
SoC Simulator on FPGA using

Bluespec System Verilog

Mohsen Ghasempour, Mikel Luján, and Jim Garside
School of Computer Science

The University of Manchester
Oxford Road, Manchester, M13 9PL, UK

{ghasempm , mikel.lujan , jgarside}@cs.manchester.ac.uk

Abstract— Building large computing systems requires first to
model them. Modern hardware systems are so complex that
their software models in the desired detail may be too slow.
Thus abstract hardware modelling can be appropriate. This
paper presents an example software/hardware model built
using Bluespec System Verilog (BSV) design flow to give rapid
simulation of a hardware system. The chosen example was a
hardware model of the on-chip router, on-chip and off-chip
network of SpiNNaker for understanding the behaviour of the
traffic in the system. A model of a 5×5 SpiNNaker topology has
been designed in Virtex-5 FPGA using BSV and a Graphical
User Interface (GUI) was developed in LabVIEW for graphical
representation of the results.

I. INTRODUCTION

Complex computer architectures, such as current multicores
and SoCs, are time and cost expensive to design. Therefore,
a precise model of the system is required to avoid costly
mistakes. Due to the level of complexity of modern hardware
architectures, software models (of such systems) are
generally too slow so hardware models are preferred. In
recent years, demands for FPGA (Field Programmable Gate
Array) based hardware emulators and software accelerators
have increased [1-6]. The reason is that modern FPGAs
provide large capacity, high-speed and enough flexibility to
map almost any application and run it faster than software. A
reconfigurable hardware model on FPGA makes it possible
to refine and modify a design easily to get the desired
outcome. Also, FPGAs are able to emulate the functionality
of the model (clock accurate simulation or emulation). These
attributes make FPGAs an excellent candidate for abstracted
hardware modelling of computer architectures. On the other
hand, developing an accurate model of SoCs or multicores
on FPGAs is not straightforward and requires in depth
knowledge about computer architecture design and
Hardware Description Language (HDL); such as VHDL,
Verilog, System Verilog or Bluespec. As systems become
more complex, more effort is required to achieve a reliable
model of the system. In this situation a high level HDL can
speed up the modelling process as well as producing a more
reliable design. Bluespec is able to model computer
architecture at a high level of abstraction as well as guarantee
the correctness of functionality.

In this study a hardware model of the SpiNNaker network is
developed on a Virtex-5 FPGA using BSV for understanding
the traffic behaviour on the system (Fig. 1). The network
traffic is subject to queuing, contesting for links and, in
extreme cases, packet dropping. It is the behaviour of this
complex scalable network under dynamic loads which is the
primary modelling target. LabVIEW was used as a front-end
GUI for graphical presentation of the results. A brief
introduction of SpiNNaker system, Bluespec and LabVIEW
are presented in Sections II, III and IV, respectively. Section
V presents the experimental work and design process.
Conclusions and future work are drawn in Section VI.

Figure 1. SpiNNaker chips and Virtex 5 FPGA.

II. SPINNAKER ARCHITECTURE

SpiNNaker is a hardware-based real time simulator of
spiking neural network which consist of up to 65,536
SpiNNaker nodes (chips) or one million processors. This
system is able to simulate around one billion neurons in real
time [7]. Models of the neurons are run in software, the
architecture provides acceleration of the delivery of neuron
spikes (i.e. one packet in SpiNNaker).

A. SpiNNaker Node

A SpiNNaker node is a SoC consists of 18 ARM968
processors. Each processor is able to simulate up to 1000
neuron in real time [8]. There are two Networks on Chip
(NoC) in each SpiNNaker node, a Communications NoC
(Comms NoC) and System NoC. The primary function of
System NoC is to connect processors to the SDRAM
interface. The Comms NoC carries packets between the

processors on the same or different chips. A block diagram
of SpiNNaker chip is presented in Fig. 2.

Figure 2. Schematic model of SpiNNaker chip.

B. Router

One of the main components of SpiNNaker chip is the
router. This is the heart of the Communications NoC and it
provides the internal interconnection (between cores) and
external interconnection (between SpiNNaker nodes). A
hardware simulator of an SpiNNaker network with point-to-
point router was developed in this work. In point-to-point
communications a packet can be sent from one processor in
one SpiNNaker node to other processor in another
SpiNNaker chip anywhere in the system [9, 10].

C. Topology of Interonnection netwrok

SpiNNaker chips are arranged in a 2D triangular mesh
topology wrapped into a torus. A fully expanded SpiNNaker
system is composed of 256×256 SpiNNaker node. Each
SpiNNaker node has six bidirectional links in six different
directions, North, South, East, West, North-East and South-
West (Fig 3). An example of 5×5 structure of SpiNNaker
system with wrap-around links is presented in Fig. 4.

Figure 3. SpiNNaker node’s external links.

Figure 4. Example of a 5x5 SpiNNaker topology.

III. BLUESPEC SYSTEM VERILOG

BSV (Bluespec System Verilog) is a high level hardware
description language which is fully synthesizable to
hardware. These two attributes make BSV an excellent tool
for the fast prototyping of complex systems. BSV uses a
behavioural model which is called Atomic Rules and
Interfaces. There are two reasons why BSV uses this model.
First, the model of atomic rules is basically parallel so this
makes BSV suited to the massive parallelism in a complex
hardware design. Second, atomicity allows the functional
correctness of a design to be achieved by considering the
one-rule-at-a-time semantic (looking at each of the rules in
isolation, without considering the action of other rules).
BSV has a very strong type elaboration mechanism which
provides great power to express computer architecture with
high level of reliability. In the experimental results section, it
will be explained how BSV can speed up the design process.
A sample of BSV code is presented in Fig. 5. More examples
and explanation about BSV can be found in [11, 12].

Figure 5. An example of Bluespec code [4].

IV. LABVIEW

Laboratory Virtual Instrumentation Engineering
Workbench (LabVIEW) is a system development
environment for visual programming language from National
Instruments Corporation. LabVIEW uses a dataflow
programming language called “G”. In contrast with
sequential (programming) languages, “G” is capable of
parallel execution. Its graphical environment and variety of
libraries for different communication protocols (such as
RS232, RS485, TCP/IP) make LabVIEW an excellent
candidate for creating front-end monitoring platforms and
GUIs for custom designed hardware [13]. Fig 6 shows an
example code in LabVIEW.

Figure 6. Example of LabVIEW code.

V. EXPERIMENTAL WORK

A. Model of the system

The focus of this work is to investigate the traffic
behaviour in the Comms NoC in a multi SpiNNaker chip
system. Thus, some simplifications were done to the
structure of SpiNNaker to have a simple model of
fundamental blocks involved in the Comms NoC. Fig. 7
presents the implemented model in this work which consists
of a 5×5 SpiNNaker structure, a RAM unit and a Monitor
unit. The Monitor unit gathers the desired information from
all SpiNNaker nodes and sends it to the serial port (RS232).
The RAM unit is used for initialization of the network
parameters.

Each SpiNNaker node is simplified and modelled as shown
in Fig. 8. There is no need to have the System NoC and
SDRAM for analysing the network traffic in a chip,
therefore these parts are eliminated from the model. All 18
ARM processors are modelled as an injection queue with
room for four packets at its output and a queue with the
same room in its input for receiving packets.

A 64-bit programmable register has been implemented in
the modelled processor which makes the system more
flexible in injecting a desired traffic pattern. Also, for each
processor, another 64-bit program register dedicated to the
RAM unit (in this model twenty five 64-bit program
registers are fitted in the RAM unit).

Figure 7. Implemented model in BSV.

Figure 8. Simplified model of SpiNNaker network
components.

In the example presented in Fig 9, the first 16 bits of the
program register specify the location (coordinate) of each
node in the system. 8 bits for X coordinate and 8 bits for Y
coordinate. The next 8 bits are dedicated for clock intervals
(delay) between injecting each packet by a processor. Bits
48 to 55 present the number of packets which each
processor should inject and bit 24 specifies the mode of
injection, if it is 0 the processor will only send the number
of specified packets (by bits 48-55) once and then stop
injection, otherwise, if bit 24 is 1, the processor keeps
injecting packets continuously. Bits number 32 to 47 (16
bits) specify the location of the first destination chip
(processor will send the first packet to this node).

Figure 9. An example of program register.

According to the specified value in the program register
(hex format), the SpiNNaker node which is located in
coordinate 0,0 will send the first packet to the node at
coordinates 1,0 and keep injecting 24 packets to all other
SpiNNaker nodes according to the specified path way in
Fig. 10. Using this algorithm it is possible to generate point-
to-point uniform and non-uniform traffic patterns.

Figure 10. Path way of injection of 24 packets in a 5x5
SpiNNaker system.

The Comms block serialises the input packets coming from
6 neighbour SpiNNaker chips and local processors and feed
them into the router one at a time. The second part of
Comms NoC (right hand side) presented in Fig. 2 was
eliminated for the sake of simplicity and packets are routed
directly (Fig,11).

The router plays a significant role in the communication
network functionality so an accurate model of the point-to-
point router has been developed and implemented. In the
original SpiNNaker, the point-to-point router uses routing
tables. In our model Dimension Order Routing (DOR) [14]
has been used instead for the sake of simplicity and efficient
use of FPGA resources. Fig. 12 presents a block diagram of
the implemented point-to-point router. Three pipeline stages
have been considered for implementation of the point-to-
point router, Packet decode, Routing engine and Output
select.

Figure 11. Comms NoC block diagram.

In the first stage, the input packet is analysed and required
information for the next stage will extracted. In the Routing
engine stage two main operations are executed. If a packet
comes from the first stage then DOR will be applied to it and
its destination will be determined. Otherwise, the packet
comes from RAM unit so the Routing stage will extract the
source chip ID of the packets (program register) and route
the program packet to the internal processor. In the case that
the input packet comes from the decode stage, after
determining the destination (output link) with the Routing
engine, the packet will be sent to the Output select stage.
Here the router tries to send the packet to the specified link.
If there is no congestion or failure on the specified link, the
router will send the packets successfully. If a packet cannot
be sent, two programmable timer intervals are applied. The
first allows a period for working on retrying; the second
allows attempts of rerouting (if link 1 fails, link 0 will be
used (Fig 3)). If the second timer expires the packet is
dropped.

Figure 12. Router block diagram.

During the routing process an internal monitor unit counts
the number of dropped (due to failure or congestion in output
links), injected (by local processor), received (by local
processor) and distributed packets (packets which come
through the router only from 6 bidirectional link not from
the local processor) in the router. Two switches choose the
desired monitor parameter. By changing the position of the
switches, number of dropped, injected, received or
distributed packet will be sent to the monitor unit. Different
positions of the switches are depicted in Table 1.

Table 1. DIP-Switch Positions

Dip Switch MUX output

00 Dropped Packet

01 Injected Packet

10 Distributed Packet

11 Received Pakcet

These switches are wired to all of SpiNNaker nodes so that
at any time the monitor unit will receive 25 monitor packets
from 25 SpiNNaker nodes.

A monitor unit was designed which continuously receives
the dropped, received, injected or distributed packets
(depending on the position of the switches) from all
(SpiNNaker) nodes and sends these to the serial port which is
connected to the general purpose computer. A front-end GUI
was developed using LabVIEW depicts a graphical
presentation of the traffic behaviour of the network (Fig. 13).

A RAM unit with 25 output ports was designed to initialise
the required parameter of routers such as source chip ID and
to program the register of each processor in the system.
These parameters can be saved in a text file and then loaded
into the RAM unit block during the synthesis and
implementation process. This makes it possible to generate
different traffic patterns easily by modifying twenty five 64-
bit registers in a text file.

Figure 13. SpiNNaker monitoring platform implemented

in Labview.

B. Design process

The whole design was implemented using BSV and
simulation results have been analysed using Bluesim, which
is a clock accurate BSV simulator, to investigate the

correctness of the system. GTKwave has been used for
precise analysing of simulation results which generated as
VCD format from Bluespec compiler. Then Verilog files
corresponding to each implemented BSV module were
generated using the BSV compiler. Generated Verilog files
have been synthesized using ISE (Xilinx synthesis tool) to
generate the bit stream file. Finally the generated bit stream
file was loaded into the FPGA and the functionality of the
whole system was analysed in real time (Fig 14).

Figure 14. Design flow.

Highlighted boxes in Fig. 14 are different tools which are
used during the design process.

C. Experimental Results

ML509 (Virtex-5 XC5VLX110T) Xilinx evaluation
board is used as a target platform for the purpose of this
paper. Table 2 shows a brief summary of available resources
on selected Virtex-5 FPGA.

Table 2. Virtex-5 XC5VLX110T resources

Resources Available

MAX user I/O 680

Slice LUTs 69,120

Max Distributed RAM (Kb) 1,120

Block RAM blocks (Kb) 5,328

Different traffic patterns were injected into the system and
the behaviour of the system was analysed. First a uniform
traffic pattern was injected by defining the program registers
of all SpiNNaker chips to the desired value (each SpiNNaker
node injects 24 packets continuously starting from its
adjacent node). Each SpiNNaker node will count and
accumulate dropped, injected, received and distributed
packets in each clock cycle (clock accurate monitoring).
Then after 1000 clock cycles SpiNNaker nodes send the
desired monitor packet (specified by the switches) to the
monitor unit. This adds an 8-bit tag to each packet to specify
the node’s ID and then sends it to the serial port. In the front-
end software, LabVIEW, the received packet is decoded and
according to its tag will be displayed in the corresponding

position depicted graphically in fig 13. Also, a real time
graph shows the total number of dropped, received, injected
or distributed packets.

For precise analysis of the traffic behaviour of the system, a
single graph has been dedicated for each SpiNNaker node.
Therefore the variation of dropped, received, injected and
distributed packets in each node can be observed (Fig 15).
Also a graphical presentation of network traffic density was
implemented (Figs 16 and 17).

Figure 15. Dedicated graph for each SpiNNaker node.

Figure 16. An example of injected pattern (SpiNNaker
nodes, except 9 nodes located at the centre, are injecting

packet toward node located at coordinate 2,2).

Only the injected packets from different SpiNNaker nodes
can be observed in Fig. 16. The front-end software displays
one of the dropped, received, injected or distributed packets
at a time. Also Fig. 17 only presents the distributed packets
in the system. The graphical presentation of traffic behaviour
gives good visibility of the probable fault in the design. For
instance if there is any fault in DOR implementation, in the
router design, the outcome will be non-uniformed traffic
distribution in the system which is clear from GUI in
LabVIEW.

Figure 17. Presentation of network traffic distribution
for presented example of injected packet in Fig. 16.

The bottleneck of the system performance is the serial
communication since it limits the speed of the monitoring
process. The maximum baud rate of serial communication is
115,200. Each monitor packet is 32 bits wide, but after
adding an 8-bit tag and some start and stop bits, it will be 50
bits wide (40 bits data plus 10 control bits). Therefore, in the
best situation, 433 µs (approximately) is required for sending
each packet to the front end software (286 clocks interval for
each bit if using 33 MHz clock and 868 clocks interval if
using 100 MHz clock). Also, in practice, some extra delay
should be considered between sending packets to avoid
conflict in receiving packets in the front end software.
Although these unwanted delays degrade the performance of
the system, the hardware model is still much faster than the
software simulator. A comparison has been done between
Bluesim (BSV simulator) and the hardware implementation.
The results show that the FPGA implementation is 160,000
times faster than Bluesim. Simulation ran on a core i7-2.8
GHz computer with 6 GB RAM. Table 3 shows the FPGA
utilization summary for 5×5 SpiNNaker topology modelled
in this study. The results show that significant number of
slice LUTs (87%) in FPGA has been used.

Table 3. Utilization summary

Resources Utilization

Slice Registers 47%

Slice LUTs 87%

Occupied Slices 96%

Bonded IOs 1%

Table 4 presents the number of code lines for BSV
implementation and corresponding generated Verilog code
by Bluespec synthesis tool. According to these results,
Verilog implementation of the same system can requires up
to 4 times more effort. It could be claimed that generated
Verilog code by BSV is not as efficient as handwritten
Verilog code but still we found that BSV can speed up the
design process.

Table 4. Number of code line in BSV and generated
Verilig files

Modules
Bluespec

(.bsv)
Generated Verilog

(.v)
Ratio

SpiNNaker_Board 1324 6203 4.6

SpiNNaker 241 765 3.1

Processor 105 299 2.8

Comms NoC 153 575 3.7

Router 342 1055 3.08

Monitor_Unit 223 1195 5.3

RAM 159 1211 7.6

Total 2547 11303 4.4

VI. CONCLUSION AND FUTURE WORK

In this study an FPGA-based platform was designed for

understanding the traffic behaviour in the SpiNNaker
network. The SpiNNaker architecture was introduced as a
hardware-based real time simulator of spiking neural
network. Fundamental components in a SpiNNaker chip
such as Comms NoC, System NoC, Router and Processors
were briefly analysed and their functionality discussed. A
brief introduction of BSV has been presented and its main
attributes were discussed. For the purpose of analysing the
network traffic behaviour in the system an efficient model
of the main components of the network was implemented.
The System NoC, SDRAM and some other peripherals were
eliminated from the model since these have no effect on
traffic in the network. By eliminating these components
there are enough FPGA resources to have a more accurate
model of important components such as the router. The
local processors were modelled as a single queue with room
for four packets in its input and output.

The Comms NoC was modelled to serialise incoming
packets from local processors and other SpiNNaker nodes
and feed them into the router one at a time. Then an
accurate model of the point-to-point router was proposed
and discussed. In the process of routing 4 main effective
parameters for analysing the traffic behaviour has been
monitored which are sent, received, injected and distributed
packets (clock accurate monitoring). The router will send
one of these parameters to the monitor unit according to the
position of dedicated switches. Therefore a SpiNNaker
network model was implemented using the mentioned three
components: Processor, Comms NoC and Router.

A model of a 5×5 SpiNNaker topology (triangular torus)
with wrap-around connection (Fig. 4) was designed in BSV.
A monitor unit was designed to gather monitor packets of
all SpiNNaker nodes and send them to the front-end
software in LabVIEW. A RAM unit has been implemented
for initializing the network parameter during system start
up. Finally the whole system was developed in BSV and the
functionality was analysed using Bluesim. ISE has been
used for the synthesis of generated Verilog files by Bluespec
compiler and producing the bit stream file for FPGA. A
Virtex-5 XC5VLX110T was used as a FPGA target platform
for this study.

BSV was a productive way of fast prototyping and
developing the computer architecture models for FPGA
design. Its powerful compiler makes it easy to debug the
design in a very short time and generate a reliable
implementation of a hardware model. Graphical environment
of LabVIEW makes it easy to generate desirable GUI for
hardware interfaces as well as speed up the design process.
Also, inherently parallel nature of “G” language makes
LabVIEW an excellent choice for developing the front-end
software for FPGA based systems.

Synthesis results present 87% utilization of Virtex-5 slice
LUTs. Serial communication degraded the performance of
the system due to its low baud rate. Ethernet could be a
better choice for communicating with the front-end software
which may be considered in the future work. Navaridas et al.
[15] developed a software simulator for analysing the traffic
behaviour of the largest (256×256) SpiNNaker system (65K
nodes). By some modification on the software simulator,
some accurate comparison could be done between our
hardware accelerator and software simulator. Finally, as
future work we intend to develop a real time monitoring
platform, using multiple FPGA boards, for analysing the
behaviour of the network traffic for the multicast routing
packets in SpiNNaker.

ACKNOWLEDGEMENTS

Dr. Luján is supported by a Royal Society University
Research Fellowship.

VII. REFERENCES

[1] W. Tang, W. Wang, B. Duan, C. Zhang, G. Tan, P.
Zhang, and N. Sun, "Accelerating Millions of Short
Reads Mapping on a Heterogeneous Architecture with
FPGA Accelerator," in IEEE International Symposium
on Field-Programmable Custom Computing Machines,
Toronto, Canada, 2012, pp. 184-187.

[2] C. Dennl, D. Ziener, and J. Teich, "On-the-fly

Composition of FPGA-Based SQL Query Accelerators
Using a Partially Reconfigurable Module Library," in
IEEE International Symposium on Field-Programmable
Custom Computing Machines, Toronto, Canada, 2012,
pp. 45-52.

[3] M. Psarakis, A. Pikrakis, and G. Dendrinos, "FPGA-

based Acceleration for Tracking Audio Effects in
Movies," in IEEE International Symposium on Field-
Programmable Custom Computing Machines, Toronto,
Canada, 2012, pp. 85-92.

[4] E.S. Chung, M.K. Papamichael, E. Nurvitadhi, J.C.

Hoe, K. Mai, and B. Falsafi, "Protoflex: Towards
scalable, full-system multiprocessor simulations using
fpgas," ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 2, p. 15, 2009.

[5] E.S. Chung, E. Nurvitadhi, J.C. Hoe, B. Falsafi, and K.
Mai, "PROTOFLEX: FPGA-accelerated hybrid
functional simulator," in Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE
International, 2007, pp. 1-6.

[6] J. Wawrzynek, D. Patterson, M. Oskin, S.L. Lu, C.

Kozyrakis, J.C. Hoe, D. Chiou, and K. Asanovic,
"RAMP: Research accelerator for multiple processors,"
Micro, IEEE, vol. 27, pp. 46-57, 2007.

[7] X. Jin, M. Luján, L.A. Plana, S. Davies, S. Temple,

and S. B. Furber, "Modeling spiking neural networks on
SpiNNaker," Computing in Science & Engineering, vol.
12, pp. 91-97, 2010.

[8] X. Jin, S.B. Furber, and J.V. Woods, "Efficient

modelling of spiking neural networks on a scalable chip
multiprocessor," in Neural Network (IEEE world
congress on computional intelligence), 2008, pp. 2812-
2819.

[9] L.A. Plana, S.B. Furber, S. Temple, M. Khan, Y. Shi, J.

Wu, and S. Yang, "A GALS infrastructure for a
massively parallel multiprocessor," Design & Test of
Computers, IEEE, vol. 24, pp. 454-463, 2007.

[10] M. Khan, DR. Lester, L.A. Plana, A. Rast, X. Jin, E.

Painkras, and S. B. Furber, "SpiNNaker: mapping
neural networks onto a massively-parallel chip
multiprocessor," in Neural Network (IEEE world
congress on computional intelligence), 2008, pp. 2849-
2856.

[11] R.S. Nikhil and K.R. Czeck. BSV by Example (The

next-generation language for electronic system design),
2010.Available:http://csg.csail.mit.edu/6.S078/6_S078_
2012_www/resources/bsv_by_example.pdf

[12] Bluespec. Bluespec System Verilog Reference Guide,

2012.Available:http://www.google.co.uk/url?sa=t&rct=
j&q=bluespec+system+verilog+reference+guide+2011
&source=web&cd=2&ved=0CE8QFjAB&url=http%3A
%2F%2Fwww.bluespec.com%2Fforum%2Fdownload.
php%3Fid%3D158%26sid%3Dc7f911b9d549faaa21aa
10e81273b0cb&ei=OQHWT5aFFaa_0QWTs9GxBA&
usg=AFQjCNGIIiWyrUEGZtrHVAavOtPePfubCQ&si
g2=dJV0x-Y0RE7cRhRlKSDEYg

[13] National Instruments, What is LabVIEW? Available:

http://www.ni.com/labview/whatis/

[14] W. J. Dally and B. Towles, Principles and practices of

interconnection networks: Morgan Kaufmann, 2004.

[15] J. Navaridas, M. Luján, J. Miguel-Alonso, L.A. Plana,

and S. B. Furber, "Understanding the interconnection
network of SpiNNaker," in 23rd international
conference on Supercomputing, 2009, pp. 286-295.

