundant information. Homogeneous brightness, symmetry, a constantly

changing contour, are all examples of redundant impact as these can be extrap-

olated. Thus, according to Attneave, “it appears likely that a major function of

the perceptual machinery is to strip away some of the redundancy of stimulation,
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to describe or encode incoming information in a form more economical than that

in which it impinges on the receptors.”

Continuing on such lines, Barlow postulated the redundancy-reducing hy-

pothesis, whereby he claims that the sensory neurons code the input stimulus in

a manner such that they preserve all the important information in the stimulus

while relaying it to later stages and, yet, do it by the smallest average expenditure

of energy [4]. This goal is achieved by discarding the redundancy in the incoming

information and thus ‘economising’ the use of neural impulses in transmitting the

information. He concludes by stating that the design of sensory organs reflect

their usage in perceiving the external environment. We observe a reiteration of

Gibson’s idea in such a statement.

Following such views, independent research has been carried out on the statis-

tics of natural images. In Field’s attempt to provide an explanation of the relation

between the statistics of natural images and the functioning of the cells in our

sensory pathways, he observed that images from the natural environment, far

from being random, show very strong correlation among neighbouring pixels [32].

Representation of this correlation in the spatial-frequency power spectrum shows

that the amplitude of the Fourier coefficients falls with frequency, f , by a factor

of 1/f approximately, indicating a scale invariance in natural images. The high

degree of correlation in natural images gives rise to redundancy. So, in a region

of uniform contrast, if the grey level of a certain pixel is known, that of the oth-

ers in its near vicinity can be fairly estimated or predicted. Subjective tests of

such predictive abilities in humans show that redundancy ranges from 46% for

complex natural scenes to 74% for a human face [38].

We summarize the foregoing discussion thus: the environment around us is

apparently chaotic and to represent it would be a very complex task for our

sensory organs [28]. With the aid of Shannon’s information theory, it could be

deduced that the narrow dynamic range of the optic nerve fibre is incapable of

dealing with the enormous luminance range of our visual environment. Clearly

there is some sort of optimisation being done by the early stages in our visual

pathway, so that all the visual information from the outside world is passed on

without loss, yet with the expenditure of minimum neural resources [29, 28, 94, 27,

95]. This understanding gave rise to the speculation that the environment around

us follows an organised structure, and it is to this structure that the sensory

systems adapt [30, 2, 55]. The rest of the chaotic information in the environment
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is unnecessary and redundant and the sensory organs ignore it. Independent

research on the statistics of natural images has shown that, indeed, only a small

subset of all the possible combinations of luminances in our natural environment

actually makes sense to our perception [42, 43, 82, 1]. We have not learnt to

recognise the rest of the set of luminance combinations, possibly because it is

not required for our survival. In other words, the information contained in the

natural environment around us is highly redundant, and it is up to the sensory

organs to get rid of the redundancy, so that the information is passed on to higher

levels with the greatest efficiency and using minimum resources [68, 62, 96, 17].

In the next section we talk about lateral inhibition, which is thought to be a

means by which our sensory systems deals with the redundancy in the incoming

information from the environment around us.

3.4.2 Lateral inhibition: means of redundancy reduction

While experimenting on the eyes of a horseshoe crab (Limulus), Hartline noticed

that the sensory elements exert an influence on one another through lateral inter-

connections, the nature of such an interaction being purely inhibitory [36]. This

means that the frequency of discharge of impulses in a randomly selected optic

nerve fibre is either decreased or stopped by illuminating neighbouring areas of the

eye. Because of its nature, the mechanism came to be known as lateral inhibition.

Subsequent experiments by Hartline et al brought forward several characteristics

of lateral inhibition [37, 5]. They observed that, firstly, the degree of lateral inhi-

bition depends on the intensity of illumination of the inhibiting source, i.e., the

greater the intensity, the greater is the degree of inhibition. Secondly, it depends

on the location of the inhibitory source and decreases with increasing distance

of the latter. Thirdly, simultaneous observation of the responses from two re-

ceptor units showed that nearby units inhibit one another mutually. This was

termed as ‘mutual inhibition’ which is a special case of lateral inhibition. In later

works, the mutual inhibition was described quantitatively by two simultaneous

equations [63]:

r1 = e1 −K1,2(r2 − r0
1,2) (3.1)

r2 = e2 −K2,1(r1 − r0
2,1) (3.2)
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where r is the response of a receptor unit and e is the excitation supplied by

the external stimulus on the receptor. The second term on the right hand side

of both equations represents the inhibitory influence of the second cell on the

first in equation 3.1, and vice-versa in equation 3.2. K denotes the coefficient of

inhibitory influence of one receptor on the other, and r0 represents the threshold

frequency that must be exceeded before one receptor can exert any inhibition on

the other. So, r0
1,2 is the frequency of receptor 2 at which it begins to inhibit

receptor 1, and the reverse for r0
2,1.

It was further observed that the inhibitory effect of several cells upon a certain

cell is additive. This means that the total inhibition exerted on any one recep-

tor by other receptors can be expressed as an arithmetic sum of the individual

inhibition of each of the inhibiting receptors. This is expressed quantitatively as:

rp = ep −
n∑

j=1

Kp,j(rj − r0
p,j) (3.3)

where p = 1, 2, . . . , n; j 6= p; and rj ≥ r0
p,j. The summation term on the right

hand side of equation 3.3 represents the magnitude of the total inhibitory influence

exerted on the excitation corresponding to the cell p.

The above results were indicative of lateral inhibition and how it works. Hart-

line et al concluded that an important effect of lateral inhibition is to enhance the

visual contrast at regions of sharp spatial gradient and discontinuities in an im-

age [37]. This leads to an accentuation of the information that is important to an

organism, i.e. the edges, at the expense of less significant information, which are

the regions of uniform luminance and can be predicted by the brain as discussed

in the section 3.4.1. So, it can be said that lateral inhibition removes redundancy

from a visual input by acting as a filter for enhancing the edges. This allows

efficient encoding of the incoming information by the retinal neurons. This con-

clusion fits very well with the studies on the statistics of natural images and the

nature of the processing in the early part of the visual pathway as discussed in

section 3.4.1.

We summarise the discussion in sections 3.4.1 and 3.4.2 thus — Although

the natural environment around us has a vast range of luminance levels, only a

small subset of this is actually needed by a living organism to be able to survive.

In other words, only a small part of this information is useful for our visual

perception. The rest of the information is redundant. Years of evolution have
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taken advantage of this redundancy by designing the retinal cells so that they

can filter out the redundancy while encoding the visual information from the

environment before passing it onto higher levels of visual processing. To achieve

this, the retinal neurons use the lateral inhibition mechanism. Lateral inhibition

enhances the edges in a scene and gets rid of redundancy in visual information.

The message is thus coded in an optimal number of impulses. Thus it can be

said that lateral inhibition is a means adopted by our visual system to adapt

to the surrounding environment and strip the information collected from the

surroundings of its highly redundant contents to pass on all the vital information

to the brain using minimal available resources.

In chapter 7, we apply the lateral inhibition principles to VanRullen and

Thorpe’s retinal model for removing redundancy in the coefficients of filtering,

introduced due to over-sampling of the input image.

3.5 Chapter summary

In this chapter, we have done a brief review on the different neural and synaptic

layers of the retina and their inter-connections. A more detailed review on the

ganglion cells and their receptive fields is done as a background to the validation

of VanRullen and Thorpe’s retinal model in chapter 4. For the designing of a more

biologically realistic model of the primate retina, we have reviewed the midget

and the parasol ganglion cells, the two primary types of ganglion cells found in

the primate retina. We have focused our discussion on the size and density of

these cells in the foveal region as a background to the foveal-pit model which

is discussed in chapter 8.

In the next chapter, we give a detailed account of how we have validated

VanRullen and Thorpe’s retinal model, along with the empirical results from the

validation.



Chapter 4

Validating the Retinal Model

In previous chapters, we reviewed the physiology and functioning of the neurons,

particularly the retinal spiking neurons, viz. the ganglion cells. We also discussed

the several theories that have been proposed over time in an attempt to discover a

dictionary that translates the stimulus from our external environment to individ-

ual and/or collective neuronal firing patterns. In this context, and as has already

been discussed in section 2.3.4, rank-order codes seem to be a reasonable hypoth-

esis in explaining the ultra-rapid speed with which the initial burst of spikes from

the ganglion cells enable us to perceive our surroundings. VanRullen and Thorpe

designed a simple model of the retina to test the performance of rank-order codes

in encoding images [81]. This they called the retinal model, which has a layered

organisation consisting of several on- and off-centre ganglion cells of various

sizes, each size tiling the retina uniformly in a separate layer. The results of their

simulation show that a rank-order encoded image can be decoded with reasonable

fidelity so as to enable the recognition of the object in the image by the time only

1% of the ganglion cells of the model retina have fired their first spikes [81].

In this chapter, we discuss the procedures followed in our validation of the

retinal model of VanRullen and Thorpe. We present the empirical results of our

simulation and analyse and discuss the implications of the results.

4.1 VanRullen and Thorpe’s retinal model

In this section, we first discuss the simulation of the basic structure of the on- and

off-centre ganglion cell receptive fields. Next, we discuss the simulation of the

different sizes of the cell receptive fields, and how a picture is processed with the

76
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different layers of such cells. We then show how the processed image is encoded

with rank-order codes to resemble a population of neurons asynchronously firing

their first spikes. To test the (a) efficiency and (b) speed with which the rank-

order codes can encode information about an image, the image is reconstructed

progressively with each incoming spike and the results are evaluated with respect

to the information content of the input image.

4.1.1 Simulation of the ganglion cells

Rodieck proposed that, for “mathematical simplicity”, a “convenient function to

choose” for defining the centre-surround structure of the ganglion cell receptive

fields is the “sum of two Gaussian functions, a positive one and a wider nega-

tive one”, as shown in figure 4.1 [84]. This function is commonly known as the

Difference of Gaussians (DoG). Saying mathematically, if x is a two-dimensional

vector defined as:

x = (x, y), then

||x||2 = x2 + y2,

and the equation for the DoG function is:

Φ(x) =
1

2πσ2
1

exp

[−||x||2
2σ2

1

]
− 1

2πσ2
2

exp

[−||x||2
2σ2

2

]
, (4.1)

where the first term represents the centre of the receptive field with σ1 being the

measure of its width, and the second term represents the surround with a width

of σ2. The factors πσ2
1 and πσ2

2 are used for normalisation.

In their model, VanRullen and Thorpe used Field’s generalisation where the

width of the surround is set at three times the width of the centre of the receptive

field [33]. Thus, in equation 4.1, σ2 = 3σ1, so that the expression for the DoG

that is used in the simulation is:

Φ(x) =
1

2πσ2
2

(
9exp

[−||x||2
2σ2

1

]
− exp

[−||x||2
2σ2

2

])
. (4.2)

The salient points of the model design are as follows:

• Ganglion cells of eight different sizes tile the retina. Their receptive fields

are represented by eight different sizes of DoG functions.
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narrow positive Gaussian
wide negative Gaussian
Difference of Gaussians (DoG)

Figure 4.1: One dimensional Difference of Gaussians (DoG) function as a differ-
ence of a narrow positive Gaussian and a wide negative Gaussian function.

s n σ1

1 5 0.5
2 11 1.0
3 23 2.0
4 47 4.0
5 95 8.0
6 191 16.0
7 383 32.0
8 767 64.0

Table 4.1: A table showing the size n×n of a matrix representing a DoG function
at a particular scale s ∈ S, where S = {1, 2, . . . , 8}. The standard deviation of
the centre Gaussian of each DoG is given in the corresponding σ1 column.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.2: (a–e) scale 1 to scale 5 of on-centre/off-surround DoG functions.
(f–j) scale 1 to scale 5 of off-centre/on-surround DoG functions.

• At each size, there are two types of DoG, each representing either an on-

centre or an off-centre ganglion cell receptive field.

• Each size and type of DoG function tiles the retina in independent layers.

Thus there are a total of sixteen independent layers of ganglion cells.

• The resolution of tiling the retina at a certain layer decreases with increasing

size of cell. Thus the number of DoG functions at a larger scale will be fewer

than that at a smaller scale.

A total of eight different sizes of ganglion cell receptive field are simulated by

scaling up the smallest DoG by powers of 2 as tabulated in table 4.1. At each

scale s ∈ S, where S = {1, 2, . . . , 8}, the size of the matrix representing the DoG

function is n×n, where n = 3×2s−1. Thus, the DoG function at scale s = 1 has

a matrix size of 5×5 with a standard deviation of the centre Gaussian as σ1 = 0.5.

This function corresponds to the the smallest size of both on- and off-centre

ganglion cells as shown in figure 4.2 (a) and (f). Five sizes of DoG and two types

at each size are shown in figure 4.2 (a) to (j) (The remaining three larger sizes

are not shown here due to space constraints). The first layer of ganglion cells is

a uniform tiling by cells of size and type shown in figure 4.2 (a), while the second

layer is a uniform tiling of cell type and size shown in figure 4.2 (f). The third

and the fourth layers are tiled by the size and type of cells shown in figures 4.2

(b) and (g) respectively, and so on. All the DoG matrices are normalised such

that the convolution of a DoG at a certain scale s, referred to in this thesis as
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Φs, with itself is unity:

〈Φs, Φs〉 =
∑

x∈Z2

Φs(x)Φs(x) = 1 (4.3)

4.1.2 Simulation of image processing in retina

Once the ganglion cell receptive fields are simulated, the retinal model is ready

to process an input image. To simulate the activation of a set of ganglion cells

with the contrast at each point of an input stimulus, an input image I of size

m× p is filtered with all sixteen layers of DoG functions. Filtering refers to the

convolution of the image with the on- and off-centre DoG functions, such that

convolution by placing Φs at a certain pixel at spatial location (k, l) of the picture

generates a coefficient Cs(k, l) of filtering given by:

Cs(k, l) =
n∑

x=1

n∑
y=1

I(k − x)(l − y).Φs(x, y) (4.4)

As mentioned in section 4.1.1, the resolution of filtering is decreased with increas-

ing scale of DoG function. At a scale s, Φs is placed at every 2s−1 pixels on the

image. This makes the number of coefficients of filtering at scale s a quarter of

that at scale s−1. For the image I of size m×p, the total number of coefficients

of filtering will be

M = 2mp

8∑
s=1

1

4s−1
=

8

3
mp =

8

3
N,

where N = mp represents the total number of pixels in the image. This implies

that a DoG function of eight sizes, with two types at each size, is placed on various

pixels of the images a total of M times. As each DoG represents a ganglion cell,

the image can be thought of as being processed by a total of M ganglion cells.

In our validation, we have used images of size 128 × 128 so that the number

of coefficients generated on filtering an image is 43,691 (rounded). A data-set of

sixty-five images, of both natural objects in our immediate surroundings and man-

made structures, are used to evaluate the performance of the codes in simulating

the rapid visual processing of the retina. Some of the images from our data-set

are shown in figure 4.3.
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Figure 4.3: A sub-set of the images used during the various experiments described
in this thesis.
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4.1.3 Rank-order encoding

The magnitude of each coefficient Cs(k, l) in equation 4.4 corresponds to the

strength of activation of a cell produced by the contrast at location (k, l) of I with

respect to its neighbourhood, such that the larger of two coefficients corresponds

to a cell which fires earlier than that corresponding to the smaller coefficient. In

other words, Cs1(k, l) > Cs2(k + 1, l) (say) implies that the cell corresponding to

Φs1(k, l) fires earlier than that corresponding to Φs2(k+1, l), where s1 and s2 may

be the same or different scales. Thus, the relative magnitude of the coefficients is

simulating the latency in the time to firing of its corresponding cell. The larger

the magnitude of the coefficient, the shorter is its latency of firing and, therefore,

the higher it is in the rank-order of the incoming spikes with respect to time.

Thus, rank-order encoding of the spikes is simulated by arranging the coefficients

obtained in equation 4.4 in descending order.

The DoG corresponding to the largest coefficient is the cell which is the first

to fire its first spike in the population of M ganglion cells. The on-centre and

off-centre Φs are mathematical complements of each other so that if the on-

centre Φs at spatial location (k, l) generates a positive coefficient, the off-centre

Φs at that location will generate a negative coefficient, and vice-versa. This is a

situation where at a certain spatial location (k, l), either the off-centre or the

on-centre cell fires, but not both. This is true for all spatial locations across

all the scales. Therefore, in a population of M ganglion cells in VanRullen and

Thorpe’s retinal model, only 50% fire, giving rise to P = 0.5M positive coefficients

of filtering. Thus, we have an array {ri ∈ R : i = 1 . . . P} of rank-ordered

coefficients, simulating rank-ordered spikes fired asynchronously by P ganglion

cells in a population of M .

4.1.4 Rank-order decoding

To test the performance of rank-order codes in encoding information about an

image efficiently, VanRullen and Thorpe decoded the rank-ordered coefficients

to reconstruct the input stimulus. The resolution of DoG filter functions in the

retinal model is such that the neighbouring filters of a certain layer overlap as

shown in figure 4.4. When an input image is processed by such a layer of cells,

a point at a certain spatial location in the image is sampled by multiple filters

of the same layer. Again, the filters at larger scales also sample each part of
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Figure 4.4: Overlap among neighbouring DoG filters sampling the input image.

the spatial location that has already been sampled by filters lower down in scale.

Thus the neighbouring filters across the layers are also overlapping. Further,

〈Φs1(k, l), Φs2(k + 1, l)〉 6= 0. However, because of the normalisation in equa-

tion 4.3, 〈Φs1(k, l), Φs2(k+1, l)〉 = ε, where |ε| ¿ 1. Further, instances (say when

s1 = 1 and s2 = 8) when the above approximation does not hold true are very few

due to sparse sampling by the larger filters. Therefore, for all practical purposes,

the DoG filters are considered to be an approximately orthogonal set of basis vec-

tors that tile the retina uniformly [81]. Further, the DoG functions are circularly

symmetric. Therefore, under the assumption that the DoG filters form a set of

orthogonal basis functions, the inverse of a DoG matrix will be the matrix itself.

VanRullen and Thorpe use this approximation to reconstruct the input image as

discussed below. Later we will improve on this approach by identifying ways to

correct for the non-orthogonality (discussed in chapters 6 and 7).

Reconstruction using coefficients

From equation 4.4, and using the approximation that the DoG are orthogonal

filters, the input image I can be reconstructed as:

Irec(k, l) =
∑

s

∑
x

∑
y

Cs(x, y).Φs(x− k)(y − l) (4.5)

Initially, Irec is an empty matrix of the same size as the input image I. Let Φ1
si

be

the filter at scale si, which when placed at the spatial location (k, l) of the image I
produces the largest coefficient r1 in the rank-ordered coefficient set R defined in

section 4.1.3. To start with, the Φ1
si

is scaled up by r1 and plugged into Irec with

the centre of the scaled-up DoG at the pixel (k, l). This is done sequentially for
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each consecutive rank-ordered coefficient ri of the set R and the process is referred

to as the progressive reconstruction of the input image. Reconstructed images

using up to the first 1%, 5%, 10% and 20% of the coefficients of filtering are

shown in figure 4.5. The reconstruction process is similar to the perception of

visual messages by the brain as it receives an asynchronous stream of spikes from

a population of asynchronously firing ganglion cells. As shown in VanRullen and

Thorpe’s work, we observe in figure 4.5 that by the time 1% of the cells fire

their first spikes, the main subject of the input image is recognisable from the

reconstruction. A qualitative evaluation of the reconstructed images show that by

the time 10% of the total population of ganglion cells have fired their first spikes,

the corresponding reconstructed images appear to contain all the perceptually

important information present in the original.

Reconstruction with a Look-Up-Table

In an earlier section, we discussed that the value of a certain coefficient Cs cor-

responding to a certain spatial location (k, l) represents the strength of the stim-

ulation that drove the ganglion cell at that location above threshold and caused

it to fire a spike at a certain rank ri with respect to other cells in a population.

While decoding the rank-order encoded image, each ganglion cell is assigned a

weight depending on its rank of firing. So far, we have used the coefficients of

filtering of an image as weights for the purpose of decoding and reconstruction.

Yet, the brain does not know anything about the input stimulus. All it can see is

the order of arrival of spikes, irrespective of the activation that caused a ganglion

cell to fire a spike. Thus, true rank-order decoding can be simulated if there is

a common LUT of weights, where each entry is associated with a certain rank

of a spike, irrespective of the corresponding input stimulus contrast levels. Van-

Rullen and Thorpe generated an LUT by averaging the rank-ordered coefficients

of around 3000 images [81]. If T is the total number of images in a data-set, then

a weight in the LUT associated with a spike at rank i is:

LUT (i) =
1

T

T∑
u=1

riu, (4.6)

where u represents the uth image in the data-set. In our simulation, T = 65.

The LUT weights are plotted against the corresponding rank in figure 4.6(a) as
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(a)

(b)

(c)

(d)

(e)

Figure 4.5: (a) input images. (b–e) Reconstructed images using the first (b)
1%, (c) 5%, (d) 10% and (e) 20% respectively of the rank-ordered coefficients of
filtering the image with the DoG filter-set.
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Figure 4.6: (a) A semi-log plot of a look-up-table (LUT) of weights used during
decoding the rank-order codes to weigh each neuron depending on its order of
firing a spike in a population of asynchronously firing neurons. (b) The standard
deviation of the rank-ordered coefficients of filtering for all sixty-five images about
the LUT. Each point on the LUT corresponding to a certain rank represent the
mean of the coefficients at that rank.



CHAPTER 4. VALIDATING THE RETINAL MODEL 87

0 0.01 0.1 1 10 20
10

−1

10
0

10
1

10
2

Percentage of spikes

LU
T

 fo
r 

ra
nk

−
or

de
r 

de
co

di
ng

Look−Up Table
The Fit for the Look−Up Table

Figure 4.7: A log-log plot of the LUT up to the first 20% of the coefficients.

a semi-log plot. The weights are normalised so that the largest weight has a

value of 100. A sharp drop in the magnitude of the second weight is observed,

from where the slope is almost linear until about the 20th coefficient. The slope

again falls and gradually becomes flatter until it becomes very close to 0 by the

time about 1000 ganglion cells have fired their first spikes. This corresponds

to ' 2% of the total number of cells. The implication of such a nature of the

plot is: the vital information in the rank-order encoded form of an image can be

retrieved by the time 2% of the ganglion cells in a population have fired their

first spikes. The rank-ordered coefficients of filtering of each individual image are

shown as a spread about the mean, which is the LUT. The standard deviation

of the spread about the LUT is shown in the errorbars in figure 4.6(b). The

deviation is significant for the first 10 spikes, after which it diminishes. This high

deviation of the data in the upper regions of the LUT plot conforms with the wide

variety of images used to generate the coefficients, with widely varying contrast

values at similar spatial locations.

The progressively reconstructed images using the first 1%, 5%, 10% and 20%

of the weights from the LUT are shown in figure 4.8. Indeed, the reconstruction

with the first 1% of the rank-ordered spikes does enable us to recognise the object

in a picture, while the reconstruction with the first 20% of the spikes does not

seem to hold more information than that with the first 10% of the spikes. This
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(a)

(b)

(c)

(d)

(e)

Figure 4.8: (a) input images. Reconstructed images using the first (b) 1%, (c)
5%, (d) 10% and (e) 20% respectively of the weights from the LUT.
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conforms with the behaviour of the LUT plot as shown in figure 4.7. There is a

fall in the slope of the LUT after the first 10% of the coefficients, indicating a fall

in the rate of information recovery after this point. A sharp fall of the slope after

the arrival of the first 20% of the spikes indicates that the later spikes add very

little information for the decoding and that the most important information is

carried by the first 10 – 20% of the spikes. Our validation results, thus, confirm

those of VanRullen and Thorpe [81].

Power Law fit for the LUT

The LUT plot in figure 4.7 is fitted with an equation of the form

f(r) = Zr−γ,

where γ = lna, f is some function of r, and Z and a are constants with values of

100 and 0.63 respectively. Here, f represents the LUT weights and r represents

the rank of the spikes. This is similar to the power law equation given by [16]:

p(x) = Cx−α,

where p(x) is the probability of measuring x, and α and C are constants. A

quantity is said to follow a power law when the probability of measuring the

quantity varies inversely as a power of that value. As observed in figure 4.7,

the LUT follows a power law for the first 10% of the coefficients, after which

it deviates. In our application, that would mean that for the first 10% of the

coefficients, the importance of the information from the first few spikes varies

as the power of the rank of the coefficients.

Power laws are characterised by a property of scale invariance, whereby a

distribution looks the same regardless of the scale that is considered. In later

chapters, we show that the distribution of the LUT is scale invariant and does

not change with change in image size.

4.2 Chapter summary

In this chapter, we validated VanRullen and Thorpe’s retinal model, and showed

that we derived similar empirical results from our simulation. We also showed

that the LUT approximately follows a power law fit up to the first 10% of the



CHAPTER 4. VALIDATING THE RETINAL MODEL 90

coefficients. On visual inspection of the quality of the reconstructed image, we

observe that with the first 1–2% of the ganglion cells firing their first spikes, the

information is retrievable up to the point where the input picture is recognisable.

By the time the first 10–20% of the cells fire their first spikes, most of the visible

information seems to be recovered. However, a quantification of the information

content in the reconstructed image with respect to the original is desirable for

precise evaluation of rank-order codes in terms of how much information is recov-

ered and the time to such recovery. Further, a quantitative measure which takes

into account the contrast sensitivity of the eye is desirable. This is because, after

all, the rank-order codes are proposed as a means of information transmission by

the eyes. So, measuring the visually-important information content in the recon-

struction, rather than a direct comparison of the pixel values of the respective

images, makes sense.

In the next chapter, we introduce an objective measure, which was originally

proposed and used by Petrovic and Xydeas in measuring perceptually-important

information content in fused images with respect to the original. We adapt the

algorithm to measure the perceptually-important information in a rank-order

decoded image with respect to the original.



Chapter 5

Quantitative Evaluation

of Rank-order Codes

In the previous chapter, we validated and presented an empirical analysis of

the retinal model of VanRullen and Thorpe which they designed for testing the

performance of rank-order codes in the rapid encoding of information about a

visual stimulus. From our empirical results, we observe that, indeed, by the time

only 1% of the ganglion cells in the population have fired their first spikes, objects

in the reconstructed image are recognisable. This is by visual inspection and gives

a qualitative estimate of the performance of rank-order codes in early encoding

of a visual stimulus. At this point we propose to quantitatively evaluate the

performance of the codes in terms of perceptually-important information recovered

from the rank-order codes as well as time to such recovery [66]. We turn to Digital

Image Processing techniques existing in literature to obtain a suitable method for

applying to our work.

Image quality measurements are vital for monitoring information loss during

image processing and benchmarking various image processing algorithms. Sub-

jective evaluations has been a common way of evaluating the quality of recon-

structed images, but such methods are expensive and time consuming [77, 93, 87].

Further, there is no consistency in the data available, as subjective judgements

may vary depending on the ambient light conditions for example, or many other

trivia [78, 87]. Such conditions necessitate quantitative measures, referred to

as objective measures in literature, to evaluate image quality degradations post-

processing [86, 56, 93]. Most of the algorithms proposed initially were compu-

tationally simple, the most widely used among these metrics being the Mean

91
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Squared Error and Signal to Noise Ratio [49, 48, 86, 87]. However, on subjective

evaluation of images evaluated objectively with Mean Squared Error (MSE) for

example, they were found to be significantly different in terms of perception by

the human eye [12, 87]. Thus, the objective measures were found to be lacking in

consistency in correlating with subjective quality measures [48]. This prompted

research on objective measures based on the Human Visual System (HVS) char-

acteristics [7, 8]. Daly proposed the Visible Difference Predictor (VDP) algorithm

using a simplified model of the HVS to determine the probability of an observer

noticing the difference between two images [12]. However, such measures of image

fidelity by error estimation has been criticised in favour of structural distortion

measurement, which is described as a good approximation to the image distor-

tion perceived by the human eye [87]. On such basis, the Universal Quality Index

(UQI) as an image quality assessment method was proposed, which was later

extended to propose the Structural SIMilarity Measurement (SSIM) [86, 87, 88].

Studies show that UQI perform better than error estimates such as MSE, PSNR

and even VDP, while the SSIM performs better than UQI [86, 88, 10]. These

algorithms were evaluated against the mean opinion score (MOS) (subjective

quality measurement), and yet, the algorithms themselves were not validated

or optimised with subjective trials. We found that an algorithm proposed by

Petrovic and Xydeas used extensive subjective trials for validating and optimis-

ing an objective metric that they proposed to estimate the perceptual informa-

tion preserved (PIP) in a fused image with respect to the original images that

were fused [93, 59, 57]. Also, this algorithm falls under the category of ‘struc-

tural distortion measurement’ rather than ‘error estimation’ [87]. Although UQI,

VDP, Mutual Information (MI), and other algorithms were proposed for image

quality assesment in image fusion, none of the algorithms were subjectively val-

idated [78, 24, 60, 56]. Further, while image quality assesment of fused images

using VDP and UQI were better than that using MI, those using PIP are better

than all the others mentioned above, except a combined model using the VDP

and PIP in cascade (vdPIPp), which again might be computationally inefficient,

given considerable computation requirements in each constituent method [58].

Quantitative evaluations using MI and MSE have already been shown to pro-

vide positive results in favour of rank-order codes with respect to rate-codes [81].

Yet, in terms of visual perception, the absolute difference in the grey level values

in each and every pixel of a reconstructed and input image is not important.
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This is because the contrast sensitivity of the human eye has upper and lower

thresholds and is a non-linear function of such absolute differences in grey levels.

Besides, there are many discrepancies in ‘error estimate’ algorithms as noted ear-

lier. Rather, an objective metric quantifying perceptually-important structures

retained in a reconstructed image with respect to the input image would be a

more appropriate evaluation of rank-order codes. Since subjective evaluations

are expensive, we would prefer a meaure that has been extensively validated

and/or parameterised and/or optimised with subjective trials.

The raw primal sketch is considered by Marr to be a rich description of an

image since it contains virtually all the perceptually-important parts in the im-

age [50]. The primitives of such a sketch are edges, bars, blobs and terminations,

each of which have attributes of orientation, contrast, length, width and position.

The exact estimation and comparison of such parameters are beyond the scope of

this work. For our current purpose of evaluating the performance of rank-order

codes, a comparison of the ‘edge’ primitive and its attributes of contrast, orien-

tation and location would be a very good place to start comparing the perceptual

similarity between two images.

Petrovic and Xydeas used a Perceptual Information Preservation algorithm

to quantify the success of ‘information fusion’, which is measured in terms of ac-

curacy in ‘transfer of local gradient information’ to the fused image from two or

more input images that are to be fused [59]. Further, as has been mentioned ear-

lier, Petrovic and Xydeas validated and optimised their objective metric against

extensive subjective tests [57]. In their work, the goal of ‘image fusion’ is stated to

be “faithful representation of the most important input information in the fused

image”. This is very similar to the goal of several neural hypotheses — a code

which can faithfully represent the perceptually-important information about the

outside world. Indeed, it is with such a motive that we have come this far in our

work, where we ask — What percentage of the perceptually-important information

in an image is contained in its rank-order encoded form? A solution is to suitably

adapt the Perceptual Information Preservation (PIP) Algorithm put forward by

Petrovic and Xydeas. How we do so, the results thereof and their implications,

are the topics of discussion in the rest of this chapter.
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5.1 Perceptual information preservation

An edge in an image corresponds to a discontinuity in its intensity surface. It

can be approximated by a piecewise linear curve composed of short, linear edge

elements, known as edgels. Each edgel can be considered as a vector character-

ized by strength, orientation and a spatial location. As stated earlier, the human

visual system (HVS ) perceives an image by extracting information contained in

the variations in grey levels, which are maximum near the edges, rather than

absolute grey level values. Applied to image fusion evaluation, this means that

an ideally fused image would contain all the perceptually-important edge infor-

mation present in the input images [59]. Applied to our work, an ideally decoded

(i.e. reconstructed) image would contain all the perceptually-important edge in-

formation contained in the input image. Again, a fusion algorithm that correctly

fuses the most important edges performs better than one that only preserves the

less significant ones. Similarly, rank-order codes would be considered to be per-

forming well if the most important edge information in an input image is retained

while encoding, which could be termed as a ‘perceptually lossless ’ encoding of an

image. Furthermore, a quantitative evaluation of image fusion would therefore

measure (a) how well the fused edges represent those in the inputs and (b) how

important are those edges in terms of perception by the HVS. Similar measures

would apply for quantitative evaluation of the performance of rank-order codes

— how well do the edges in the reconstructed image represent those of the input,

and how important are those edges in visual perception?

The PIP algorithm as adapted in our work is shown in figure 5.1 and discussed

in the following sections. The empirical results of applying the algorithm to

reconstructed images are also shown. The algorithm gives an objective measure of

the performance of rank-order codes in achieving a ‘perceptually lossless’ encoding

of an image.

5.1.1 Normalising images

We apply the algorithm to an input image I0 as shown in figure 5.2(a) and its

reconstruction R0. Reconstruction with 20% of the coefficients is shown in fig-

ure 5.2(c). It is observed that there is a wide deviation in the pixel contrast

values in I0 and R0, which is very apparent from their respective histograms in

figures 5.2(e) and 5.2(f) respectively. Empirical results show that the maximum



CHAPTER 5. MEASURING INFORMATION RECOVERY 95

Normalise to mean 0.5
         and
standard deviation 0.16

Horizontal
Sobel Operator

Vertical
Sobel Operator

Input Image
       (I)

   Reconstructed
    Image (R)

Importance weighted with
respect to the Edge Strength
matrix of the input image

Edge Orientation 
of Input

Edge Strength
of Input

Edge Orientation
of Reconstructed

    Edge Strength
 of Reconstructed

 Difference

Q Q

Q = sqrt(Q     X Q     )

Q

Horizontal Edge
Component of
  Input 

Horizontal Edge 
Component of
Reconstructed 

Vertical Edge 
Component of
Input  

Vertical Edge 
Component of
Reconstructed  

 arctan(                 )+  arctan(                    )

    Ratio

   Human Visual System 
        Non-Linearity

xEI ER x yEI ER y

EI x ER xEI y ER y+EI yEI x ER x ER y/ / 

EIstr ER str ER dirEI dir

str dir

str dir

dirstr

value

Figure 5.1: Flowchart of Petrovic and Xydeas’s perceptual information preser-
vation algorithm, as adapted in the current work for quantitative evaluation of
information recovery from rank-order encoded images.
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Figure 5.2: (a) An input image I0 and its maximum and minimum pixel values.
(c) Reconstruction of I0 using 20% of the coefficients of filtering, and the max-
imum and minimum pixel value in the reconstructed image R0. Histogram (e)
Ihist
0 of I0 and (f) Rhist

0 of R0, indicating the wide deviation of the pixel values
in the two images, and thus a wide variation in the image contrast. I0 and R0

are normalised to a mean of 0.5 and a standard deviation of 0.16 to get (b) I
and (d) R respectively. Their respective maximum and minimum pixel values are
also shown. Histogram (g) Ihist of I and (h) Rhist of R indicates the decrease
in deviation of the overall pixel values as a result of normalisation, and thus a
decreased image contrast.
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Figure 5.3: (a) Horizontal and (b) vertical Sobel operator templates used for
detecting the horizontal and vertical components of the edges in an image.

contrast value of a pixel in I0 is 1, while the minimum is 0.05. Similar measures

for the reconstruction R0 are 2.25 and −0.81 respectively. This wide deviation

is prone to produce below optimal results in fidelity measures based on the mag-

nitude of each pixel at corresponding locations of interest in two images. The

distortion may be attributed to the process of encoding and decoding the original

pixel values in I0.

To correct the anomaly, we normalise both I0 and R0 to a common mean of

0.5 and standard deviation of 0.16, to get I and R, as shown in figures 5.2(b) and

5.2(d) respectively. The corresponding histograms of the normalised images are

also shown in figure 5.2(g) and figure 5.2(h). The maximum and minimum pixel

values of I are 0.75 and 0.19 respectively while the corresponding values in R are

0.89 and 0.12. We observe that the deviation of the pixel values in the input and

the reconstructed images are lessened after normalisation.

5.1.2 Edge detection and comparison

Two normalised images I and R are passed through a Sobel operator, which is

a first order differentiator, to obtain the horizontal and vertical components of

each edgel in both images. The Sobel operator constitutes two components:

Horizontal operator, shown as a 3× 3 template in figure 5.3(a). Filtering an

image with the horizontal template detects the horizontal components EIx

and ERx of each edgel in the images I and R respectively.

Vertical operator, shown in figure 5.3(b), which detects the vertical component

of each edgel, viz. EIy and ERy in I and R respectively.

From these two components, as shown in figure 5.1, the strength of an edgel at a

spatial location (k, l) for each of the images I and R can be calculated as

EIstr(k, l) = |EIx(k, l)|+ |EIy(k, l)|
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and

ERstr(k, l) = |ERx(k, l)|+ |ERy(k, l)|,

while the direction of each edgel is obtained as

EIdir(k, l) = arctan

(
EIx(k, l)

EIy(k, l)

)
.

and

ERdir(k, l) = arctan

(
ERx(k, l)

ERy(k, l)

)
.

The strength of an edgel in an image is the contrast at the pixel position

corresponding to the edgel. However, it is the relative difference in contrast values

of neighbouring pixels, expressed as ratio of the contrast values and known as the

contrast ratio, that is more important in visual perception than the absolute

difference. The relative difference between the contrast values at (k, l) of I and

R can be expressed as the contrast ratio ∆str(k, l), where

∆str(k, l) =
min(EIstr(k, l), ERstr(k, l)

max(EIstr(k, l), ERstr(k, l)
,

where EI and ER correspond to the edgel parameters of the input and the recon-

structed images respectively. Similarly if ∆dir(k, l) is the difference in orientation

at (k, l), then

∆dir(k, l) =
||EIdir(k, l)− ERdir(k, l)| − π

2
|

π
2

.

Both ∆str and ∆dir are normalised to lie in the range 0 to 1. These are linear

parameters, and are modulated to represent the contrast sensitivity of the HVS.

In the following section, we discuss the HVS non-linearity and how the linear

functions ∆str and ∆dir are transformed into non-linear functions to conform

with the contrast sensitivity of the HVS.

5.1.3 Human Visual System non-linearity

In this section, we discuss briefly the terms contrast sensitivity and detection

threshold of the human eye. We then continue with Petrovic’s PIP algorithm

from where we left off in section 5.1.2. We describe and validate the psychometric

function used by Petrovic and Xydeas, based on subjective tests, to simulate the

non-linearity of the HVS.
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Figure 5.4: Contrast sensitivity from subjective tests shown as a scatter, which
is fitted with a plot that follows the characteristics of a bandpass filter [20].

Contrast sensitivity and detection threshold

The Contrast sensitivity of the human eye is defined as the reciprocal of the

minimum contrast required for detection [20]. It is mathematically defined as the

reciprocal of the modulation threshold, also known as the detection thresh-

old, of the eye for sinusoidal gratings. The modulation threshold of a sinusoidal

grating is the minimum modulation depth required for detection of the pattern

by the human eye (appendix A). Subjective tests show that the characteristic

contrast sensitivity function of the eye resembles a bandpass function as shown

in figure 5.4. It is usually expressed as a function of the spatial frequency of a

sinusoidal grating and is seen from figure 5.4 to be most sensitive to frequency

changes at 10 cycles per degree. The shape of the curve implies that the more

sensitive the eye is to a certain frequency, the lower the detection threshold at

which it can detect changes. In other words, certain spatial frequencies can be

better detected by the eye than others, and at those frequencies, the eye has a

high sensitivity and can detect contrast with a very low modulation threshold.

But for spatial frequencies that fall at the edge of the sensitivity range of the eye,

the detection threshold is much larger, and the eye can detect changes only with

a large variation in the contrast.
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Figure 5.5: The Human Visual System non-linearity shown as psychometric func-
tions, plotted with parameters decided by results of subjective trials [59]. The
steeper fall in the curve for orientation show a greater sensitivity of the eye to
changes in orientation of the edges in an image than to changes in the contrast
of individual pixels.

Applying HVS non-linearity

When comparing two images, the detection of the difference in edge luminosity

and orientation at a certain position by the human eye depends on the detec-

tion threshold of the eye. The detection threshold is different for contrast and

orientation, and is defined as the point at which the probability of detection of

the difference by the human eye is 50%. With reference to this algorithm, this

threshold is the point at which the edge strength or orientation has perceptually

degraded to 50% of its original quality. The nonlinear behavior of the eye is

defined as a psychometric function

f(x) =
K

1 + exp−s(x−d)
, (5.1)

where d is the detection threshold such that f(x) = 0.5 at x = d, s is the steepness

parameter, and K is a constant so that f(x) = 1 at x = 1. Petrovic and Xydeas

use results of subjective trials to set the value of the parameters [d, s] to [0.7, 11]



CHAPTER 5. MEASURING INFORMATION RECOVERY 101

and [0.8, 24] for the contrast ratio and the orientation respectively [59]. Putting

x = ∆str and [d1, s1] = [0.7, 11] in equation 5.1,

Qstr =
K1

1 + exp−s1(∆str−d1)
, (5.2)

and putting x = ∆dir and [d2, s2] = [0.8, 24],

Qdir =
K2

1 + exp−s2(∆dir−d2)
. (5.3)

The plots of Qstr and Qdir are shown in figure 5.5.

5.1.4 Objective measure of information recovered

Modulating ∆str and ∆dir using equation 5.1 adapts the linear parameters to the

nonlinearity in the HVS. The matrices Qstr and orientation Qdir in equations 5.2

and 5.3 respectively contain the modulated value of corresponding pixel locations

in the matrices ∆str and ∆dir and reflect the perceptual information of each edgel

in terms of its contrast and orientation (figure 5.5). The geometric mean of

these two component matrices produces the matrix Q, which is a measure of the

preservation or degradation of the perceptually-important edges that are present

in the reconstructed image with respect to the input.

Q =
√

Qstr ×Qdir.

Q is then importance weighted with the edge-strength matrix of the input picture

EIstr. This is expressed as a normalised sum to give a single objective measure

for the information recovered during stimulus reconstruction when decoding rank-

order codes.

Qvalue =

∑
(EIstr ×Q)∑

EIstr

,

such that 0 ≤ Qvalue ≤ 1; Qvalue = 1 when the same two images are being

compared, while Qvalue = 0 when an image is being compared with a matrix with

the elements initiated to 0.

The flowchart in figure 5.1 is applied for comparison of an input image and

its reconstruction using 1% of the coefficients of filtering and is shown as another

flowchart in figure 5.6. The results of applying the algorithm to progressively

reconstructed images using 5%, 10% and 20% of the coefficients of filtering are
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Input Image Reconstruction - 1%

EI ER ER 

 EI 

EI 

 EI  ER  ER 

  Q    Q 

 Q EI 

 Q 

x x yy

 str� str�  dir dir

str�

 str�

str�

  dir

  dir

value = 0.18

Figure 5.6: Implementing perceptual information preservation algorithm to esti-
mate the perceptually important information content in an image reconstructed
using first 1% of the true coefficients of filtering as compared to the input image.
The final objective measure is obtained as Qvalue.
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Reconstruction ERx ERy ERstr ERdir

(a) 5%

(b) 10%

(c) 20%

Figure 5.7: Reconstructed image using (a) 5% (b) 10% (c) 20% of the coefficients
of filtering. The results of using the Sobel operator to get the horizontal and
vertical edge components are shown as ERx and ERy respectively, whereby the
magnitude and orientation of the edges are obtained and are shown as ERstr and
ERdir respectively. The matrices obtained from subsequent steps through the
algorithm and finally the Qvalue for each of the reconstructed images in (a)–(c)
are shown in figure 5.8.



CHAPTER 5. MEASURING INFORMATION RECOVERY 104

∆str ∆dir Qstr Qdir Q Qvalue

0.37

0.54

0.71

Figure 5.8: The top, middle and bottom rows correspond to the images (a), (b)
and (c) respectively in figure 5.7. Each of the rows are a continuation from the
rows of figure 5.7 as subsequent steps through the PIP algorithm. The relative
magnitude of the edges in each of the reconstructed images (as in columns ERstr

and ERdir in figure 5.7) with respect to the input ( EIstr and EIdir in figure 5.6)
are shown in column ∆str, while the difference in orientation of the same is shown
in ∆dir. These two parameters are then modulated according to the HVS non-
linearity to obtain Qstr and Qdir. The matrix Q is obtained as a geometric mean of
Qstr and Qdir, which is then importance weighted with EIstr to get the objective
metric Qvalue.
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shown in figures 5.7 and 5.8.

5.2 Information recovery

Having obtained an objective measure Qvalue for comparing two images in terms

of perceptually-important information content in section 5.1, we now proceed to

apply it to quantitatively evaluate information recovery from rank-order codes

using this measure. Empirical results of information recovery when the coeffi-

cients of filtering are used as weights in rank-order decoding are discussed in

section 5.2.1, while that of using the weights from the LUT for decoding are

discussed in section 5.2.2.

5.2.1 Information recovery with coefficients

Figure 5.9(a) shows the information recovery plot for each of the sixty-five indi-

vidual images in the data-set as a spread about the mean Qvalue at each point in

the progressive reconstruction. From the mean plot, it is observed that around

70% of the information can be recovered by the time 20% of the coefficients are

used for reconstruction. After this point the curve rises very slowly, indicating

that there is no significant contribution from the following coefficients to percep-

tual information content in the image. By the time around 30% of the coefficients

are used for reconstruction, a little more than 75% of the information is recov-

ered, and the curve looks saturated. From the above observations, it can be said

that using the respective coefficients of filtering for decoding rank-order encoded

images, 75% of the perceptually-important information contained in an input im-

age can be recovered on average, using the first 30% of rank-ordered coefficients

of filtering. Furthermore, 70% of the information is recovered by the time only

around 20% of the coefficients are used for reconstruction. Thus, up to 93% of

retrievable information is recovered with reconstruction using around 20% of the

coefficients of filtering.

Figure 5.9(b) shows the standard deviation of the spread of individual infor-

mation recovery plots about the mean information recovered. The deviation is

observed to be the most in the interval from when 5% of the coefficients are used

for reconstruction to the point where around 10% of the coefficients are used.

This indicates a significant variation in the rate of information recovery for the

various images. This is discussed more in section 5.2.2. The deviation at the
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Figure 5.9: (a) Spread of the of the respective information recovery plots, shown
as dashed cyan lines, during progressive reconstruction of each of the sixty-five
images in our data-set using coefficients of filtering. The average of the spread is
shown as a mean information recovery plot in the solid blue line. (b) Standard
deviation of the spread shown in ‘(a)’ about the mean information recovery plot
is shown as errorbars.
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tail of the plot shows that around 70 – 85% of the information can be recov-

ered on decoding a rank-order encoded image, selected from a random data-set

of monochrome images of size 128× 128.

In the next section we do a similar discussion for rank-order decoding using

LUT weights.

5.2.2 Information recovery with LUT

The information recovery plots for progressive reconstruction of each of the sixty-

five individual images in our data-set using the LUT is shown in figure 5.10(a) as

a spread about the mean information recovery plot. Firstly, it is observed that the

total amount of perceptually-important information that can be recovered from

rank-order codes is approximately 72 – 73% of that contained in the input image

and by the time only up to 30% of the LUT weights are used for reconstruction.

Secondly, a total of around 65% of the information can be retrieved by the time

around 15% of the LUT weights are used for reconstruction. Thus, more than

90% of the retrievable information from rank-order codes is recovered by the time

15% of the ganglion cells have fired their first spikes. Thirdly, there is a drop of

about 2 – 3% in the information recovered as compared to that in figure 5.9(b)

as a result of using approximate weights from the LUT for rank-order decoding.

The standard deviation of the spread about the mean information recovery

plot is shown in figure 5.10(b). Comparing with figure 5.9(b), we see an increase

in the deviation of the data about the mean. However, the behaviour of the plot

is essentially the same, with the deviation maximum between the time when 5 –

10% of the ganglion cells have fired their first spikes.

5.2.3 More empirical results

Three input images (a), (b) and (c), shown in figures 5.11, 5.12 and 5.13 respec-

tively, are rank-order encoded using VanRullen and Thorpe’s retinal model. The

rank-order encoded images are then progressively reconstructed using up to the

first 30% of their respective coefficients of filtering and are also shown in the

respective figures. The objective measure Qvalue obtained at every point of the

progressive reconstruction for each of the images is plotted in figure 5.14. This

is the perceptually-important information recovery plot, or simply, the

information recovery plot for reconstruction using up to the first 35% of the
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Figure 5.10: (a) Spread of the of the respective information recovery plots, shown
as dashed green lines, during progressive reconstruction of each of the sixty-five
images in our data-set using LUT. The average of the spread is shown as a
mean information recovery plot in the solid blue line. (b) Standard deviation of
the spread shown in ‘(a)’ about the mean information recovery plot is shown as
errorbars.
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input image reconstructed images

(a)

coefficients LUT

1%

5%
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30%

Figure 5.11: An input image (a) reconstructed from its rank-order encoded form
using 1%, 5%, 10%, 20% and 30% of the coefficients of filtering and LUT values.
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input image reconstructed images

(b)

coefficients LUT

1%
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20%

30%

Figure 5.12: An input image (b) reconstructed from its rank-order encoded form
using 1%, 5%, 10%, 20% and 30% of the coefficients of filtering and LUT values.



CHAPTER 5. MEASURING INFORMATION RECOVERY 111

input image reconstructed images

(c)

coefficients LUT

1%

5%

10%

20%

30%

Figure 5.13: An input image (c) reconstructed from its rank-order encoded form
using 1%, 5%, 10%, 20% and 30% of the coefficients of filtering and LUT values.
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image(a):LUT
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Figure 5.14: Information recovery plots for three images (a), (b) and (c) shown
in figures 5.11, 5.12 and 5.13 respectively when reconstructed using (i) their re-
spective coefficients of filtering (shown in solid lines), (ii) values from the LUT
(shown as dashed lines).

coefficients of filtering [66]. We observe that around 70 – 90% of information is

retrieved by the time 20% of the coefficients are used for reconstruction. Further,

we also observe that the rate of information recovery is faster for the image (a)

that contain fewer edges compared to the others. This is intuitively obvious as

less edge information has to be recovered from the image, and hence the curve

builds up at a faster rate.

The plots for information recovery for these images using the weights from the

LUT are also shown in figure 5.14. Comparing these plots with the reconstruction

using the respective coefficients of filtering, we observe that the information recov-

ery for individual images is more when reconstructed using coefficients of filtering

as compared with the values from LUT. On visual inspection of the three images

reconstructed using the LUT, also shown in figures 5.11 –5.13, we can make a sim-

ilar observation. We can thus comment that the objective information recovery

measure, Qvalue, gives an appropriate relative measure for information recovery

from rank-order codes. Further, according to VanRullen and Thorpe’s observa-

tion, by the time 1% of the cells fire their first spikes, we can indeed recognise

the images in figures 5.11 and 5.12, which, from figure 5.14, consists of around
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40% and 30% of the information respectively compared to the respective input

images. However, the image in figure 5.13 is not recognisable for reconstruction

with 1% of the spikes, and where the quantity of information recovered with re-

spect to the original image is 20% as seen in the plot in figure 5.14. The image

is recognisable by the time 5% of the cells have fired their first spikes and the

information recovered with respect to the original is 40%.

5.3 Chapter summary

In this chapter, we have discussed an objective measure, Qvalue, originally pro-

posed by Petrovic and Xydeas for the evaluation of the performance of an image

fusion algorithm, to evaluate the perceptually-important information that can be

recovered from rank-order encoded images, and the rate of such a recovery. We

then apply this measure to quantify the information recovered during each step

of progressive reconstruction of a rank-order encoded image. This is done using

coefficients of filtering and LUT for rank-order decoding. Continuing thus, we

obtain an information recovery plot for each incoming spike. We first observe the

steepness of the curve, indicating the rate of information recovery. We find that

90% of the information that can be recovered is retrieved by the time only 15%

of the spikes have arrived. By the time 20% of the spikes arrive, almost all the re-

trievable information is recovered. On average, approximately 70% of the original

information can be recovered from the codes. Further, we see that quantitative

measures of perceptual information recovery using the objective measure agrees

with visual inspection of the reconstructed images. Also, information recovery

for images with fewer edges is faster than those having more detailed edge infor-

mation. Although recognition with the first 1% of the spikes is generally true,

for more detailed images with multiple objects of interest like that in figure 5.13,

recognition is delayed and is obtained by the time first 5% of the spikes have been

fired. However, this is also quite early on in time and supports the rank-order

encoding hypothesis.

Thus obtaining a quantitative measure of the visually-important information

recovered from rank-order encoded images, we proceed to optimise the method of

decoding, so as to minimise the information loss suffered during decoding rank-

order codes, and thus maximise information recovery from rank-order encoded

images. In the next chapter, we discuss about how we use the Singular Value



CHAPTER 5. MEASURING INFORMATION RECOVERY 114

Decomposition of matrices to obtain the pseudo-inverse of a DoG filter-bank,

and thereby optimise the decoding method of rank-order codes.



Chapter 6

Maximising Information

Recovery

In the previous chapter we discussed an objective metric Qvalue for the perceptually-

important information that can be recovered from a rank-order encoded image.

By measuring Qvalue at each step during the progressive reconstruction of a rank-

order encoded image, we could plot the perceptually-important information recov-

ered. An observation of the plot in figure 5.9(a) shows that on average, around

70% of the perceptually-important information can be recovered by the time

around 20% of the coefficients of filtering are being used for rank-order decoding,

i.e. for image reconstruction. However, the decoding method used in VanRullen

and Thorpe’s retinal model is lossy because of the approximation of the DoG

filters as an orthogonal set of basis vectors. Ideally, a true estimation of the

performance of rank-order codes in encoding visually-important information can

be obtained if there is no information loss during decoding. In this chapter, we

use decoding methods to deal with this approximation, and thus try to minimise

information loss during decoding so that information recovery from rank-order

codes can be maximised [67].

An ideal decoding method appropriate for the retinal model would be to

take the inverse of the DoG matrices and obtain a perfect reconstruction with

the coefficients of filtering, so that Qvalue = 1. However, the DoG matrices are

singular, and their inverses can only be obtained by using the pseudo-inverse

method of matrix inversion, as discussed in section 6.1.3. We, therefore, take the

pseudo-inverse of a filter-bank, consisting of the DoG matrices, and obtain a

perfect decoding of a rank-order encoded image, i.e. a perfect reconstruction of

115
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an input image using its respective coefficients of filtering. From those coefficients,

we construct a look-up-table of weights for true rank-order decoding. We recover

information from the rank-ordered spikes using the weights from the LUT and

observe a substantial increase in perceptually-important information recovery.

The empirical data from these studies are discussed in section 6.2. In the following

section 6.1, we do a mathematical analysis of the approximation during rank-order

decoding as done in VanRullen and Thorpe’s retinal model.

6.1 Optimal rank-order decoding:

theoretical analysis

Although using more than 30% of the coefficients in decoding would defeat the

very essence of rank-order codes — rapid information recovery — yet, we observe

that the information recovery plots, shown in figure 5.9(a), tend to saturate by

the time 30% of the cells are supposed to have fired their first spikes. This

implies that for all practical purposes, there is no further information retrieval

beyond this point. Such a behaviour may be attributed to the approximation

of the set of DoG functions as orthogonal in VanRullen and Thorpe’s retinal

model, thus rendering the decoding method of rank-order codes as non-optimal.

In section 6.1.2, we do a mathematical analysis of this approximation, followed

by a discussion on optimal decoding in section 6.1.3 and subsequent sections.

6.1.1 DoG filter-bank

We refer back to equation 4.4 in chapter 4, and repeat some of the points already

discussed there, albeit with a different perspective.1 Here, we consider image Im×p

as a row vector I1×N , where N = mp. Each DoG matrix Φn×n
s is considered as

a column vector ΦN×1
s , where the number of non-zero elements will be n2. The

total number of DoGs in the retinal model is M = 8
3
N . On concatenating the M

DoG column vectors, we have a DoG filterbank FN×M :

FN×M =
(
(Φ1

s)
N×1|(Φ2

s)
N×1| · · · |(Φi

s)
N×1| · · · |(ΦM

s )N×1
)

(6.1)

1Some of the points in the following sections are repetitions of those discussed in chapter 4,
in order to provide clarity and readability to the text.
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The array of coefficients of filtering {Ci ∈ C : i = 1 . . .M} is then obtained as:

C1×M = I1×NFN×M (6.2)

This array C is then sorted in descending order to obtain the rank-ordered array

of coefficients of filtering.

6.1.2 Non-optimal decoding of rank-order codes

Once we have the rank-ordered array of coefficients, we now want to decode the

rank-order code to recreate I, knowing C and F . We start with equation 6.2,

which represents a set of M equations (matrix F) in N unknowns (the elements

in the array I1×N) , and thus represents an overdetermined system. The solution

to I from such a set of equations, when F and C are provided, can be obtained

thus:

I = C (F )−1 (6.3)

However, obtaining an inverse of the matrix F is a non-trivial problem because:

1. F is a rectangular matrix.

2. the DoG matrices are singular, such that their determinants |Φi
s| = 0.

Therefore, the filter-bank F is a rectangular, near singular matrix.

To deal with such a situation, VanRullen and Thorpe made an approximation

while decoding rank-order encoded images, when they assumed the DoG filters

to be an approximately orthogonal set of basis functions. This is explained in the

following section.

DoG as approximately orthogonal function

The overlap of the DoG functions during filtering the image while rank-order

encoding can be expressed by the inner product of the DoG functions in any kth

and lth column of the filter-bank F in equation 6.1:

〈(Φk
s1

)N×1, (Φl
s2

)N×1〉 = ε, (6.4)

where s1 and s2 may be same or different scales and ε¿ 1. Thus, for all practical

purposes, it is assumed that ε ' 0 so that the filter-bank F in equation 6.1 is an
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approximately orthogonal matrix. Therefore, its transpose is approximately its

own inverse:

(F )−1 ' F T (6.5)

Therefore from equations 6.5 and 6.3, we have

I ' CF T (6.6)

Error due to approximation

Equation 6.6 gives a trivial solution for a non-trivial problem, and provides for

significant information recovery from the rank-order codes, as discussed earlier.

However, the error due to the approximation discussed above leads to non-optimal

information recovery, and we rewrite equation 6.6 as:

Î = CF T , where Î 6= I.

The error of approximation is:

E = Î − I (6.7)

Due to this error, the images in figures 5.11 – 5.13 appear blurred, which agrees

with an objective metric Qvalue < 1 as obtained in the plots in figure 5.14, imply-

ing imperfect reconstruction. The optimal decoding of the rank-order codes can

be achieved by making E = 0 or E → 0. For this, we have to obtain a perfect or

near perfect solution for (F )−1 in equation 6.3.

In the next section, we discuss how to deal with this approximation using

Singular Value Decomposition (SVD) and the Moore-Penrose method of

computing the Pseudo-inverse of matrices. We start by giving a brief descrip-

tion of these two techniques followed by a theoretical as well as empirical analysis

of how we have used the algorithms for our goal of obtaining an optimal decoding

of the rank-order codes.

6.1.3 Optimal decoding using pseudo-inverse

The pseudo-inverse of a rectangular matrix or a square singular matrix is

defined as:

F+ = (F T F )−1F T (6.8)
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Let Ĉ be a set of values which replace C in equation 6.3, so that in equa-

tion 6.7, the error E = 0 and

I = ĈF T (6.9)

⇒ IF = ĈF T F

⇒ C = ĈF T F [ from equation 6.2]

⇒ Ĉ = C(F T F )−1 (6.10)

Putting this value of Ĉ in equation 6.9,

I = C(F T F )−1F T

= CF+ (6.11)

[from equation 6.8]

6.1.4 Dealing with ill-conditioned matrices

However, in practical applications, there are often situations where we do not have

ideal input conditions. Under such circumstances, the stability of the solution to

a problem often depends on the sensitivity or condition of the matrix. A matrix

is said to be well conditioned if small perturbations in the input data cause

reasonably proportional changes in the solution. Mathematically, the condition

number of a problem f with an input x is defined as [69]:

Cond(f) =
|relative change in solution|
|relative change in input data| =

∣∣∣ [f(x̂)−f(x)]
f(x)

∣∣∣
∣∣∣ (x̂−x)

x

∣∣∣
, (6.12)

where x̂ is a close approximation to the input x, resembling non-ideal input

conditions. The problem f is said to be well conditioned if the condition number

Cond(f) is close to unity. On the other hand, if the relative changes in the solution

to equation 6.12 is much larger than that of the deviation of the input from ideal,

the condition number Cond(f)À 1, and f is said to be ill-conditioned.

In the case of matrices, the farther the condition number of a matrix is from

unity, the nearer it is to singularity. Singular matrices have a condition number

equal to infinity. For reasons discussed in section 6.1.6, we focus on the condition

number of diagonal matrices, which is defined as [69]:
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For any diagonal matrix D = diag(di),

cond(D) =
max|di|
min|di| (6.13)

To deal with ill-conditioned matrices corresponding to ill-conditioned linear

systems, a robust and powerful technique of Singular Value Decomposition

(SVD) exists. SVD is used for dealing with rectangular, singular or numeri-

cally close to singular matrices, and provides the least squares solution for

a system of equations which has an infinite number of solutions or no solutions at

all. In the following sections is a definition of SVD (as extracted from [26]), and

a discussion of its application in this work in order to find the solution to I in

equation 6.11. This is followed by a discussion of computing the pseudo-inverse

of F in equation 6.11 using SVD.

6.1.5 Singular Value Decomposition (SVD)

Defining SVD

Any matrix AM×N , where M ≥ N , M being the number of rows and N the

number of columns, can be written as the product of an M×N column orthogonal

matrix U , an N ×N diagonal matrix W with positive or zero elements, and the

transpose of an N ×N orthogonal matrix V as shown below [26]:

AM×N = UM×N ·WN×N · (V T )N×N (6.14)

and

WN×N =




w1

w2

. . .
. . .

wN




The diagonal elements of the matrix W are known as the singular values and

this decomposition of the matrix A is known as the Singular Value Decomposi-

tion. The matrices U and V are orthogonal matrices, while their columns are

orthonormal.

For the case where M < N in the above matrix A, the decomposition in
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equation 6.14 holds with the condition that

wj = 0 ∀j = (M + 1) · · ·N.

The corresponding columns of U are also zero, while the condition of orthogonality

of the columns hold for all the rows up to the M th row.

Relevance of SVD to rank-order codec

While decoding the rank-order codes, we do a progressive reconstruction of image

I in equation 6.11, making the set of equations pass through all the three possible

phases, whereby, at first, M < N , and the number of equations (M) is less than

the number of variables (N). This is a case of an undetermined set of equations

with (N − M) different solutions, thus giving rise to an uncertainty. In such

cases, SVD gives a solution that is ‘almost unique’ for similar permutations of

the columns U , elements of W and columns of V [26].

The number of equations continues to increase with progressive reconstruction

using each incoming spike, while the number of variables, N , remains constant.

For the case when M = N , the set of equations should have a unique solution.

However, if the matrix F in equation 6.11 is ill-conditioned, there may be devia-

tions in the solution, which may be further magnified with inexact input values

in the matrix C. SVD deals with such ill-conditioning in the matrix F by giving

a least squares solution to the array I.
As the number of equations exceed the number of variables, M > N . This

is the case where we have more equations than unknowns and is known as the

overdetermined set of equations. Ideally, there might be linear dependencies

among the set of equations, and then, any N of the total M equations may give an

exact solution. However, in most real applications, there is no linear dependency

and the set of equations are inconsistent, having no definite solution. Further,

with a non-ideal input matrix C in equation 6.11, SVD ensures a least square

solution to I.
SVD makes the inversion of a rectangular non-singular matrix straightforward

and yields the pseudo-inverse of the matrix. For singular or near singular matri-

ces, the pseudo-inverse gives the least squares solution to a set of equations as

discussed in the following sections.
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6.1.6 Pseudo-inverse using SVD

Definition

If A is an M ×N matrix, then there exists an N ×M matrix A+ , known as the

pseudo-inverse of A , which is derived by applying an inverse operation on the

SVD of A. Therefore, from equation (6.14) we have

A+ = (U ·W · V T )−1

= (V T )−1 · diag(1/wj) · U−1

= V · diag(1/wj) · UT (6.15)

[since U and V are orthogonal]

Relevance to rank-order codec

Under conditions of non-singularity of the matrix A, the solution in equation 6.15

is trivial, as the matrices U and V are orthogonal, their inverses are their own

transpose, and the matrix W is diagonal so that its inverse is the matrix itself

with its diagonal elements reciprocated.

However, if A is ill-conditioned (as is F in our case, discussed in section 6.2),

the situation becomes non-trivial. As defined in equation 6.13, the condition

number of the matrix W in equation 6.15 is the ratio of the maximum to the

minimum singular value in the diagonal matrix W . Thus, if the minimum singular

value wmin ' 0 the condition number of the matrix will be infinity. Similarly, if

wmin < γ, where γ is the machine’s floating point precision, then this will give

rise to round-off error problems. In both these cases, the condition number will

be near infinity [26]. Both these cases will lead to erroneous solutions. In the

case where AM×N is an ill-conditioned matrix, if M = N , some of the elements

of the matrix W are zero, or near zero, so that their condition numbers tend to

infinity. Further, for the case when M < N , many of the singular numbers will

be zero. Under such conditions, the set of equations are inconsistent and give

rise to multiple solutions. In such cases, SVD is used to find the solution by

applying the rule in equation 6.16: When a singular value wj is zero, its inverse,

which is ∞, is replaced by zero. Further, if wj is so small that it approaches the

machine’s floating point precision, it is replaced by zero, and is then treated as
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in equation 6.16.

if wj = 0,

or if wj < γ,

where γ is the machine’s floating point precision (say),

then
1

wj

= 0. (6.16)

By doing this, SVD finds the closest solution from the multiple solutions for the

set of inconsistent equations and, thus, provides the least squares solution to the

problem. However, there is no fixed rule as to ‘how small’ a singular value has

to be before it can be replaced by zero. In real applications, some discretion

is exercised in deciding at what threshold to zero the small wj’s, depending on

the acceptable deviations in the solution given by the residual. Thus, SVD can-

not be applied blindly, and we will discuss the implications of doing so in our

empirical analysis in section 6.2. Subsequently, in the same section, we discuss

about how we set a threshold parameter that is suitable to our problem, and

the results obtained thereby. The general procedure that we follow while finding

the pseudo-inverse of the matrix F during progressive image reconstruction is

described below.

Procedure

For a matrix AM×N

1. if M ≥ N :

Apply SVD to obtain

A = UWV T (6.17)

else

Apply SVD to AT to obtain AT = UWV T ,

so that

A = V WUT (6.18)

2. Set a threshold parameter Γ for wmin so that the condition number nc is

close to unity:
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nc =
wmax

Γ
' 1, (6.19)

where Γ is a constant and is applied using discretion to manipulate the least

square error within acceptable limits.

3. Define

zj =

{
1/wj if wj > Γ

0 otherwise
(6.20)

4.

A+ =

{
V ZUT if M ≥ N

UZV T otherwise,
(6.21)

where Z = diag(zj).

In the next section, we use the principle of matrix pseudo-inversion using SVD

as described in steps 1 – 4 to solve equation 6.11.

6.2 Optimal rank-order decoding:

empirical analysis

In this section, we describe how we use the pseudo-inverse of a DoG filter-bank

to get Qvalue = 1, i.e. a perfect stimulus reconstruction with the coefficients of

filtering. As expected, the Qvalue for the decoded stimulus using the approximate

coefficient values from the LUT also increases for every image compared to the

earlier method of reconstruction. In our analysis, we used images of size 32× 32

due to computational constraints, which will be discussed more later. Therefore,

in our empirical analysis, N = 1024, while M = 1365(rounded). The total num-

ber of ganglion cells will be 2M = 2730, since M represents only the positive

coefficients, and hence those cells which fired in the whole population of ganglion

cells.

6.2.1 Reconstruction using exact data

We return to where we left off in equation 6.11, and calculate the least squares

estimate of I, viz. Î, by taking the pseudo-inverse of F , which represents the set
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of linear equations in our system, using SVD as in equations 6.17 – 6.21. The

set of coefficients of filtering for each image, C, represents the exact input to

obtain a solution to the set of equations represented by F . Initially, to observe

the system response, we do not throw away any singular values, i.e. we set Γ = 0

in equation 6.19, and therefore we obey equation 6.16 only for singular values

which are zero. We now order the coefficients in C according to their rank and

perform a progressive reconstruction of I as described below:

The elements in C are arranged in descending order of their magnitudes,

to represent a progressively decreasing activation level and hence progressively

increasing latency of firing. The columns of F are permuted so as to exactly

match the columnwise location of Φs(k, l) to that of the coefficient Cs(k, l) in the

rank-ordered array C. Let G be a matrix having the same number of columns as

the number of rows in F , and whose rows grow progressively. G is initialised as:

Grow1 = Fcol1, where Fcol1 is the first column of F . We want a solution to GI = C,

which corresponds to an underdetermined set of equations with M < N . First,

we apply equations 6.18 – 6.21 (with Γ = 0 in equation 6.19) to get Î(1) = G+C.

This will correspond to the image reconstruction when only the most stimulated

cell has fired one spike. Using Petrovic’s method, a quantitative measure Qvalue(1)

of the information content in Î(1) with respect to I is obtained. Next, we assign

Grow2 = Fcol2. Now G has two non-zero rows, and Î(2) = G+C, whence we

obtain Qvalue(2). On proceeding further, the number of rows in G exceeds N ,

i.e. now M > N , and the pseudo-inverse is calculated using equation 6.17 and

equations 6.19 – 6.21 (with Γ = 0 in equation 6.19). We observe that for a

certain number of coefficients κ, where κ is some fraction of M , there is a perfect

reconstruction of the input image indicated by Qvalue(κ) = 1. The magnitude of

κ depends on the image characteristics. We discuss the empirical results of such

a reconstruction in the following section.

Results

The plot for progressive recovery of perceptually-important information by this

method is shown in figure 6.1(d) for the three images shown in figure 6.1 (a)

– (c). Firstly, we observe that we obtain a perfect information recovery using

the method of pseudo-inverses to decode the rank-order codes. The full infor-

mation recovery occurs when around 30 – 35% of the coefficients are used for
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Figure 6.1: (a)–(c) Three input images. (d) Progressive recovery of perceptual
information for the three images when reconstructed with their respective coeffi-
cients of filtering using the pseudo-inverse method of rank-order decoding, shown
in solid line, and VanRullen and Thorpe’s method of decoding, shown in dashed
lines.
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reconstruction. The variation in the number of coefficients required for full infor-

mation recovery may be attributed to image characteristics, where images with

fewer edges are recovered faster (for example the image in figure 6.1 (b)). In-

formation recovery plots using VanRullen and Thorpe’s method of decoding the

same three images in figure 6.1 (a) – (c) are also shown in figure 6.1(d) for com-

parison of the performance of the two methods of decoding. We observe that,

secondly, using VanRullen and Thorpe’s method of decoding, information recov-

ery is around 15 – 20% lesser at the time of full information recovery using the

method of pseudo-inversion for decoding. Thirdly, the initial rises of the plots

in figure 6.1(d) imply that the rate of information recovery is much faster for all

the three images when decoded using the pseudo-inverse method as compared to

VanRullen and Thorpe’s method.

A full information recovery using the coefficients of filtering indicates that

the loss in information recovery during decoding (please refer to figure 1.1) is

completely removed by using the pseudo-inverse method. We now apply this

method in rank-order decoding where the value of the coefficients are lost and

the input image is reconstructed using an LUT for assigning weights to each

incoming spike in decreasing sensitivity. This is discussed in the next section.

6.2.2 Reconstruction using approximate data

Constructing a LUT

We now move on to the true rank-order decoding of the visual stimulus, where

we have lost the coefficients of filtering and prepare a look-up-table (LUT) of

coefficients in a similar manner to that described in section 4.1.4. The LUT for

this system of decoding is shown in figure 6.2. Our observation from the LUT

is that the characteristics of the distribution is unchanged from that shown in

figures 4.6(a) and 4.7, and which were generated using images of size 128 ×
128. Thus, the LUT distribution is scale-invariant for any given set of images,

which is a characteristic for a distribution following the power law (discussed in

section 4.1.4).

Results

We use the values from the LUT to do a progressive reconstruction as mentioned

in section 6.2.1, by progressively adding rows to G and doing Î(t) = G+LUT (t).
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Figure 6.2: A look-up-table of weights when rank-order decoding is being done
using the pseudo-inverse of the filter-bank of DoG matrices.
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Figure 6.3: Progressive recovery of perceptually-important information for the
three images, shown in figure 6.1 (a) – (c), when reconstructed with the LUT and
using the pseudo-inverse method of rank-order decoding, shown in dashed lines,
compared to the information recovery using the same method of decoding with
the respective coefficients of filtering of the images, shown in solid lines.
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The progressive recovery plot for three images is shown in figure 6.3 with a com-

parison of the plot using the coefficients of filtering for the respective images.

The poor recovery using the LUT may be attributed to the ill-condition of G.

From the plot characteristics and referring to the discussion in section 6.1.6, we

observe that the solution to Î is far from the exact or least squares solution, the

exact solution at a certain rank being indicated by the corresponding point in

the recovery plot using the coefficients of filtering in figure 6.3. This is the result

of applying SVD blindly in solving G by setting the parameter Γ = 0 in equa-

tion 6.19. In the following section, we apply some discretion in deciding the value

for the threshold parameter Γ so that it follows the condition set in equation 6.19.

Deciding on threshold parameter Γ

Table 6.1 shows the condition number of the matrix G during the progressive

recovery of two images, while figure 6.4 shows the plot of the singular values

during the several stages of the progressive reconstruction of the images. For

both the images, the deviation of the condition number from the ideal value

of unity is very high in regions of 400 < M < 1200. At the two extremes, the

condition number is seen to be closer to unity. Further, the degree of ill-condition

varies with the permutation of the equations, i.e. the choice of columns in the

matrix F . In our case, we have a fixed permutation of the columns of the matrix

F — that of the rank-ordered coefficients. Any other order would not make

sense to our application. Within such constraints, some of the images perform

worse than the others as the particular permutation of columns make G more

ill-conditioned. As seen in table 6.1, the condition number of image (a) are much

more fluctuating than that of image (b).

It is under these conditions that we apply discretion and set a threshold value

Γ which makes the information recovery plot for a certain image close to its own

least squares solution plot. For doing this, we study the nature of the singu-

lar values of G during progressive reconstruction of images which is shown in

figure 6.4. The plots for the singular values of image(b) show that on average,

around 100 or more singular values have values less than 0.05 for the underde-

termined case, whereas the figure is 50 or more for the overdetermined case. The

figures are much improved for image (a). However, the maximum singular value

has a consistent range of around 1.8 for both the images. Further, most of the

singular values for each of the overdetermined and the underdetermined cases,
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Condition number of GM×N during progressive recovery of image(a)

case 1: Underdetermined (no. of rows (M) < no. of columns (N = 1024))

M 950 850 750 650 550 450 50

wmax 1.7656 1.7515 1.7463 1.7186 1.7002 1.6919 1.4356

wmin 9.58× 10−5 8.8× 10−4 1.6× 10−3 2.3× 10−3 0.0031 0.0041 0.0309

cond(GM×N) 1.8× 104 1.98× 103 1.11× 103 735 554 410 46.44

case 2: Overdetermined (no. of rows (M) > no. of columns (N = 1024))

M 1050 1100 1150 1200 1250 1300 1350

wmax 1.7734 1.7800 1.7973 1.7984 1.8132 1.8149 1.8244

wmin 5.38× 10−6 7.03× 10−5 1.6× 10−4 4.7× 10−3 6.7× 10−4 0.0640 0.2875

cond(GM×N) 3.2918× 105 2.53× 104 1.12× 104 3.8× 103 2.67× 103 28.34 6.34

Condition number of GM×N during progressive recovery of image(b)

case 1: Underdetermined (no. of rows (M) < no. of columns (N = 1024))

M 950 850 750 650 550 450 50

wmax 1.816 1.812 1.81 1.8 1.79 1.78 1.63

wmin 3.1× 10−5 2.8× 10−4 0.001 0.003 0.004 0.005 0.1

cond(GM×N) 5.8× 104 6.2× 103 1.63× 103 634.76 473.9 316.3 14.95

case 2: Overdetermined (no. of rows (M) > no. of columns (N = 1024))

M 1050 1100 1150 1200 1250 1300 1350

wmax 1.8183 1.8196 1.8209 1.8231 1.8237 1.8246 1.8251

wmin 9.3× 10−8 1.09× 10−52.3× 10−5 6.6× 10−5 1.2× 10−4 0.002 0.03

cond(GM×N) 1.9× 107 1.6× 105 7.7× 104 2.7× 104 1.4× 104 897.6 55.64

Table 6.1: Table showing the condition of DoG filter-bank matrix F for both
overdetermined and underdetermined cases during progressive recovery of two
images.
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Figure 6.4: Plots showing the singular values of the filter-bank matrix F during
progressive recovery of images (a) and (b) in figure 6.1. The singular values
for the underdetermined case during progressive reconstruction of images (a)
and (b) in figure 6.1 are shown here in (a) and (c) respectively. The singular
values for the overdetermined case during progressive reconstruction of images
in figure 6.1 (a) and (b) are shown here in (b) and (d) respectively.



CHAPTER 6. MAXIMISING INFORMATION RECOVERY 133

for both the figures are greater than 0.6, after which there is a steep descent of

the curves to 0, indicating that very few singular values lie within this range and

can be ignored. Thus, we may decide on a value of Γ ≤ 0.6, giving a condition

number nc ≥ 1.8
0.6

= 3 which is fairly close to unity.

Based on such a study, we set the threshold parameter Γ to three values viz.

0.1, 0.3 and 0.5 and observe the information recovery plot for the three images

shown in figure 6.1 (a) – (c). The condition number nc in each of the above cases

will be 18, 6 and 3.6 respectively. Thus, for each case, all singular values less

than Γ are set to zero prior to calculating G+ using equations 6.17–6.21. The

plots for the progressive reconstruction of each of the three images, and for each

of the three values of Γ, are shown in figure 6.5. We do this for all the images

in our data-set of sixty-five images. From our results, we observe (as is also

seen in figure 6.5) that using Γ = 0.3 gives a better information recovery than

Γ = 0.1. Further using Γ = 0.5 does not produce significant improvement in the

information recovered than using Γ = 0.3, and rather shows a lesser efficiency in

information recovery for the image in figure 6.1 (b). Based on these observations,

we use a value of Γ = 0.3 as it is observed to give optimal information recovery

for almost every image in our data-set.

Results

Information recovery plots for the three images in figure 6.1 (a) – (c) using a

threshold of Γ = 0.3 and the method of pseudo-inverse for rank-order decoding

is shown in figure 6.6. In our simulation we use images of size 32 × 32 due to

time and memory constraints. Information recovery plots for the three images

using VanRullen and Thorpe’s method of decoding are also shown in the same

figure for comparison. We observe that the perceptual information recovered

is on average 10 − 20% higher using the pseudo-inverse method of decoding as

compared to VanRullen and Thorpe’s method of decoding. Further, the rate

of information recovery is higher using the pseudo-inverse method of decoding

than by VanRullen and Thorpe’s method. Scaling down the image sizes leads to

essentially the same behaviour although the exact value of information content

may vary for different sizes of a certain image (not shown here). This is expected

to hold even when the images are scaled up.

The information recovery plot for all the images in our data-set using the

pseudo-inverse method of rank-order decoding discussed so far in this chapter is
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Figure 6.5: (a) – (c) Information recovery plot for the three images shown in
figure 6.1 (a) – (c) respectively, using the pseudo-inverse method of decoding and
with values from the LUT. For each image, reconstruction is done using the LUT
and with the threshold parameter Γ (referred to as ‘tol’ in the plots) set at 0.1
(shown in dotted lines), 0.3 (shown in solid lines) 0.5 (shown in dashed lines).
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Figure 6.6: Information recovery plot for three images, shown in figure 6.1 (a) –
(c), using the pseudo-inverse method of decoding, the threshold set as Γ = 0.3,
using the LUT, shown in solid lines. The information recovery plots for the same
images using VanRullen and Thorpe’s method of decoding with the LUT is shown
in dashed lines for comparison.

shown in figure 6.7(a), as is the mean information recovery plot. The plot of the

same data as the standard deviation about the mean is shown in figure 6.7(b).

Similar plots for VanRullen and Thorpe’s method of decoding using images of

size 32 × 32 are shown in figure 6.8(a) and 6.8(b) respectively for comparison.

We observe that on average more than 95% of the information in an input image

can be recovered using the pseudo-inverse method of decoding, the deviation

being 90 – 98% across various images in the data-set of sixty-five images. For

VanRullen and Thorpe’s method of decoding, the total information that can

be retrieved is 80% after which the curve saturates. The deviation across the

images at saturation is 75 – 85%. Thus, the total information recovery from rank-

order encoded images is increased by more than 15% by improving on decoding

technique. Comparing figures 6.7(b) and 6.8(b), we observe that the standard

deviation of the information recovery from individual images is much more using

VanRullen and Thorpe’s method of decoding than that using the pseudo-inverse

method.

A comparison of the average rate of information retrieval using the two meth-

ods of decoding is shown in figure 6.9. We observe that the initial rate of recovery
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Figure 6.7: (a) Individual information recovery plots for the sixty-five images in
our data-set (shown in dashed lines) as a spread about the mean information
recovery plot (shown as solid line) using the pseudo-inverse method of decoding
with LUT, and with the threshold parameter set at Γ = 0.3. (b) The same data
presented as a mean, with the standard deviation shown as errorbars.



CHAPTER 6. MAXIMISING INFORMATION RECOVERY 137

1% 5% 10% 15% 20% 25% 30% 35% 40%
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank of spikes in percentage

P
ro

gr
es

si
ve

 r
ec

ov
er

y 
of

 p
er

ce
pt

ua
l i

nf
or

m
at

io
n

(a)

1% 5% 10% 15% 20% 25% 30% 35% 40%
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank of the spikes in percentage

P
ro

gr
es

si
ve

 r
ec

ov
er

y 
of

 p
er

ce
pt

ua
l i

nf
or

m
at

io
n

(b)

Figure 6.8: (a) Individual information recovery plots for the sixty-five images in
our data-set (shown in dashed lines) as a spread about the mean information
recovery plot (shown in solid line) using VanRullen and Thorpe’s method (with
images of size 32× 32) of decoding with LUT (b) The same data presented as a
mean, with the standard deviation shown as errorbars.



CHAPTER 6. MAXIMISING INFORMATION RECOVERY 138

1% 5% 10% 15% 20% 25% 30% 35% 40%
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank of the spikes in percentage

P
ro

gr
es

si
ve

 r
ec

ov
er

y 
of

 p
er

ce
pt

ua
l i

nf
or

m
at

io
n

VanRullen and Thorpe’s method
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Figure 6.9: (a) Comparison of the mean information recovery using VanRullen
and Thorpe’s method and pseudo-inverse method of decoding a rank-order en-
coded stimulus. The decoding is done using the LUT.

till about the first 1 – 2% of the spikes is same for the two methods. Thereafter,

the information recovery plot for the pseudo-inverse method of decoding gets

steeper so that by the time 5% of the spikes have arrived, there is a 1% increase

in the information recovered using this method as compared to VanRullen and

Thorpe’s method of decoding. By the time 10% spikes have fired, the difference

in information retrieval increases to 5%, and steadily increases until when 30%

of the spikes have fired, there is an increase of 10% in the recovered informa-

tion using pseudo-inverse method of decoding compared to that of VanRullen

and Thorpe. Overall, using the pseudo-inverse method of rank-order decoding

has improved the quantity as well as the rate of information recovery from the

rank-order codes.

6.3 Chapter summary

In this chapter, we discuss how VanRullen and Thorpe’s method of stimulus re-

construction is sub-optimal for information recovery from a reconstructed image.

We go on to describe how we obtain perfect reconstruction using the coefficients

of filtering and the pseudo-inverse of a DoG filter-bank, which is not possible
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using VanRullen and Thorpe’s method where the DoG is used as its own inverse

as an approximation. The difficulty of using the pseudo-inverse method of rank-

order decoding with approximate data from the LUT is discussed. We describe

how application-specific discretion is required while applying the Singular Value

Decomposition technique for obtaining the pseudo-inverse of an ill-conditioned

matrix, and how we have solved the problem successfully.

A comparison of the information build-up using both VanRullen and Thorpe’s

method and the pseudo-inverse method of rank-order decoding is shown. The

results show that there is a 10− 15% increase in the information recovery from a

reconstructed stimulus by the time 35−40% of the cells fire their first spikes. We

also observe that the information recovery does not saturate even after 40% of the

cells have fired their first spikes, indicating that the total information recovery

may well be nigh 99% for most of the images by the time the curve saturates.

The simulation is done using images of size 32 × 32. The drawback of the

method is that it needs a large amount of memory for storing and working with

the filter-banks. Also, the computation time of the pseudo-inverse of a matrix is

very long. Moreover, with our progressive recovery, we have to calculate pseudo-

inverses of the DoG filter-bank by progressively adding columns. The total time

for plotting the information recovery curve for such a progressive recovery takes

more than 12 hours for a 32× 32 image on a desktop computer.

Progressive information recovery plots for images of size 8 × 8 and 16 × 16

show similar relative information recovery among the images, indicating that

the method is scalable and produces consistent results for images of different

sizes although the absolute values of the information recovered varies. It is thus

speculated that these characteristics will also hold for scaled-up images. This is

left to be done as a future work.

Since we get a perfect reconstruction using the coefficients of filtering, we

can say that by minimising the information loss during decoding, we have max-

imised the information recovery from rank-order codes. From this data, we get

an estimate of the information loss suffered during encoding. However, such a

recovery is delayed until approximately 37% or more cells have fired their first

spikes. Since rank-order code hypothesis is essentially based on fast informa-

tion recovery, such delayed recovery does not hold in favour of rank-order codes.

Moreover, the pseudo-inverse method of decoding is computationally expensive

both in terms of time and machine memory. These factors led us to explore ways
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of optimising the information recovery, whereby the information recovered will

be maximum possible in minimum time — a deterioration from perfection using

the pseudo-inverse method of decoding, but an improvement on VanRullen and

Thorpe’s lossy rank-order ‘codec’ — as discussed in the following chapters.



Chapter 7

Optimising Information Recovery

In the previous chapter, we used the pseudo-inverse method of rank-order decod-

ing to obtain a perfect reconstruction of the input image using the coefficients

of filtering of the input image with a DoG filter-bank, thereby maximising the

information recovery. For true rank-order decoding with LUT, there was a 10%

increase in the overall quantity of information recovered from the rank-order

encoded images as compared to that with VanRullen and Thorpe’s method of

decoding. Moreover, the rate of information recovery with the first few spikes

increased with such an improvement in the decoding method. However, the time

to maximum information recovery is delayed until approximately 37% or more

cells have fired their first spikes. Such delayed information recovery defeats the

essence of the rank-order codes — rapid information recovery — and is therefore

outside the permissible ‘time-limits’ of rank-order decoding; the ideal would be

(say) the time until around 20% of the cells have fired their first spikes. More-

over, the pseudo-inverse method of decoding is very demanding computationally,

and is difficult to implement with image sizes larger than 32 × 32 on a desktop

computer. This led us to find ways of optimising the information recovery where

the information loss suffered would be minimised in such a manner as to opti-

mise the information recovery in the sense that maximum ‘possible’ information

is recovered in minimum ‘possible’ time.

The DoG filters in VanRullen and Thorpe’s retinal model were assumed to be

orthogonal in spite their non-orthogonality. We suggest that this approximation

can be rectified by correcting the coefficients of filtering in equation 4.4, so that

they are stripped of their effects of filter overlap. In doing so, we would also act

in accordance with the laws of nature. This is because, due to the overlap of

141
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the neighbouring filters while sampling the image, the information from a certain

locality is picked out by many filters at once. This gives rise to redundancy in

the data by representing a piece of information using more coefficients of filtering

than are actually required. When rank-ordered, these coefficients will tend to

appear consecutively, thus occupying the higher ranks with redundant informa-

tion, while pushing the coefficients from a different locality, which are next in

order in terms of importance of information content, down the rank-order. Thus,

although the local retrieval of data is of high fidelity, the overall data recovery

is bound to be delayed. This contradicts the motive of the rank-order encoding

which is fast information retrieval, i.e. getting the maximum information from

each additional spike. Such an over-representation of data is very similar to the

redundancy observed in natural images, which our sensory systems handle using

the mechanism of lateral inhibition [68, 2, 82, 55, 42]. Therefore, we anticipate

that applying the principles of lateral inhibition will take away the redundancy

in our coefficient set too, thus aiding a proper rank-ordering of the coefficients,

so that the coded information can be retrieved optimally.

In fact, the pseudo-inverse method of decoding essentially corrects the coef-

ficients of filtering for the non-orthogonality of the filters. This it does while

finding a least squares solution for the set of equations, and thus is done as a part

of rank-order decoding. Alternatively, we can improve VanRullen and Thorpe’s

method of rank-order encoding by using the principles of lateral inhibition as ar-

gued above. In this chapter, we present such an improvement of VanRullen and

Thorpe’s method of rank-order encoding, and in doing so, we propose a novel

algorithm — Filter-overlap Correction algorithm (FoCal) — to correct the

coefficients of filtering in VanRullen and Thorpe’s retinal model for overlap of the

DoG filters. We call such an encoder the ‘Filter-overlap Corrected Rank-order

encoder’ (FoCRen) and is shown in figure 7.1. The decoding used is the same

as used by VanRullen and Thorpe in their retinal model. Thus the filter-overlap

corrected rank-order ‘codec’ shown in figure 7.1 is essentially the same as the

rank-order ‘codec’ in figure 1.1, with a modification in the rank-order encoder

block by the addition of FoCal.

We introduced the concepts of redundancy and lateral inhibition in section 3.4.

In section 7.1, we do a theoretical analysis of FoCal and its relation to the lateral

inhibition mechanism. In section 7.2, we present the empirical analysis of the per-

formance of FoCRen. In section 7.3, we present the Matching Pursuit algorithm,
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Figure 7.1: Optimising information recovery by modifying the rank-order encod-
ing mechanism of VanRullen and Thorpe with the addition of a Filter-overlap
Correction algorithm.

which is mathematically similar to FoCal, yet very different in its application to

image reconstruction using VanRullen and Thorpe’s retinal model.

7.1 Lateral inhibition for rank-order encoding

Having reviewed the lateral inhibition mechanism used as a redundancy reduction

technique by the retinal cells in sections 3.4.1 and 3.4.2, we now proceed to apply

this concept to correct the redundancy introduced due to overlap of neighbouring

DoG functions in VanRullen and Thorpe’s retinal model, and thus try to improve

their rank-order encoding mechanism.

Since the neighbouring filters in VanRullen and Thorpe’s retinal model over-

lap, they sample the same information to a considerable extent. Thus, these

neighbouring cells tend to fire at around the same time, which means that the co-

efficients of filtering are ranked in close vicinity to one another. As such, there is

more information from a locality in the picture than is required, which is, there-

fore, redundant. This redundancy causes vital information from another pixel

and its locality, which have a lesser contrast than the previous locality, to be

pushed further down in rank in the ordered array of coefficients. The rank-order
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Figure 7.2: The effect of suppression by the earliest firing spike in a locality on
those fired later, and thus suppressing redundant information. This inhibitory
influence of the largest on the later firing spikes enhances the order of other cells
in another locality which might be carrying more important information.

encoding is thereby distorted, and the main benefit of this type of neural encod-

ing, viz. retrieving the perceptually-important information in minimum time, is

lost.

To correct this discrepancy, we introduce the biological principle of lateral

inhibition to the model. The idea is that the largest coefficient in a locality

corresponds to a neuron which is stimulated by the point of maximum contrast

in the locality and hence fires first. In doing so, it imposes the strongest inhibition

on its neighbouring cells, and suppresses their response. This suppression allows

cells corresponding to important information from a distant locality to fire earlier.

The corresponding coefficients of filtering will thus move higher up in rank.

The concept is illustrated in figure 7.2. Let (x, y) be the spatial location

corresponding to the strongest stimulus in its neighbourhood. We denote the

DoG centred at (x, y) by Φ0, with two neighbouring and highly overlapping fil-

ters centred at (x + 1, y) and (x − 1, y) and denoted by Φ1 and Φ2 respectively

(only two are shown here for clarity). Considering t0 as a certain initial time,

the cell corresponding Φ0 will fire earliest in time after t0, compared to those

corresponding to Φ1, Φ2, and other neighbouring cells. Let C0 be the coefficient

of filtering by Φ0 at (x, y). Since the cells corresponding to Φ1 and Φ2 fire later
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in time, both C1 and C2 are less than C0 in magnitude. Figure 7.2 shows the

DoG at a certain location scaled up by the corresponding coefficient of filtering

so that their peaks represent the latency of firing of the corresponding cells in

reverse order. Due to their high degree of overlap with Φ0, the filters Φ1 and

Φ2 pick up almost the same information from the image and thereby tend to fire

soon after Φ0 and within short intervals of one another. This means that even

though the coefficients C1 and C2 carry redundant information, they will be very

close in magnitude to C0, and thus will tend to be grouped together with C0 in

the rank-ordered data-set. This, in turn, will cause the cell corresponding to the

DoG Φm, say, at the spatial location (xm, ym) to fire later in time, in spite of it

carrying information that is more important than C1 and C2, which are carrying

redundant and hence unnecessary data.

Let us consider the filters Φ0 and Φ1 for the time being. The overlap between

the filters can be represented by the the degree of correlation 〈Φ0, Φ1〉 between

them. Due to its overlap with filter Φ0, the coefficient C1 carries redundant

information which is equivalent to the correlation term, mentioned above, scaled

up by the coefficient of filtering C0. Thus, the additional information r1 of the

DoG at the location (x + 1, y) would be written as:

r1 = C1 − C0.〈Φ0, Φ1〉. (7.1)

By a similar argument, the additional information r0, corresponding to the

DoG Φ0 would be written as:

r0 = C0 − C1.〈Φ0, Φ1〉. (7.2)

Interestingly, we observe that equations 7.1 and 7.2 resemble equations 3.1

and 3.2. The coefficients of filtering C1 and C0 are directly proportional to the

input contrast and represent the input stimulus terms e1 and e2 in equations 3.1

and 3.2 respectively. The correlation term 〈Φ0, Φ1〉 corresponds to K, the coeffi-

cient of inhibition. The threshold frequency r0 is irrelevant here, as the method

of rank-order encoding depends on the firing latency, rather than the firing fre-

quency. These equations can be interpreted as the two cells corresponding to the

filters Φ0 and Φ1 mutually inhibiting one another, indicating that the principle of

lateral inhibition can be incorporated in VanRullen and Thorpe’s retinal model

by correcting the coefficients of filtering for the effects of filter-overlap.
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Now, since 〈Φ0, Φ1〉 > 0 due to overlap, and C0 > C1, therefore r1 < C1,

resulting in a suppression of C1 by C0. Although there is a collective inhibitory

effect on the cell corresponding to the DoG Φ0 similar to that shown in equa-

tion 3.3, resulting in a deduction of the absolute value of the coefficient C0, which

might influence its ranking, yet, for the time being we ignore the inhibitory effects

on the largest coefficient of filtering in a locality, and consider the suppression by

the largest of all the others smaller than it. This is similar to the ‘Winner Take

All’ mechanism and gives a credibility to our approach. However, due to this

simplification, the effect of filter-overlap is not completely eliminated and some

redundancy is left in the data.

Thus, effectively, by virtue of being the largest among all the coefficients that

correspond to filters overlapping with the filter Φ0, C0 applies a lateral inhibition

on all these other coefficients. As this causes a reduction in the effective response r

for the individual cells, it enables the uninhibited cell corresponding to the DoG

Φm, say, at the spatial location (xm, y) to fire after C0. A similar suppression

occurs for the co-efficients surrounding the location (xm, y) and overlapping with

the DoG Φm, allowing a cell at (xn, yn), say, to fire next, and so on. This brings

a fairness to the rank-ordering of the coefficients by preserving the priority of

the information carried by them, so that most of the perceptually-important

information can be retrieved from the first few coefficients, corresponding to the

neurons which fire their first spikes within a very short time, and thus simulating

the fast information processing by the retina.

In the next section, we introduce the Filter-overlap Correction algorithm, and

discuss how we have used it to improve the rank-order encoding mechanism used

by VanRullen and Thorpe for their retinal model, thereby introducing FoCRen.

7.1.1 Filter-overlap Correction algorithm (FoCal)

We apply FoCal to the set of rank-ordered coefficients of filtering {ri ∈ R : i =

1 . . . P} of VanRullen and Thorpe’s retinal model, introduced in section 4.1.3. Let

ξ = ∅ be initially an empty set that grows with each iteration of the algorithm.

The steps through the algorithm are as listed below:

1. The largest coefficient r1 of the array R is taken out and added to ξ:

R = R− r1
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ξ = ξ ∪ r1

2. Each of the remaining elements in {ri ∈ R : i = 2 . . . P} is now corrected for

overlap of its corresponding DoG filter with the DoG filter corresponding

to r1. Thus, if Φ1
s is the filter corresponding to r1 and Φ2

s is the filter

corresponding to r2, then r2 is corrected for filter-overlap thus:

r2 = r2 − r1.〈Φ1
s, Φ

2
s〉

This is done for each of the remaining coefficients in the set R.

3. The elements in R are now re-arranged in descending order of magnitude.

4. Steps 1 to 3 are repeated P − 1 times.

5. The algorithm is stopped when there is only one coefficient left in R at

step 3, which will be after P − 1 iterations. This element is added to the

set ξ, which now has P elements and is the set of filter-overlap corrected

coefficients.

In the next section, we discuss the empirical results of applying FoCal to

VanRullen and Thorpe’s retinal model, thereby getting an improved rank-order

encoder, which we call ‘Filter-overlap Corrected Rank-order encoder’ (FoCRen),

shown in figue 7.1.

7.2 Filter-overlap Corrected Rank-order encoder

(FoCRen)

Each of the sixty-five images in our data set is processed using VanRullen and

Thorpe’s retinal model and their respective coefficients of filtering corrected for

filter-overlap using FoCal introduced in section 7.1.1. Thus, we obtain a rank-

order encoded image using FoCRen. As we shall see in the following sections, this

method of encoding minimises the information losses suffered during encoding.

The decoding in the filter-overlap corrected rank-order ‘codec’ is being done

using VanRullen’s method of rank-order decoding, which is lossy due to the ap-

proximation of decorrelation of filters. However, the improvement in rank-order

encoding using FoCal actually minimises the correlation among the filters, so
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that the error due to approximation during decoding is minimised, and hence

the information loss during decoding is also minimised. Thus, using FoCRen,

the overall information loss in the filter-overlap corrected rank-order ‘codec’ is

minimised.

Each of the images rank-ordered encoded using FoCRen is progressively re-

constructed using rank-order decoding as used by VanRullen and Thorpe in their

retinal model. The results of reconstruction using coefficients and LUT are dis-

cussed in the following sections.

7.2.1 Reconstruction using coefficients

Plots of information recovery for each of the images are shown in figure 7.3(a) as

a spread about the mean information recovery plot. It is observed that, firstly,

around 99% of the information contained in the input image can be retrieved on

average from images rank-order encoded using FoCRen. Moreover, this recovery

is made by the time 30% of the coefficients are used in reconstruction, after which

the curve saturates. Secondly, more than 95% of the information is retrieved on

average by the time 20% of the coefficients are used in reconstruction, and around

85% of the information is retrieved by the time 10% of the coefficients are used

for image reconstruction. Thirdly, for some images (images not shown here) with

fewer edge details, 99% of the information is recovered with only 10% of the

coefficients of filtering used for reconstruction.

The standard deviation of the spread about the mean is shown using error

bars in figure 7.3(b). The total information recovered with 25% or more of the

coefficients is nearly the same for all the pictures shown by the very small standard

deviation of the data in that area. The average information recovery plot of the

retinal model prior to applying FoCal is shown in the same figure for comparison.

It is observed that there is an increase of 20% on average in the total amount of

information recovered using FoCRen. Further, the rate of information recovery

is much faster, with a 10% difference in information recovery by the time the

first 1% coefficients are used for image reconstruction. By the time 5% of the

coefficients are used for image reconstruction, there is a difference of 25% in the

quantity of information recovered. This difference starts diminishing after the

first 20% coefficients have been used for reconstruction and is observed to settle

at around 20% for the first 30-35% of the coefficients, when both plots saturate.

The above results indicate the improvement in the quantity of information
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(b)

Figure 7.3: (a) The green lines show the progressive recovery of the perceptually-
important information in the reconstruction of each of the sixty-five images in
our data set which were rank-order encoded using FoCRen. The red line is the
mean of the individual information recovery plots. (b) The standard deviation of
the individual information recovery plots about the mean in (a) is shown using
errorbars. The average information recovered prior to applying FoCal in the
retinal model is shown here for comparison.
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retrieved by the time 20% of the cells have fired their first spikes over that using

the pseudo-inverse method of decoding. Further, this study is conducted on a

desktop and with images of size 128 × 128. Thus, although the image recon-

struction using coefficients of filtering is not perfect, yet, we have optimised the

information recovery by improving both the quantity and time of information

recovery.

For subjective evaluation of the information recovered, the reconstruction of

two rank-order encoded images using FoCRen for the first 1%, 5%, and 10% of the

coefficients are shown in figure 7.4. A comparison is made with the reconstruction

of the same images rank-order encoded using VanRullen and Thorpe’s method

of encoding. Significant improvement in information recovery using FoCRen is

apparent from visual inspection of the reconstructed images.

7.2.2 LUT for FoCRen

After applying FoCal to the coefficients of filtering of all the sixty-five images in

our data-set with VanRullen and Thorpe’s retinal model, we prepare a Look-up-

table for FoCRen, which is shown in figure 7.5(a). A comparison with the LUT

of the retinal model prior to applying FoCal is also shown in the same figure.

The plots are normalised so that the maximum value of the LUT is 100. The

LUT for FoCRen plotted on a log-log scale is shown in figure 7.5(b), fitted with

a plot that follows the power law, as in figures 4.7 and 6.2(b). Thus the LUT for

FoCRen also follows the power law until the first 10% of the cells have fired their

first spikes.

7.2.3 Reconstruction using LUT

Having obtained the LUT, we now progressively reconstruct each of the sixty-

five images in our data-set, rank-order encoded using FoCRen, with the LUT

in figure 7.5. The perceptual information recovered for each of the individual

images is shown in the figure 7.6(a) as a spread about the average information

recovered. The standard deviation of this data-spread is shown as error-bars in

the plot shown in fig 7.6(b), along with a similar plot VanRullen and Thorpe’s

method of encoding for comparison. It is observed that, using FoCRen, there

is an overall increase of 15% in the information retrieved until the time when

20% of the cells have fired their first spikes, compared to that using VanRullen
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input image reconstructed images

(a)

(b)

1% 5% 10%

Figure 7.4: Reconstruction of two input images in (a) and (b) with 1%, 5%
and 10% of the total number of coefficients, and rank-order encoded using (top)
VanRullen and Thorpe’s method of encoding and (bottom) FoCRen.
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Figure 7.5: (a) Comparison of LUT for retinal model (blue line) and LUT for
FoCRen (pink line). (b) LUT for FoCRen (dashed line) fitted with a curve that
follows the power law (blue line) until the first 10% of spikes.
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Figure 7.6: (a) The information recovery plot for all the sixty-five images shown as
a spread about the mean information recovery plot for progressive reconstruction
of images using FoCRen, and the LUT for FoCRen in figure 7.5. (b) Standard
deviation of the individual plots in (a) about the mean plot. The mean informa-
tion recovery plot using VanRullen and Thorpe’s method of rank-order encoding
is also shown for comparison.
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and Thorpe’s method of encoding. The rate of information recovery from rank-

order encoded images using FoCRen is also observed to be consistently better

than that using VanRullen and Thorpe’s method of encoding. A comparison of

images reconstructed after encoding using the two methods of encoding and their

respective LUTs is shown in figure 7.7. The improvement in image quality for

images reconstructed using FoCRen for rank-order encoding images is apparent

on visual inspection, and agrees with the information recovery plots for the same.

In the next section, we discuss the Matching Pursuit algorithm, which ismath-

ematically the same as FoCal, although the method of application to VanRullen

and Thorpe’s retinal model is different.

7.3 Matching Pursuit algorithm

Let f be a signal that has to be decomposed into a linear expansion of waveforms

whose properties are adapted to the local structure of the signal f . Let D be a

redundant dictionary of functions, some of which match the local structure of f .

The Matching Pursuit (MP) algorithm decomposes any signal f into waveforms

which are selected from the redundant dictionary D to “best-match” the signal

structures. Introduced by Mallat and Zhang, MP is a greedy algorithm that

chooses the most suitable waveform from D to approximate part of a signal f in

each iteration [21]. Thus the algorithm isolates the coherent structures of a signal

f with respect to the dictionary D. Bergeaud and Mallat applied this algorithm

in image analysis to obtain an efficient representation of low level structures

in an image [9]. With the image as a signal, and a redundant dictionary of

Gabor functions, they could represent the signal by selectively picking the Gabor

functions that best approximate a local feature of the image at each iteration.

Let gγ be a set of basis vectors. Let f be the input signal that has to be

decomposed using MP. Often, f is represented as

f =
n−1∑
i=0

λigγi
,

where λi = 〈f, gγi
〉. This is only an approximation if the vectors in gγ are not
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input image reconstructed images

(a)

(b)

1% 5% 10%

Figure 7.7: Reconstruction of two input images in (a) and (b), rank-order encoded
using (top) VanRullen and Thorpe’s original method and (bottom) FoCRen by
the time 1%, 5% and 10% of the total number of ganglion cells have fired their
first spikes. Both reconstructions are done using the respective LUTs.
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orthogonal. The exact representation of f would be written as

f =
n−1∑
i=0

λigγi
+Rnf, (7.3)

whereRnf is the residual in a sum of n terms corresponding to the decomposition

of f into n components. Equation 7.3 can be written as

f =
n−1∑
i=0

〈f, gγi
〉gγi

+Rnf, (7.4)

For the first iteration, i = 0 in equation 7.4,

f = 〈f, gγ0〉gγ0 +R1f

⇒R1f = f − 〈f, gγ0〉gγ0 (7.5)

For a perfect representation of f , the aim will be to minimize the residual term

R1f in the l.h.s. of equation 7.5. This can be done by minimizing the difference

in the r.h.s. of equation 7.5, i.e. the term 〈f, gγ0〉 needs to be maximised. This

in turn can be done by choosing gγ0 from the whole set gγ such that

|〈f, gγ0〉| ≥ |〈f, gγ〉| (7.6)

Now,〈f, gγ0〉 is the similarity measure between the function f and the basis vector

gγ0 . So, by choosing the gγ for which this similarity is maximum, the dictionary

element which is most similar to the signal structure at this stage is chosen. This

is done iteratively for the components along the other vectors in the dictionary

D until the residual at the (n + 1)th iteration drops below an arbitrarily chosen

threshold ε.

This strategy was later used by Perrinet et al in trying to improve on the

tight constraint of orthogonality of the filters in the reconstruction method of

the retinal model [54]. They show that rank-order encoding with MP in the

retinal model gives a better performance in retrieving the information about the

input image than that of the original model. The MP algorithm as applied to

rank-order encoding in the retinal model is given below:

Let I0 be an image and Φσλ be a DoG in a redundant dictionary D of DoG

functions at various scales σ and spatial locations λ = (u, v) in 2D space. Let
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Cσλ = 〈I, Φσλ〉 be the set of coefficients obtained by filtering I with a set of filters

Φσλ ∈ D.

Initialize

Let

I0 ← I.

C0
σλ = 〈I0, Φσλ〉

Match

Find σ0λ0 that corresponds to the largest coefficient Cσ0λ0 ∈ C0
σλ.

(σ0λ0) = Argmaxσλ

(|C0
σλ|

)
,

Cσ0λ0 = 〈I, Φσ0λ0〉

Update

Therefore, as in equation 7.3, and for i = 0,

I0 = Cσ0λ0 .Φσ0λ0 + I1, (7.7)

where I1 is the residue of the first iteration.

⇒ I1 = I0 − Cσ0λ0 .Φσ0λ0 (7.8)

Let

C1
σλ = 〈I1, Φσλ〉 (7.9)

Putting equation 7.8 in equation 7.9,

C1
σλ = 〈(I0 − Cσ0λ0 .Φσ0λ0), Φσλ〉

= 〈I0, Φσλ〉 − Cσ0λ0 .〈Φσ0λ0 , Φσλ〉

⇒ C1
σλ = C0

σλ − Cσ0λ0 .〈Φσ0λ0 , Φσλ〉 (7.10)
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Since

Cσ0λ0 − Cσ0λ0 .〈Φσ0λ0 , Φσ0λ0〉 = 0,

C1
σλ is calculated for all the elements in (C0

σλ − Cσ0λ0).

Repeat Match and Update for the Second Iteration

Find σ1λ1 = Argmaxσλ(|C1
σλ|) such that

Cσ1λ1 = 〈I1, Φσ1λ1〉

is the largest coefficient in C1
σλ.

I2 ← I1 − Cσ1λ1 .Φσ1λ1 ,

where I2 is the residue of the second iteration. Let

C2
σλ = 〈I2, Φσλ〉

⇒ C2
σλ = C1

σλ − Cσ1λ1 .〈Φσ1λ1 , Φσλ〉 (from equation 7.10)

Stop

The algorithm is stopped at the (l + 1)th iteration, when

the largest coefficient Cσlλl is less than an arbitrarily chosen threshold ε.

Cσlλl < ε, whereCσlλl ∈ C l
σλ

7.3.1 FoCal vs. MP

The mathematical analysis of the two algorithms presented in sections 7.3 and

7.1.1 show them to be similar. However, the fundamental difference with respect

to our work is in the application of the algorithms to retrieve information from

rank-order encoded images. We have developed FoCal with the aim of reducing

redundancy in the data introduced by filter-overlap during rank-order encoding.

We use the principle of lateral inhibition, a mechanism used by sensory neurons

to reduce redundancy in sensory input data. The similarity of application of

FoCal with the application of lateral inhibition by sensory neurons is drawn in
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section 7.1.

On the other hand, Perrinet et al applied MP iteratively on the whole image

whereby at every step, all the coefficients of filtering are calculated and the largest

coefficient is matched with its corresponding filter and spatial location. This filter

is scaled up with the largest coefficient and subtracted from the image, thereby

obtaining a residue image, which is the input image for the next iteration. Thus,

at every iteration, there is a pursuit to find the matching filter for the largest

coefficient, and hence the nomenclature. Evidently, the application is from a very

different perspective than FoCal, although the rank-order encoded data obtained

using the two methods are the same.

7.4 Chapter summary

In this chapter, we introduce a novel encoding method, viz. the Filter-Overlap

Correction algorithm (FoCal) for rank-order encoding images using VanRullen

and Thorpe’s retinal model. We name this improved rank-order encoder FoCRen.

We show the similarity between FoCal and the redundancy reducing technique of

lateral inhibition used in our biological sensory neurons. The results of applying

FoCRen to rank-order encoded images are presented along with a comparison

with the results using VanRullen and Thorpe’s method of encoding. Finally,

we present the Matching Pursuit algorithm which is mathematically similar to

FoCal and was applied by Perrinet et al to improve rank-order encoding using

VanRullen and Thorpe’s retinal model. However the basis of the two algorithms

are very different; while FoCal is based on the principle of lateral inhibition, MP

is based on a ‘match and update’ mechanism.

In the next chapter, we propose a biologically realistic model of the retina

for rank-order encoding images and discuss and compare results with rank-order

encoding using VanRullen and Thorpe’s retinal model and that using FoCRen.



Chapter 8

Towards Biological Realism

In chapters 6 and 7, we proposed ways to minimise information loss during de-

coding and encoding of rank-order codes and thus maximise information recovery

from rank-order encoded images. So far in our work, we have used VanRullen and

Thorpe’s retinal model as the basic rank-order encoder, which uses sixteen layers

of ganglion cells tiling the retina independently as was discussed in chapter 4.

This is a simplification of the complexities in the retina, and the model has been

used to simulate rank-order encoding ‘successfully’ in terms of information recov-

ery from rank-order encoded images. However, using sixteen layers of ganglion

cells is biologically unrealistic. This is because firstly, the retina is an inside-out

coating on the eyeball with the ganglion cells forming the frontmost layer of the

retina in the direction of incident light. As a result, the incident light has to

travel through the whole thickness of the retina to reach the photo-receptors cell

layer, the photons getting scattered at each layer. Thus sixteen layers of ganglion

cells would be very inefficient in terms of the amount of photons that actually

reaches the photoreceptors, which would in turn reduce the photo-sensitivity of

the photo-receptors, and thus affect the efficiency and accuracy of vision. In our

review of the ganglion cells in chapter 3, we observed that there are mainly four

types of ganglion cells in the primate retina. Each of these arborize in different

layers. Thus each layer has a particular cell size. Moreover, on- and off-centre

cells of each type are not complementary, contrary to those used in VanRullen

and Thorpe’s retinal model.

Based on such factual data, we propose to use biologically realistic parameters

for simulating the cells of the retina. In chapter 3, we saw that the depth of

the retina is minimum at the foveal-pit, which is devoid of any other cell types

160
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except the photoreceptors. This makes this region most accessible to incoming

light. Thus, this is the area of the retina which is most sensitive to light, and is

responsible for the ability of the primate eye to distinguish very fine details in a

scene [18]. We propose to simulate the cells of the foveal-pit, thereby deviating

from VanRullen and Thorpe’s retinal model, towards a biologically realistic retinal

model, based on the physiology of ganglion cells found in the primate retina. We

call our model — the foveal-pit model.

In section 8.1, we discuss the design of the foveal-pit model and briefly

reminisce the salient points of the physiology of ganglion cells presented in sec-

tion 3.2 in the context of our model design. In section 8.2, we do an empirical

analysis of the performance of the model as a rank-order encoder in terms of

information recovery from rank-order encoded images.

8.1 Simulating foveal-pit model

The limited width of the foveal pit demands provisions for motion in our visual

system [23]. To see an object clearly, its retinal image should fall on the foveal pit,

and should be kept there long enough for its finest details to be discriminated [45,

44]. To accomplish this task, the primate eye makes fast, voluntary movements.

Saccades are periods of time when the eyes are rotating to shift the centre of

vision, i.e. the foveal pit, from one spatial position on the object to another.

Fixations are periods when the gaze is held at a point of interest on the object

to expose it to the fovea long enough for the details to be picked up. Information

processed by the cones of the foveal pit during a certain fixation is passed on to

the ganglion cells that are connected to the cones in the area.

We simulate the receptive fields of the ganglion cells corresponding to the

foveal-pit with the DoG functions as used in VanRullen and Thorpe’s retinal

model. However, the size of the centre and surround of the DoG functions, as well

as their physical layout is in keeping with the actual physiology of those found

in the primate retina, and which we will talk about in the following sections.

As was done in VanRullen and Thorpe’s retinal model, we tile an input image

homogeneously with these DoG functions, which is a simplified simulation of the

various fixations of the eye as it makes several saccades over the image. Since

time is not being considered and all the points are assumed to be processed

simultaneously, this would mean that the most salient information gathered out
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of all fixations will be the first to cause a ganglion cell to fire a spike. In this

work, our motive is to study the efficiency of rank-order codes in transmitting

perceptually-important details in a scene. This we do by decoding the codes, and

evaluating the information retrieved both in terms of the quantity of perceptually-

important information retrieved and the time taken for this retrieval.

8.1.1 Eccentricity of the cells

As one moves concentrically outwards from the centre of the fovea, a consis-

tent change in the size and density of the ganglion cells is observed. The first

requirement in designing the foveal-pit model will be to decide on a certain

eccentricity in the fovea. We have already reviewed the ganglion cell to cone ratio

in section 3.2.3. Based on data presented in the review, let us take a window of

25µm around the centre of the fovea, which is a circular region of radius 12.5µm

and area 491µm2. Since the density of cones in the region is 250, 000/mm2 (dis-

cussed in section 3.2.3), this area of 491µm2 will have approximately 123 cones.

Keeping in view the cone to ganglion cell ratio of 4 : 1, we can assume that these

123 cones are connected to a total of around 492 ganglion cells.

A simulation of this region consisting of 123 cones could be made with a

region of 11 × 11 = 121(' 123) pixels in the image, where each pixel represents

a cone. This region could be thought of as a point of fixation where the fovea

stops between two saccades to gather information. Thus, we could divide a 128×
128 image homogeneously along the rows and columns into 11 × 11 matrices,

resembling the foveal excursions made during the saccades over the whole image.

Having decided upon the eccentricity, we now review the different types of

ganglion cells present in the fovea at that eccentricity. The dendritic tree sizes of

these cells and the overlap of their dendritic trees with those of the neighbouring

cells are also discussed.

8.1.2 A review of foveal ganglion cells

In this section, we review some of the points discussed in section 3.2 on which we

base our simulation of the ganglion cell receptive fields.

The foveal ganglion cells are primarily of midget and parasol varieties. The

midget ganglion cells constitute around 95% of the ganglion cell population in

the region. The mosaic of the on- and off-centre midget cells are independent
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Figure 8.1: An example of the layout of the midget on-centre and off-centre
ganglion cells for sampling a 4× 4 image raster.

of each other with the neighbouring dendritic trees in each mosaic showing very

little overlap. On average, the dendritic field diameter of an on-centre midget

cell is 30% greater than that of the off-centre cell across all eccentricities in the

retina.

Similar to the midget cells, the on- and off-centre parasol cell mosaics are in-

dependent, with a neighbouring overlap of dendritic trees (defined in section 3.2.1)

of neighbouring cells recorded at 3.4. The ratio of the dendritic tree diameter of

the parasol cell to that of the midget cell of each type is found to be 10 : 1 in the

foveal region. Since each type of ganglion cell homogeneously tiles the retina, a

point of space is sampled by several cells at the same time.

The diameter of the receptive field centre of a ganglion cell is on average 1.5

times larger than that of its dendritic tree. The surround of a midget cell receptive

field is on average 6.7 times wider than its centre, while that of a parasol cell is

4.8 times wider than its centre.

8.1.3 Simulating foveal ganglion cells

The array of cones in the fovea is represented by a raster where each pixel cor-

responds to a cone, as shown in figure 8.1. An image is sampled by each of the

midget on- and off-centre cells (shown as orange balls in figure 8.1) centred

at every pixel along the column and every half pixel along the rows. The total

number of cells of each type will, therefore, be double the number of pixels. For

example, in the 4× 4 raster of figure 8.1, there are a total of 16 circles placed at

the centre of each pixel. The number of circles centered at the junction, consid-

ering the half circles at the edges and 1/4th circles at the corners is also 16. Each

pixel represents a cone and each circle is an off-centre midget cell. Therefore for

16 pixels, there will be 32 midget off-centre cells. The midget on-centre cells
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Receptive Field Simulation Parameters

Ganglion Cell Types matrix std. dev. centre width std. dev. sampling total cells

size (n) centre (σc) in pixels (wc) surround (σs)resolution for 121 pixels

off-centre 3× 3 0.8 3

midget on-centre 11× 11 1.04 5 6.7× σc col: 1 484

' (0.8 + 30% of 0.8) ' (3 + 30% of 3) row: 1
2

off-centre 61× 61 8 33

' (10× 0.8) ' (10× 3)

parasol on-centre 243× 243 10.4 53 4.8× σc col: 5 18

' (10× 1.04) ' (5× 10) row:2 1
2

Table 8.1: Table showing the various parameters of the simulation of the ganglion
cells of the foveal pit at an eccentricity of 12.5µm.

are placed at a similar resolution, so there will be a total of 64 midget cells which

is four times the number of cones. Thus, in a 11×11 raster with 121 pixels, there

will be a total of 484 midget cells.

Table 8.1 shows the various specifications that we use in simulating the foveal

ganglion cells. As shown in the table, the off-centre midget cell is simulated

with a DoG of matrix size 3× 3. The standard deviation of the centre Gaussian

of the DoG is set at 0.8, so that the centre of the DoG will span 3 pixels. This

causes it to overlap with the centers of 8 neighbouring cells of the same variety.

Although the midget cells in the primate fovea do not show such high overlap, a

DoG with its centre-surround structure cannot be represented with a centre-width

smaller than 3 pixels, as a limitation of representing a function in a digital raster.

Although the overlap could be avoided by reducing the sampling resolution, we

choose to maintain the high sampling resolution in our simulation as a trade-

off for maintaining ganglion cell to cone ratio of ' 4 : 1 as found in regions

close to the foveal centre. The dendritic tree diameter of an on-centre midget

cell is considered to be 30% larger than that of an off-centre cell. The DoG

corresponding to a midget on-centre cell in our simulation would therefore span

5 pixels, (to maintain odd-numbered width for symmetry) obtained by setting

the standard deviation of the centre Gaussian of a DoG matrix of size 11× 11 to

1.04, which in turn is 30% more than 0.8, the standard deviation of the midget

off-centre cells.

Coming to the parasol cells, the ratio of the parasol centre diameter to that of

the midget centre diameter of both the on- and off-centre cells in our simulation

is maintained at 10:1. The off-centre parasol is simulated with a DoG matrix of
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size 61× 61, with the standard deviation of the centre Gaussian as 0.8× 10 = 8.

This gives the centre-width of the DoG as 33 pixels which is approximately 10

times the centre-width of the midget off-centre DoG. Similarly, the on-centre

parasol cell is simulated with a 243× 243 matrix, with the standard deviation of

the centre DoG as 10.4, which is 10 times that of the midget on- cells, giving a

centre-width of 53 pixels.

The standard deviation of the surround is maintained at 6.8 times and 4.7

times those that of the centre for the midget and parasol cells respectively. The

sampling resolution is 21
2

along the rows and 5 along the columns. In an 11× 11

raster, the total number of parasol cells will be 18, the number of cells of each

type being 9. Therefore the midget cells will constitute 96% of the total ganglion

cell population in our simulation, which is fairly close to the biological estimate

of 95% in the foveal region. The ganglion cell to cone ratio for our 11× 11 raster

is thus 502:123 = 4.08:1 ' 4:1.

In the next section, we do an empirical analysis of the performance of this

model in rank-order encoding an input image.

8.2 Empirical analysis of foveal-pit model

We filter the 128×128 image shown in figure 8.2(a) using the foveal-pit model

in the same manner as in equation 4.4, to obtain a total of 73728 coefficients of

filtering. Since, we are imitating biology, intuitively, we must use the biological

principle of lateral inhibition to do away with the redundancy in the data be-

fore rank-order encoding. We have already done this (albeit approximately, as

explained in sections 7.1) by applying FoCal (introduced in section 7.1.1) to the

retinal model. Conversely, we encode the image without removing redundancy,

using VanRullen and Thorpe’s method of encoding, and observe the results before

using FoCal for rank-order encoding.

The encoded image is reconstructed using VanRullen and Thorpe’s method

of decoding. The plot for the progressive recovery of perceptually-important

information is shown in figure 8.2(d), and the corresponding reconstructed picture

is shown in figure 8.2(b). The information recovery plot for the same image

encoded using VanRullen and Thorpe’s retinal model is shown the same figure,

while the reconstructed image is shown in figure 8.2(c). The quantitative recovery

agrees with the qualitative evaluation of the two reconstructed images.
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Figure 8.2: (a) Input image. (b) Reconstructed image using the first 6% (' 4400)
coefficients of filtering of the foveal-pit model. (c) Reconstructed image using
the first 10%(' 4400) coefficients of filtering of VanRullen and Thorpe’s retinal
model. (d) Information recovery plot for the progressive reconstruction of images
shown in (b) and (c).
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The failure of the method in reconstruction may be ascribed to the assumption

of orthogonality for the filters. The centre widths and the sampling resolution

of the image, as shown in table 8.1, suggest that there is a very high overlap

among the neighbouring filters, making them unsuitable to be approximated as

orthogonal functions. Speaking biologically, this high overlap of the filters sug-

gests significant redundancy in the neural encoding as a point in space is being

sampled by at least five filters at a time. While redundancy takes care of the

noise in the input data and is useful from such a perspective, yet, while rank-

order encoding images, it gives rise to an over-representation of the information

contained in the input stimulus. Clearly, this form of redundancy is hindering

the performance of our model, as has already been anticipated by us in the above

paragraph, and should be removed. Towards that goal, we now incorporate Fo-

Cal to the foveal-pit model for encoding images in rank-order and discuss the

results.

8.2.1 Reconstruction using coefficients of foveal-pit model

From the results presented in figure 8.2(d), it is evident that the coefficients of

filtering of the images in the foveal-pit model have to be corrected for filter-

overlap by applying FoCal prior to image reconstruction using VanRullen and

Thorpe’s method of decoding. Thus FoCal will be an inherent part of rank-order

encoding using the foveal-pit model, rather than an enhancement, as was

for VanRullen and Thorpe’s retinal model, taking our encoder closer to biology.

The information recovery from images rank-order coded using such a biologically

realistic encoder is discussed in the sections below.

Reconstruction Using Coefficients of Filtering

The plot for the average information recovery for all the sixty-five images using

the foveal-pit model is shown in figure 8.3(a). The errorbars indicate the

standard deviation of the information recovered from the individual images about

the mean information recovered.

Firstly, we compare the plot in figure 8.3(a) with that in figure 8.2(d) and

observe that when FoCal is applied to the coefficients of filtering with the foveal-

pit model, the reconstruction works. This indicates that, by incorporating the
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biological mechanism of lateral inhibition in the simulated cells of the foveal-

pit model, we decorrelate each cell from its spatial neighbourhood. In other

words, making the model more biologically accurate enhances its performance.

On taking a closer look at the plot in figure 8.3(a), we observe that up to 90%

of the perceptual information can be recovered by the time only 10% of coeffi-

cients of filtering are used for reconstruction. On average, the initial information

recovery is very fast, and thus conforms to the requirements of rank-order method

of neural encoding. A total information recovery of 98 - 99% is observed, which

is achieved by the time 20% of the coefficients of filtering are used for reconstruc-

tion. After this point, the information recovery plot reaches saturation, and very

little additional information is recovered. In figure 8.3(b), we compare the aver-

age perceptual-information recovery plots from images rank-order encoded using

foveal-pit model, VanRullen and Thorpe’s method applying FoCal (FoCRen)

and without applying FoCal. On average, rate of information recovery is slightly

higer for FoCRen compared to the foveal-pit model. However both these

methods are much better in encoding information than VanRullen and Thorpe’s

original encoding method. The progressive reconstruction of an image rank-order

encoded using the three methods as mentioned above is shown in figure 8.4 while

the progressive information recovery plots for the same are shown in figure 8.5.

The rapid information recovery using foveal-pit model, with only four layers

of filters compared to sixteen layers in FoCRen, confirms the fact that rank-order

hypothesis indeed works well for models that are designed in accordance with

those of evolution.

In the next section, we construct the Look-Up-Table for the rank-ordered

weights of the foveal-pit model and then reconstruct an input image using

this LUT.

LUT of the foveal-pit model

We generate the LUT of the foveal-pit model in the same manner as we have

been doing for the retinal model. In figure 8.6(a), the LUT is shown as a mean

of the rank-ordered coefficients of filtering of each of the sixty-five images in our

data-set with the foveal-pit model. In figure 8.6(b), we show a comparison

of the LUT of the foveal-pit model with those generated using FoCRen and

VanRullen and Thorpe’s method of rank-order encoding. The log-log plot shown

in figure 8.7 indicates that the LUT of the foveal-pit model does not follow
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Figure 8.3: (a)Mean information recovery plot for progressive reconstruction us-
ing the coefficients of filtering of sixty-five images rank-order encoded using the
foveal-pit model. The error bars show the standard deviation of the infor-
mation retrieved for each individual image about the mean information recovery
plot. (b) A comparison of the mean information recovery plots for images rank-
order encoded using foveal-pit model, FoCRen and VanRullen and Thorpe’s
retinal model.
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Figure 8.4: An input input image and its reconstruction using 1%, 5%, 10%,
15% and 20% of the coefficients of filtering of (left) foveal-pit model, (mid-
dle) FoCRen and (right) VanRullen and Thorpe’s retinal model. The progressive
reconstruction of the image using each of these three methods of rank-order en-
coding is shown in figure 8.5.
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Figure 8.5: Perceptual information recovery plot for progressive reconstruction of
an input image shown in figure 8.4 using the rank-ordered coefficients of filtering
of the foveal-pit model, FoCRen, and VanRullen and Thorpe’s retinal model.

the power law.

Reconstruction with LUT of foveal-pit model

The results of information recovery using the LUT of the foveal-pit model are

shown in figure 8.8(a). We observe that 75 – 80% of the perceptually-important

information about an input image is recovered by the time 7 – 10% of the neurons

of the foveal-pit model have fired their first spike. Further, a total information

recovery of more than 85% on average is observed, which is obtained by the time

15% of the ganglion cells of the foveal-pit model have fired their first spikes,

after which the curve goes into saturation and there is no further information

recovery. This rapid build-up of information is very much in agreement with the

basic concept of the rank-order code hypothesis in vision.

The information recovery plot of the foveal-pit model is compared with

similar plots of FoCRen and VanRullen and Thorpe’s retinal model in figure 8.8(b).

Since the number of coefficients in the foveal-pit model (' 73728) is greater

than that of VanRullen and Thorpe’s retinal model (' 43691), the information

recovery plot is shown against similar number of spikes rather than the percent-

age. The progressive reconstruction of an input image rank-order encoded using
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Figure 8.6: (a) Look-up-table for decoding rank-order encoded images using the
foveal-pit model, shown as a mean of the plots of rank-ordered coefficients
for each of the sixty-five images in our data-set. (b) Comparison of the LUTs of
the foveal-pit model, FoCRen and VanRullen and Thorpe’s retinal model.
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Figure 8.7: Look-up-table for decoding rank-order encoded images using foveal-
pit model.

the three methods of encoding viz. the foveal-pit model, FoCRen and Van-

Rullen and Thorpe’s retinal model, is presented for a qualitative evaluation in

figure 8.9, while the progressive information recovery plots for the same is shown

in figure 8.10. We observe that the rate and quantity of information recovery

is almost the same for the foveal-pit model and FoCRen. This in spite of

the fact that the foveal-pit model has only four layer (and sizes) of filters,

while the retinal model has sixteen layers. Thus, the foveal-pit model can be

said to be performing more efficiently in rank-order encoding visual stimuli than

VanRullen and Thorpe’s retinal model. Further, both the models far out-perform

VanRullen and Thorpe’s original method of encoding. We may thus say that by

implementation of biologically realistic principles, viz. FoCal with retinal model,

and models, viz. foveal-pit model, the performance of rank-order codes is

much improved.

As a comparison of the two models, viz. the foveal-pit model and Van-

Rullen and Thorpe’s retinal model, in light of the above results, we make a few

observations:

Firstly, the number of cells in the foveal-pit model, which approximately sim-

ulates only a very small eccentricity of the fovea, is much larger (' 30, 000) than

that in VanRullen and Thorpe’s retinal model, which is a simplified simulation
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Figure 8.8: (a) The mean information recovery plot for progressive reconstruction
of an input image using the LUT of the (a) foveal-pit model. The standard
deviation of the information recovery plot for individual images and all the sixty-
five images in our data-set about the mean information recovery plot shown as
error-bars. (b) Comparison of the information recovery plots from images rank-
order encoded using the foveal-pit model vs. FoCRen and VanRullen and
Thorpe’s retinal model.
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Figure 8.9: An input input image and its reconstruction using 1%, 5%, 10%, 15%
and 20% of the LUT weights of (left) the foveal-pit model, (middle) FoCRen
and (right) VanRullen and Thorpe’s retinal model.
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Figure 8.10: Perceptual information recovery plot for an input image shown in
figure 8.9 using the LUT weights of the foveal-pit model, FoCRen and Van-
Rullen and Thorpe’s retinal model.

of the various cell sizes across the whole of the retina. We have discussed earlier

that accuracy of vision is the ‘primary’ function of the fovea, different parts of

the retina having different specific ‘primary’ functions. The results above indi-

cate that the visual accuracy required for recognition can be achieved with only

four different sizes of cells. The addition of further increased cell sizes does not

contribute to the information that is being transmitted to the brain.

Secondly, cells in sixteen independent layers (VanRullen and Thorpe’s retinal

model) parallelises the information retrieved from a scene four times more than

that done by only four layers of cells (foveal-pit model). However, keeping

in view the similarity in performance of the two models, we may comment that a

‘shallow’ model with high density of cells in each layer nullifies the effect of ‘deep’

models with sparse population of cells in each independent layer, and provides a

similar efficiency in information transmission.

8.3 Chapter summary

In this chapter, we have built a foveal-pit model in order to study the effects

of using a biologically realistic model for simulating rank-order encoding in vision.
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Further, we simulate the biological mechanism of lateral inhibition to do away

with the redundancy due to oversampling of the input by the cells of the model.

This is done after the spikes are generated, which is an approximation of the pro-

cesses used in biology, where such redundancy reducing technique is implemented

prior to spike generation, i.e. at the photoreceptor layers. In spite of such an ap-

proximation, the results are the same as those of VanRullen and Thorpe’s retinal

model, which uses sixteen layers of filters to sample input data, compared to four

layers of such cells in the foveal-pit model. Thus, the foveal-pit model is

a ‘shallow’ but densely packed model, and resembles the retina more closely than

a ‘deep’ and sparse model such as VanRullen and Thorpe’s retinal model. We

may thus say that rank-order codes perform efficiently in computational models

that closely approximate the laws of biology.

In this work, we have used Petrovic’s objective metric for studying the in-

formation recovery from rank-order codes with respect to vision. In the next

chapter, we benchmark this measure with some commonly used measures in im-

age processing such as Root Means Square Error and Fourier Analysis.



Chapter 9

Benchmarking

So far in our work, we have been quantitatively evaluating information recovery

from rank-order encoded images using Qvalue, an adapted version of Petrovic

and Xydeas’s objective measure [59]. It is a novel method of measuring the

image fidelity using the rank-order ‘codec’ based on human visual system non-

linearity. However, as with all novel methods, it needs to be benchmarked against

an existing technique for image quality assessment. We do such a benchmarking in

section 9.1 using Root Mean Squared Error (RMSE). We further validate Qvalue

in section 9.2 by observing the information recovery from data which is not a

part of our data-set, thus doing out-of-sample testing for the objective metric.

Finally, in section 9.3, we use Fourier Analysis to rank-order encode and decode

images and obtain information recovery plot to further benchmark Qvalue against

an existing technique of image coding.

9.1 RMSE as information recovery measure

The objective metric Qvalue we use in evaluating the information recovery from

rank-order codes shows (figure 8.8(b)) that the foveal-pit model and the

FoCRen perform almost similarly, while both show a substantial improvement

from the retinal model. Subjective evaluation of the image reconstruction quality

shown in figure 8.9 conforms with the above results. At this point, it would be

interesting to observe the quality of the reconstructed images during progressive

recovery using an objective measure commonly used in image processing domain.

Although Mean Square Error (MSE) estimates are found to be poorly correlated

with subjective evaluation results [48, 87], our purpose here is to compare the

178
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performance of the three models viz. retinal model, FoCRen and foveal-pit

model, rather than quantifying information recovery. We use the square root of

Mean Square Error to compare the performance of the three models of rank-order

‘codec’ in information recovery with respect to the original image.

Root Mean Square Error (RMSE)

Let I and R be the original and reconstructed image respectively. Then the

Mean Square Error between the two images is defined as [8, 49, 48]:

MSE(I,R) =
1

VT HT

VT∑
x=1

HT∑
y=1

[I(x, y)−R(x, y)]2,

where VT and HT are the total number of rows and columns in I and R, and

(x, y) represents a spatial location in both the image matrices. We calculate the

Root of the Mean Square Error (RMSE):

RMSE(I,R) =
√

MSE(I,R).

Results

The RMSE for all the images in our data set was obtained during progressive

recovery of each image using each of the three LUTs viz. that of the retinal

model, the FoCRen and the foveal-pit model. The average RMSE plot for

each method is shown in figure 9.1. Comparing with figure 8.8(b), we find that the

essential behaviour of the perceptual information recovery plot and the RMSE

plots are the same. However, the performance of the foveal-pit model is

deteriorated with respect to FoCRen in figure 9.1 compared to figure 8.8(b).

This may be attributed to the fact that the perceptual edge information measure

takes into account only the edge information in the image, and measures this in

terms of HVS contrast sensitivity. Thus, we might comment that although the

image fidelity is better for FoCRen as compared to the foveal-pit model as

seen in figure 9.1, the perceptually important information content is almost the

same as observed from figures 8.9 and 8.8(b).
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Figure 9.1: Root Mean Square Error plots during progressive reconstruction of
images rank-order encoded using the retinal model, FoCRen and foveal-pit
model.

9.2 Out-of-set sample testing

In figure 4.3, we have presented some of the sample images from our data-set

of sixty-five images used in this work. Using the objective metric Qvalue, an

average of approximately 75% information can be recovered from a rank-order

encoded image with respect to the original when the retinal model is used as

a rank-order ‘codec’, while approximately 85% average information can be re-

covered using FoCRen and the foveal-pit model. A subjective evaluation of

reconstructed images also conforms with the quantitative results as has been dis-

cussed in sections 8.2.1 and 7.2.3. Further in section 9.1, we have seen that the

results obtained using Qvalue as the objective metric conforms with those obtained

using RMSE, an objective measure used widely in image processing. These re-

sults speak optimistically about using Qvalue as a standard measure for measuring

perceptually-important information in future studies of neural codes with respect

to vision. At this point, one might raise a question as to “How does Qvalue per-

form as an objective measure for images which are not a part of the data-set, and

thus do not contribute to the Look-Up-Table used for rank-order decoding?” A

positive result in this regard would indicate the generic use of Qvalue as an image

quality metric to evaluate the preservation of perceptually-important information



CHAPTER 9. BENCHMARKING 181

(a)
737 3685 7375 11059 14745

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank of spikes

P
ro

gr
es

si
ve

 r
ec

ov
er

y 
of

 p
er

ce
pt

ua
l i

nf
or

m
at

io
n

FOVEAL−PIT MODEL
FoCRen
Retinal model

(b)
737 3685 7375 11059 14745

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank of spikes

P
ro

gr
es

si
ve

 r
ec

ov
er

y 
of

 p
er

ce
pt

ua
l i

nf
or

m
at

io
n

FOVEAL−PIT MODEL
FoCRen
Retinal model

(b)
737 3685 7375 11059

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank of spikes

P
ro

gr
es

si
ve

 r
ec

ov
er

y 
of

 p
er

ce
pt

ua
l i

nf
or

m
at

io
n

FOVEAL−PIT MODEL
FoCRen
Retinal model

Figure 9.2: (a)– (c) Three images which are not a part of our data-set of sixty-five
images and their perceptual information recovery plots using the LUT weights of
the foveal-pit model, FoCRen and the Retinal model.
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in one image with respect to another.

To test the information recovery from rank-order encoded images that are not

a part of our data-set of sixty-five images, we obtain three images at random and

observe the perceptually important information recovery plot using retinal model,

FoCRen and foveal-pit model. The images and their respective information

recovery plots are shown in figure 9.2. We observe that the information recovery

plot works well for images which are not a part of the data-set. Further to this we

also observe that for the image in figure 9.2(c), which mainly consists of text1, the

information recovered using foveal-pit model is approximately 5% more than

that using FoCRen. Also, the total quantity of information recovered using the

FoCRen and retinal model is the same, although the rate of information recovery

is faster for FoCRen. An extensive search for image types for which Qvalue may

not work well may be done as future work. Further, in a recent study, it has been

observed that Petrovic’s objective metric works poorly in noisy images [56]. This

aspect has not been dealt with in this work, and may be a hindrance when noise

is incorporated in rank-order codes, and may also be dealt with in future work.

9.3 Fourier ‘codec’ and information recovery

There are several methods used in image processing applications which give per-

fect reconstruction of encoded images for example Fourier transforms, wavelet

transforms, Laplacian pyramid, etc. [31, 61, 8]. Here, we choose to show a perfect

image reconstruction obtained using Fourier transform, which is widely used to

deal with various aspects of image processing. However, it might be reiterated

here that in this work, we are simulating biological visual processing, and hence

our transform is the DoG, which resembles ganglion cell receptive fields. These

transforms are singular, and hence the use of pseudo-inverse method of decoding

(chapter 6) to obtain a perfect reconstruction. We use Fourier transform to en-

code an image, rank order the Fourier coefficients and then use inverse Fourier

transform to reconstruct the image progressively using the rank-ordered Fourier

coefficients. We obtain Qvalue at each step of progressive reconstruction and the

information recovery plot thus obtained is compared with similar plots using the

coefficients of the DoG filter of the three rank-order ‘codec’s presented in this

1Due to image size restrictions, a partial view of the nameplate showing occupants of IT302,
IT Building, University of Manchester, is obtained for this study.
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Figure 9.3: (a) The progressive information recovery from all the sixty-five rank-
order encoded images when the Fourier transform is used as a basic filter instead
of the DoG, shown as a spread about the mean. (b) The mean information
recovery plot of ‘(a)’ compared with the mean information recovery plots that
were shown earlier in figure 8.3(b).
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Figure 9.4: The mean information recovery plot of figure 9.3(a) compared with
the mean information recovery plots that were shown earlier in figure 8.8(b).

work so far.

In figure 9.3(a), we show the perceptual information recovery plot for all

the images in our data-set as a spread about the mean plot when an image

is Fourier transformed, rank-order encoded, and then reconstructed using the

inverse Fourier transform. The mean information recovery plot is compared

with similar plots of the retinal model, FoCRen and foveal-pit model in fig-

ure 9.3(b). We observe that the rate of information recovery is faster for the

foveal-pit model and FoCRen compared to that using Fourier transform. Al-

though there is a full information recovery when Fourier transform is used for

image encoding and decoding, it is only around 1 – 2% more than than using

foveal-pit model and FoCRen. Further, we compare the Fourier informa-

tion recovery plot with the mean information recovery plots using the LUT of

retinal model, FoCRen and foveal-pit model in figure 9.4. We observe that

even without using the true coefficients of filtering, the foveal-pit model and

FoCRen works better than the information recovery plot using Fourier Trans-

form in terms of rate of information recovery for the first 5% coefficients. These

observations open up the viability of rank-order ‘codec’ being used as an image

compression model, and can be considered as a future work.
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9.4 Conclusion

In this chapter, we have benchmarked Qvalue against Root Mean Square Error as

an image quality assessment metric. Further, we have studied the performance

of this metric when Fourier transform is used for image processing in lieu of DoG

filter. We also study the behaviour of Qvalue for the retinal model, FoCRen and

foveal-pit model for images which are not a part of our data-set. Based on

the observations, we have mentioned certain work that could be undertaken as

future work.

In the next chapter, we discuss the conclusions that can be drawn from the

work presented in this thesis, and also scope for future work.



Chapter 10

Conclusion and Future Work

To conclude, we review the work and results presented in this thesis. We restate

our thesis questions from the Introduction chapter and examine how, and to what

extent, the results of our work have been successful in answering these. In doing

so, we draw conclusions on the implications of the results with respect to the

thesis hypothesis. The conclusions drawn from the thesis leave a wide scope in

carrying this research forward. We conclude the thesis by suggesting some viable

research possibilities based on the work presented here.

10.1 Conclusion on hypothesis

The primary question that this thesis has tried to answer is “Are rank-order

codes, at all, able to represent input information efficiently, and if so, then how

fast can that information be read from the codes?” An answer to this query will

be a conclusion about the thesis hypothesis. Towards that end, we investigate

some sub-queries in the same sequence as stated in section 1.4.

We base our work on VanRullen and Thorpe’s retinal model as a rank-order

encoder of visual input. We start by validating the works of VanRullen and

Thorpe, presented in chapter 4, whereby a static monochrome image is rank-order

encoded using the model. The rank-order is then decoded by reconstructing the

image and the image fidelity of the reconstruction with respect to the input is

inspected visually. The purpose behind decoding is to test (i) the performance

of rank-order codes in encoding visual information (ii) how fast perceptually-

important information can be recovered from rank-order encoded data. From

these perspectives, a qualitative evaluation of rank-order code performance is

186
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presented as a part of the validation which confirms the results obtained originally

by VanRullen and Thorpe. Having done so, we now proceed towards answering

the thesis queries, the primary requirement and motive of such validation.

10.1.1 On quantifying information recovery

Question 1

The first query in trying to answer the primary question of the thesis was to ask

“How can we quantitatively measure the performance of the rank-order codes with

respect to vision?”. Since the contrast sensitivity of the human eye is nonlinear,

as discussed in chapter 5, a least mean square or information theoretic measure

of the information recovered from rank-order encoded images, as has been done

in previous research [81], seems inappropriate. In chapter 5, we propose a novel

way of quantitatively measuring the perceptually-important information in rank-

order decoded images — by adapting an objective metric proposed by Petrovic

and Xydeas which they used for measuring perceptual information preservation

in image fusion [59]. In doing so, we come to our second query:

Question 2

“What effects does the measure have on the results of VanRullen and Thorpe’s

simulation?”. We present the answer to this query based on our empirical results

obtained in chapter 5:

• On average around 70% of the perceptually-important information with

respect to the original image can be retrieved from rank-order encoded

images by the time 20% of the ganglion cells in VanRullen and Thorpe’s

retinal model have fired their first spikes.

• Very little contribution to information recovery is made beyond this point,

with on average 72–73% information recovered by the time 30% of the

ganglion cells have fired their first spikes.

• Further, information recovery is faster for images with fewer edges than for

those with more detailed content.

• Such quantitative comparisons agree with a visual inspection and compar-

ison of the input and decoded, i.e. reconstructed, images.
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• Decoding with the coefficients of filtering, instead of true rank-order de-

coding using a generic Look-Up-Table of weights, does not show a perfect

reconstruction, which is in agreement with visual inspection of the recon-

structed images. This observation leads us to a third query and is discussed

below.

With such empirical results, we have obtained a satisfactory answer to our second

query, so that we now proceed to the third query, concerning ways of improving

the decoding of rank-order encoded images.

10.1.2 On optimising information recovery

Question 3

Based on the observation that the technique used by VanRullen and Thorpe in

decoding rank-order encoded images is lossy, as has been confirmed with the

quantitative measure, we come to our third query — “Can the quantity of infor-

mation retrieved from rank-order codes be improved by improving on the decoding

techniques used by VanRullen and Thorpe?”. In search of the answer to this

query we introduce a pseudo-inverse method of rank-order decoding, whereby we

obtain a substantial improvement in the amount of information recovered from

rank-order encoded images, and also in the time to such recovery. The results

from the empirical analysis as presented in chapter 6 are summarised as below:

• Perfect reconstruction of input image is obtained when coefficients of filter-

ing are used for rank-order decoding.

• Total information recovery is on average 20% more than that with Van-

Rullen and Thorpe’s method of decoding.

• Rate of information recovery is faster compared with VanRullen and Thorpe’s

method of decoding.

Such empirical results indicate that the quantity and rate of information re-

covery from rank-order encoded images can indeed be improved by improving on

decoding techniques. The novelty in the method of rank-order decoding is one of

the important contributions of the thesis and has the potential of leading on to

interesting future research, which will be discussed further in section 10.2.
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Question 4

Although the rate and quantity of information recovery is improved using the

pseudo-inverse method of decoding compared to VanRullen and Thorpe’s method

of decoding, the time to maximum information recovery is not until on average

approx 37% of the ganglion cells have fired their first spikes. Moreover, the

pseudo-inverse method of decoding is computationally expensive in terms of re-

sources and time. Consequently empirical analysis with images of size larger than

32 × 32 has not been possible. A study with images of size 128 × 128 would be

desirable. On such grounds, we propose to explore other viable options of opti-

mising the rank-order code performance, the goal being to recover the maximum

possible visually-important information in minimum time, the time until 20%

of the cells have fired their first spikes being the ideal permissible ‘time-limit’

for information recovery. This leads us to our fourth query — “How can the

information recovery from rank-order codes be optimised?”.

We fall back on intelligent and efficient technique of lateral inhibition, adopted

by sensory evolution, to provide us with a novel algorithm, viz. Filter-overlap

Correction algorithm (FoCal), and use it to improve the rank-order encoding

used by VanRullen and Thorpe in their retinal model. In doing so, we do away

with the approximation of VanRullen and Thorpe’s method of rank-order decod-

ing, and use it in image reconstruction. We obtain, not a perfect, but ‘near’

perfect recovery of perceptually-important information in the reconstructed im-

age with respect to the original. However, the time to information recovery is

much improved than that using VanRullen and Thorpe’s rank-order ‘codec’ or

the pseudo-inverse method of decoding. Thus, we have a trade-off between the

quantity of information recovered and the time to information recovery — an

optimum performance from the rank-order codes.

The empirical results of using FoCal as presented in chapter 7 are summarised

below:

• On average around 15% increase in the total information recovery is ob-

tained compared to encoding using VanRullen and Thorpes method.

• However, the rate of information recovery is very fast compared to the other

two methods used so far viz. the pseudo-inverse method and VanRullen

and Thorpes method. On average 75% of the information is recovered by

the time only 10% of the cells have fired their first spikes, while a total
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information recovery of around 85% on average is achieved by the time

around 20% of the cells have fired their first spikes.

• Reconstruction of the input stimulus using coefficients of filtering is near

perfect with respect to the original, with a total of around 99% perceptually-

important information recovered from the rank-order codes.

We consider FoCal as the answer to our fourth query, and proceed to the fifth

and final question in the next section.

10.1.3 On biologically realistic rank-order encoding

Question 5

The fifth and final question that we try to answer is “Do rank-order codes perform

better in a biologically realistic model?”. In trying to answering this query, we

make a major contribution to the thesis in designing and simulating the foveal-

pit model, which is a biologically realistic model of the foveal-pit in the retina.

We use this model to process images and use FoCal to encode the information

in rank-order. Thus, we have a biologically realistic rank-order encoder, whereby

rank-order encoding is being done using models and principles based closely on

biological parameters. We use VanRullen and Thorpe’s method of decoding to

retrieve information from encoded images using the above encoder. The results

of our empirical analysis are summarised below:

• The total information retrieved from the codes is almost the same as that

obtained using FoCal for rank-order encoding (FoCRen).

• This, is in spite the foveal-pit model having only four layer of filters

compared to sixteen in VanRullen and Thorpe’s retinal model. This is a

very high optimisation on the rank-order encoding mechanism.

• However, the rate of information recovery, on average, is slightly better for

the FoCRen.

From the observation that the quantity and rate of information recovery in

both the foveal-pit model and FoCRen is almost same in spite of the former

having quarter of the number of cell layers as that of the latter indicates a very
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efficient rank-order encoding mechanism in the foveal-pit model. Such obser-

vations lead to a very important conclusion — that a model designed closely on

biological parameters performs optimally in encoding the maximum information

with fewer resources (fewer ganglion cell layers). Thus, to our fifth query we can

say that the rank-order codes indeed perform efficiently in a biologically realistic

model.

Such answers to our sub-queries have answered our primary thesis question

in the affirmative, so that we can restate our thesis hypothesis as a thesis conclu-

sion: “Rank-order codes are a viable means of information encoding in

applications that require fast and efficient information transmission”.

10.2 Future Work

In the following sections, we list some of the possible directions that can be

adopted by future research in this area.

10.2.1 Towards realistic simulation

So far in our simulation, we have used the phrase ‘by the time x% (say) of ganglion

cells have fired their first spike’ to indicate the time to information recovery.

However, there are two presumptions here which are stated below, along with the

possibilities of extension of the simulation presented in this thesis in doing away

with these presumptions.

Incorporating time

The time to recovery is actually counted by the number of ganglion cells that

have fired their first spikes, rather than the actual time to such firing. The rate of

information recovery, thus, is quantified with respect to rank of spiking, and thus

has a regularly spaced scale. However, a population of ganglion cell is unlikely to

fire at uniform time intervals. Thus, quantifying the rate of information recovery

with respect to time of firing — in other words, the latency of firing of the ganglion

cells — will be a more realistic evaluation. Again, a realistic way of doing this

would be as discussed below.
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Incorporating neural models

That the ganglion cells are firing is only a presumption made based on the sign and

magnitude of the coefficients of filtering an input image with simulated ganglion

cell receptive fields. However, in real time, some neurons may fail to fire. Thus

a more realistic simulation of firing ganglion cells would be to incorporate some

model of a neuron using existing and available software. This would give a more

realistic picture of rank-order encoding using the two models discussed in this

thesis. Further, using such models, the time to spiking, as suggested above, will

be incorporated by default.

10.2.2 Towards realistic neural coding

A cascaded model

Empirical evidence suggests that rate codes are ubiquitous in the central nervous

system. Although recent research have shown evidence of time to first spikes being

used as neural codes in the somatosensory pathways [53, 35], an independent

existence of rank-order code seems highly unlikely. One interesting extension to

the work in this thesis would be to incorporate a cascaded model whereby the

first spikes are rank-order encoded, but subsequent spikes from each ganglion cell

in a population are ‘rate encoded’. Information retrieval using such a combined

model could shed light on the biological plausibility of such a co-existence.

Noisy codes

So far, we have considered a time t = 0 when a population of cells is initiated

with a stimulus and they start firing. On the contrary, empirical evidence sug-

gests a low sustained rate of firing even when there is a total absence of input

stimulus. Thus, on application of stimulus, the neurons are at different levels

of membrane potential. Consequently, their firing latency may not vary linearly

with the strength of the input stimulus. For example, a cell which is on the verge

of reaching the threshold voltage will fire with very low input stimulus strength.

On the other hand, a cell which is in an absolute refractory state will not fire

even on application of a strong stimulus. Such non-linearity incorporates noise

in the model and would be a very desirable addition to the existing simulation

results in this thesis.
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Encoding motion

We have already introduced eye saccades in chapter 8. This work could be carried

further with eye saccades in real time. A different perspective would be to in-

corporate dynamic stimulus and study real-time encoding techniques of the eye,

and thereby, the viability of using rank-order encoding techniques with motion.

10.2.3 Redundancy reduction pre spiking

The phototransduction taking place in the photoreceptors and subsequent trans-

mission of electrical signals through the other neural layers of the retina is ana-

logue in behaviour. The ganglion cells act as analogue to digital converters —

converting the analogue variations in their respective cell membranes into volt-

age spikes at discrete intervals. In chapter 7, we introduced the Filter-overlap

Correction algorithm, whereby we modify the firing order of the ganglion cells

to simulate the technique of lateral inhibition, used by the photoreceptors for

redundancy reduction in the input stimulus. However, the algorithm is only an

approximation; in every iteration the spikes firing later in time are corrected with

respect to the earlier firing spikes, while the earlier firing spikes remain uncor-

rected. This renders the algorithm a one-way correction for redundancy with a

bias towards the earlier firing spikes. Lateral inhibition, on the other hand, as dis-

cussed in section 3.4.2, is a two-way process whereby each cell can be thought of

as having a feedback from its neighbouring cell. Thus two neighbouring cells form

a closed loop, and both get corrected for redundancy in data and continue to do

so until a balance is reached. The process is analogous to an electrical power grid,

where the distribution of electrical power to individual nodes is automatically bal-

anced by interconnections between the nodes. Interestingly, the results of such an

iterative correction is similar to that of the method of pseudo-inverses (discussed

in chapter 6), which gives the least squares solution for a set of ill-conditioned

equations. Moreover, such a correction is done by the photoreceptors, prior to

passing on the electrical signal to subsequent layers. Thus, redundancy is reduced

pre spiking, unlike in our simulation. Once percolated down to the ganglion cell

layer for spike generation, we argue that a perfect stimulus reconstruction might

be obtained by rank-order decoding, without going through the computationally

expensive method of pseudo-inverses.

The arguments presented here are only a speculation, and the viability of
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extending our foveal-pit model to accommodate such a mechanism leaves

interesting space for future research in this area. In fact, such an argument

has the potential to be an independent research topic in itself, and information

processing along the cone pathway can be simulated prior to feeding the above

signals to ganglion cell layers.



Appendix A

Contrast Sensitivity of Human

Eye

The human eye can better distinguish between two objects or between an object

and its background if the difference in luminance is large. In practice, relative

difference in luminance is more important than the absolute difference [20]. The

relative difference can be expressed by the ratio between two luminance values,

known as the contrast ratio.

contrast ratio =
Lmax

Lmin

,

where Lmax and Lmin are the maximum and minimum luminances in a certain im-

age. The contrast between two objects is the difference between two luminances

(a) (b)

Figure A.1: (a) Contrast in a sinusoidal pattern. (b) A sinusoidal pattern and
spatial frequency.
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divided by the sum of them.

contrast =
Lmax − Lmin

Lmax + Lmin

.

If Lmean is the average luminance, and x is an arbitrary deviation of the ampli-

tude about the mean luminance Lmean, then,

Lmin = Lmean − x,

and

Lmax = Lmean + x

⇒ Lmax − Lmin = 2x

and

Lmax + Lmin = 2Lmean

Therefore,

contrast =
x

Lmean

(A.1)

The reciprocal of the minimum contrast required for detection is called the con-

trast sensitivity of the eye.

Contrast for a sinusoidal luminance pattern is measured by the modula-

tion depth of the pattern, defined as the amplitude of the sinusoidal variation

divided by the average luminance, expressed in equation A.1 and as shown in

figure A.1(a). The minimum modulation depth required for the detection of this

pattern by the human eye is called the modulation threshold or the detection

threshold of the eye. The Contrast sensitivity of the human eye is usually

measured with sinusoidal luminance variations and is defined as the reciprocal of

the modulation threshold as in equation A.2.

contrast sensitivity =
1

modulation threshold
. (A.2)

The modulation threshold depends on the wavelength of the sinusoidal luminance

variation.The reciprocal of the wavelength of a pattern as shown in figure A.1(b)

is called its spatial frequency.
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