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Abstract— Building large computing systems requires first to 
model them. Modern hardware systems are so complex that 
their software models in the desired detail may be too slow. 
Thus abstract hardware modelling can be appropriate. This 
paper presents an example software/hardware model built 
using Bluespec System Verilog (BSV) design flow to give rapid 
simulation of a hardware system.  The chosen example was a 
hardware model of the on-chip router, on-chip and off-chip 
network of SpiNNaker for understanding the behaviour of the 
traffic in the system. A model of a 5×5 SpiNNaker topology has 
been designed in Virtex-5 FPGA using BSV and a Graphical 
User Interface (GUI) was developed in LabVIEW for graphical 
representation of the results. 

 

I. INTRODUCTION 

Complex computer architectures, such as current multicores 
and SoCs, are time and cost expensive to design. Therefore, 
a precise model of the system is required to avoid costly 
mistakes. Due to the level of complexity of modern hardware 
architectures, software models (of such systems) are 
generally too slow so hardware models are preferred. In 
recent years, demands for FPGA (Field Programmable Gate 
Array) based hardware emulators and software accelerators 
have increased [1-6]. The reason is that modern FPGAs 
provide large capacity, high-speed and enough flexibility to 
map almost any application and run it faster than software. A 
reconfigurable hardware model on FPGA makes it possible 
to refine and modify a design easily to get the desired 
outcome. Also, FPGAs are able to emulate the functionality 
of the model (clock accurate simulation or emulation). These 
attributes make FPGAs an excellent candidate for abstracted 
hardware modelling of computer architectures. On the other 
hand, developing an accurate model of SoCs or multicores 
on FPGAs is not straightforward and requires in depth 
knowledge about computer architecture design and 
Hardware Description Language (HDL); such as VHDL, 
Verilog, System Verilog or Bluespec. As systems become 
more complex, more effort is required to achieve a reliable 
model of the system. In this situation a high level HDL can 
speed up the modelling process as well as producing a more 
reliable design. Bluespec is able to model computer 
architecture at a high level of abstraction as well as guarantee 
the correctness of functionality.  

 

In this study a hardware model of the SpiNNaker network is 
developed on a Virtex-5 FPGA using BSV for understanding 
the traffic behaviour on the system (Fig. 1). The network 
traffic is subject to queuing, contesting for links and, in 
extreme cases, packet dropping. It is the behaviour of this 
complex scalable network under dynamic loads which is the 
primary modelling target. LabVIEW was used as a front-end 
GUI for graphical presentation of the results. A brief 
introduction of SpiNNaker system, Bluespec and LabVIEW 
are presented in Sections II, III and IV, respectively.  Section 
V presents the experimental work and design process. 
Conclusions and future work are drawn in Section VI. 

 

 

Figure 1. SpiNNaker chips and Virtex 5 FPGA. 
 
 

II. SPINNAKER ARCHITECTURE 

SpiNNaker is a hardware-based real time simulator of 
spiking neural network which consist of up to 65,536 
SpiNNaker nodes (chips) or one million processors. This 
system is able to simulate around one billion neurons in real 
time [7]. Models of the neurons are run in software, the 
architecture provides acceleration of the delivery of neuron 
spikes (i.e. one packet in SpiNNaker). 

 

A. SpiNNaker Node 

A SpiNNaker node is a SoC consists of 18 ARM968 
processors. Each processor is able to simulate up to 1000 
neuron in real time [8]. There are two Networks on Chip 
(NoC) in each SpiNNaker node, a Communications NoC 
(Comms NoC) and System NoC. The primary function of 
System NoC is to connect processors to the SDRAM 
interface. The Comms NoC carries packets between the 



processors on the same or different chips. A block diagram 
of SpiNNaker chip is presented in Fig. 2. 

 

 

Figure 2. Schematic model of SpiNNaker chip. 
 
 

B. Router 

One of the main components of SpiNNaker chip is the 
router. This is the heart of the Communications NoC and it 
provides the internal interconnection (between cores) and 
external interconnection (between SpiNNaker nodes). A 
hardware simulator of an SpiNNaker network with point-to-
point router was developed in this work. In point-to-point 
communications a packet can be sent from one processor in 
one SpiNNaker node to other processor in another 
SpiNNaker chip anywhere in the system [9, 10]. 

 

C. Topology of Interonnection netwrok 

SpiNNaker chips are arranged in a 2D triangular mesh 
topology wrapped into a torus. A fully expanded SpiNNaker 
system is composed of 256×256 SpiNNaker node. Each 
SpiNNaker node has six bidirectional links in six different 
directions, North, South, East, West, North-East and South-
West (Fig 3). An example of 5×5 structure of SpiNNaker 
system with wrap-around links is presented in Fig. 4.   

 

 
Figure 3. SpiNNaker node’s external links. 

 

 
Figure 4. Example of a 5x5 SpiNNaker topology. 

 
 

III. BLUESPEC SYSTEM VERILOG 

BSV (Bluespec System Verilog) is a high level hardware 
description language which is fully synthesizable to 
hardware. These two attributes make BSV an excellent tool 
for the fast prototyping of complex systems. BSV uses a 
behavioural model which is called Atomic Rules and 
Interfaces. There are two reasons why BSV uses this model. 
First, the model of atomic rules is basically parallel so this 
makes BSV suited to the massive parallelism in a complex 
hardware design. Second, atomicity allows the functional 
correctness of a design to be achieved by considering the 
one-rule-at-a-time semantic (looking at each of the rules in 
isolation, without considering the action of other rules).  
BSV has a very strong type elaboration mechanism which 
provides great power to express computer architecture with 
high level of reliability. In the experimental results section, it 
will be explained how BSV can speed up the design process. 
A sample of BSV code is presented in Fig. 5. More examples 
and explanation about BSV can be found in [11, 12].  

 

 

Figure 5. An example of Bluespec code [4]. 



IV.  LABVIEW 

Laboratory Virtual Instrumentation Engineering 
Workbench (LabVIEW) is a system development 
environment for visual programming language from National 
Instruments Corporation. LabVIEW uses a dataflow 
programming language called “G”. In contrast with 
sequential (programming) languages, “G” is capable of 
parallel execution. Its graphical environment and variety of 
libraries for different communication protocols (such as 
RS232, RS485, TCP/IP) make LabVIEW an excellent 
candidate for creating front-end monitoring platforms and 
GUIs for custom designed hardware [13]. Fig 6 shows an 
example code in LabVIEW. 

 

Figure 6. Example of LabVIEW code. 
 
 

V. EXPERIMENTAL WORK 

A. Model of the system 

The focus of this work is to investigate the traffic 
behaviour in the Comms NoC in a multi SpiNNaker chip 
system. Thus, some simplifications were done to the 
structure of SpiNNaker to have a simple model of 
fundamental blocks involved in the Comms NoC. Fig. 7 
presents the implemented model in this work which consists 
of a 5×5 SpiNNaker structure, a RAM unit and a Monitor 
unit. The Monitor unit gathers the desired information from 
all SpiNNaker nodes and sends it to the serial port (RS232). 
The RAM unit is used for initialization of the network 
parameters. 

Each SpiNNaker node is simplified and modelled as shown 
in Fig. 8. There is no need to have the System NoC and 
SDRAM for analysing the network traffic in a chip, 
therefore these parts are eliminated from the model.  All 18 
ARM processors are modelled as an injection queue with 
room for four packets at its output and a queue with the 
same room in its input for receiving packets.  

A 64-bit programmable register has been implemented in 
the modelled processor which makes the system more 
flexible in injecting a desired traffic pattern. Also, for each 
processor, another 64-bit program register dedicated to the 
RAM unit (in this model twenty five 64-bit program 
registers are fitted in the RAM unit). 

 

Figure 7. Implemented model in BSV. 
 

 

 

Figure 8. Simplified model of SpiNNaker network 
components. 

 

 

In the example presented in Fig 9, the first 16 bits of the 
program register specify the location (coordinate) of each 
node in the system. 8 bits for X coordinate and 8 bits for Y 
coordinate. The next 8 bits are dedicated for clock intervals 
(delay) between injecting each packet by a processor. Bits 
48 to 55 present the number of packets which each 
processor should inject and bit 24 specifies the mode of 
injection, if it is 0 the processor will only send the number 
of specified packets (by bits 48-55) once and then stop 
injection, otherwise, if bit 24 is 1, the processor keeps 
injecting packets continuously. Bits number 32 to 47 (16 
bits) specify the location of the first destination chip 
(processor will send the first packet to this node). 



 

Figure 9. An example of program register.  
 

 
According to the specified value in the program register 
(hex format), the SpiNNaker node which is located in 
coordinate 0,0 will send the first packet to the node at 
coordinates 1,0 and keep injecting 24 packets to all other 
SpiNNaker nodes according to the specified path way in 
Fig. 10. Using this algorithm it is possible to generate point-
to-point uniform and non-uniform traffic patterns.   

 

Figure 10. Path way of injection of 24 packets in a 5x5 
SpiNNaker system. 

 
The Comms block serialises the input packets coming from 
6 neighbour SpiNNaker chips and local processors and feed 
them into the router one at a time. The second part of 
Comms NoC (right hand side) presented in Fig. 2 was 
eliminated for the sake of simplicity and packets are routed 
directly (Fig,11). 

The router plays a significant role in the communication 
network functionality so an accurate model of the point-to-
point router has been developed and implemented. In the 
original SpiNNaker, the point-to-point router uses routing 
tables. In our model Dimension Order Routing (DOR) [14] 
has been used instead for the sake of simplicity and efficient 
use of FPGA resources. Fig. 12 presents a block diagram of 
the implemented point-to-point router. Three pipeline stages 
have been considered for implementation of the point-to-
point router, Packet decode, Routing engine and Output 
select. 

 

Figure 11. Comms NoC block diagram. 
 

In the first stage, the input packet is analysed and required 
information for the next stage will extracted. In the Routing 
engine stage two main operations are executed. If a packet 
comes from the first stage then DOR will be applied to it and 
its destination will be determined.  Otherwise, the packet 
comes from RAM unit so the Routing stage will extract the 
source chip ID of the packets (program register) and route 
the program packet to the internal processor. In the case that 
the input packet comes from the decode stage, after 
determining the destination (output link) with the Routing 
engine, the packet will be sent to the Output select stage. 
Here the router tries to send the packet to the specified link. 
If there is no congestion or failure on the specified link, the 
router will send the packets successfully. If a packet cannot 
be sent, two programmable timer intervals are applied. The 
first allows a period for working on retrying; the second 
allows attempts of rerouting (if link 1 fails, link 0 will be 
used (Fig 3)). If the second timer expires the packet is 
dropped. 

 

Figure 12. Router block diagram. 
 



During the routing process an internal monitor unit counts 
the number of dropped (due to failure or congestion in output 
links), injected (by local processor), received (by local 
processor) and distributed packets (packets which come 
through the router only from 6 bidirectional link not from  
the local processor) in the router. Two switches choose the 
desired monitor parameter. By changing the position of the 
switches, number of dropped, injected, received or 
distributed packet will be sent to the monitor unit. Different 
positions of the switches are depicted in Table 1. 

 

Table 1. DIP-Switch Positions 

Dip Switch MUX output 

00 Dropped Packet 

01 Injected Packet 

10 Distributed Packet 

11 Received Pakcet 

 

These switches are wired to all of SpiNNaker nodes so that 
at any time the monitor unit will receive 25 monitor packets 
from 25 SpiNNaker nodes. 

A monitor unit was designed which continuously receives 
the dropped, received, injected or distributed packets 
(depending on the position of the switches) from all 
(SpiNNaker) nodes and sends these to the serial port which is 
connected to the general purpose computer. A front-end GUI 
was developed using LabVIEW depicts a graphical 
presentation of the traffic behaviour of the network (Fig. 13). 

A RAM unit with 25 output ports was designed to initialise 
the required parameter of routers such as source chip ID and 
to program the register of each processor in the system. 
These parameters can be saved in a text file and then loaded 
into the RAM unit block during the synthesis and 
implementation process. This makes it possible to generate 
different traffic patterns easily by modifying twenty five 64-
bit registers in a text file. 

 

 
Figure 13. SpiNNaker monitoring platform implemented 

in Labview. 
 
 

B. Design process 

The whole design was implemented using BSV and 
simulation results have been analysed using Bluesim, which 
is a clock accurate BSV simulator, to investigate the 

correctness of the system. GTKwave has been used for 
precise analysing of simulation results which generated as 
VCD format from Bluespec compiler. Then Verilog files 
corresponding to each implemented BSV module were 
generated using the BSV compiler. Generated Verilog files 
have been synthesized using ISE (Xilinx synthesis tool) to 
generate the bit stream file. Finally the generated bit stream 
file was loaded into the FPGA and the functionality of the 
whole system was analysed in real time (Fig 14). 

 

 

Figure 14. Design flow. 
 

Highlighted boxes in Fig. 14 are different tools which are 
used during the design process.  

 

C. Experimental Results 

ML509 (Virtex-5 XC5VLX110T) Xilinx evaluation 
board is used as a target platform for the purpose of this 
paper. Table 2 shows a brief summary of available resources 
on selected Virtex-5 FPGA. 

 

Table 2. Virtex-5 XC5VLX110T resources 

Resources Available 

MAX user I/O 680 

Slice LUTs 69,120 

Max Distributed RAM (Kb) 1,120 

Block RAM blocks (Kb) 5,328 

 

Different traffic patterns were injected into the system and 
the behaviour of the system was analysed. First a uniform 
traffic pattern was injected by defining the program registers 
of all SpiNNaker chips to the desired value (each SpiNNaker 
node injects 24 packets continuously starting from its 
adjacent node). Each SpiNNaker node will count and 
accumulate dropped, injected, received and distributed 
packets in each clock cycle (clock accurate monitoring). 
Then after 1000 clock cycles SpiNNaker nodes send the 
desired monitor packet (specified by the switches) to the 
monitor unit. This adds an 8-bit tag to each packet to specify 
the node’s ID and then sends it to the serial port. In the front-
end software, LabVIEW, the received packet is decoded and 
according to its tag will be displayed in the corresponding 



position depicted graphically in fig 13. Also, a real time 
graph shows the total number of dropped, received, injected 
or distributed packets. 

For precise analysis of the traffic behaviour of the system, a 
single graph has been dedicated for each SpiNNaker node. 
Therefore the variation of dropped, received, injected and 
distributed packets in each node can be observed (Fig 15). 
Also a graphical presentation of network traffic density was 
implemented (Figs 16 and 17).  

 

Figure 15. Dedicated graph for each SpiNNaker node. 
 

 

Figure 16. An example of injected pattern (SpiNNaker 
nodes, except 9 nodes located at the centre, are injecting 

packet toward node located at coordinate 2,2). 
 

Only the injected packets from different SpiNNaker nodes 
can be observed in Fig. 16. The front-end software displays 
one of the dropped, received, injected or distributed packets 
at a time. Also Fig. 17 only presents the distributed packets 
in the system. The graphical presentation of traffic behaviour 
gives good visibility of the probable fault in the design. For 
instance if there is any fault in DOR implementation, in the 
router design, the outcome will be non-uniformed traffic 
distribution in the system which is clear from GUI in 
LabVIEW. 

 

 

Figure 17. Presentation of network traffic distribution 
for presented example of injected packet in Fig. 16. 

 
The bottleneck of the system performance is the serial 
communication since it limits the speed of the monitoring 
process. The maximum baud rate of serial communication is 
115,200. Each monitor packet is 32 bits wide, but after 
adding an 8-bit tag and some start and stop bits, it will be 50 
bits wide (40 bits data plus 10 control bits). Therefore, in the 
best situation, 433 µs (approximately) is required for sending 
each packet to the front end software (286 clocks interval for 
each bit if using 33 MHz clock and 868 clocks interval if 
using 100 MHz clock). Also, in practice, some extra delay 
should be considered between sending packets to avoid 
conflict in receiving packets in the front end software. 
Although these unwanted delays degrade the performance of 
the system, the hardware model is still much faster than the 
software simulator. A comparison has been done between 
Bluesim (BSV simulator) and the hardware implementation. 
The results show that the FPGA implementation is 160,000 
times faster than Bluesim. Simulation ran on a core i7-2.8 
GHz computer with 6 GB RAM. Table 3 shows the FPGA 
utilization summary for 5×5 SpiNNaker topology modelled 
in this study. The results show that significant number of 
slice LUTs (87%) in FPGA has been used.   

Table 3. Utilization summary 

Resources Utilization 

Slice Registers 47% 

Slice LUTs 87% 

Occupied Slices 96% 

Bonded IOs 1% 

 

Table 4 presents the number of code lines for BSV 
implementation and corresponding generated Verilog code 
by Bluespec synthesis tool. According to these results, 
Verilog implementation of the same system can requires up 
to 4 times more effort. It could be claimed that generated 
Verilog code by BSV is not as efficient as handwritten 
Verilog code but still we found that BSV can speed up the 
design process. 

 



Table 4. Number of code line in BSV and generated 
Verilig files 

Modules 
Bluespec 

(.bsv) 
Generated Verilog 

(.v) 
Ratio 

SpiNNaker_Board 1324 6203 4.6 

SpiNNaker 241 765 3.1 

Processor 105 299 2.8 

Comms NoC 153 575 3.7 

Router 342 1055 3.08 

Monitor_Unit 223 1195 5.3 

RAM 159 1211 7.6 

Total 2547 11303 4.4 

 

 

VI. CONCLUSION AND FUTURE WORK 

 
In this study an FPGA-based platform was designed for 

understanding the traffic behaviour in the SpiNNaker 
network. The SpiNNaker architecture was introduced as a 
hardware-based real time simulator of spiking neural 
network. Fundamental components in a SpiNNaker chip 
such as Comms NoC, System NoC, Router and Processors 
were briefly analysed and their functionality discussed. A 
brief introduction of BSV has been presented and its main 
attributes were discussed. For the purpose of analysing the 
network traffic behaviour in the system an efficient model 
of the main components of the network was implemented. 
The System NoC, SDRAM and some other peripherals were 
eliminated from the model since these have no effect on 
traffic in the network. By eliminating these components 
there are enough FPGA resources to have a more accurate 
model of important components such as the router. The 
local processors were modelled as a single queue with room 
for four packets in its input and output.  

The Comms NoC was modelled to serialise incoming 
packets from local processors and other SpiNNaker nodes 
and feed them into the router one at a time.  Then an 
accurate model of the point-to-point router was proposed 
and discussed. In the process of routing 4 main effective 
parameters for analysing the traffic behaviour has been 
monitored which are sent, received, injected and distributed 
packets (clock accurate monitoring). The router will send 
one of these parameters to the monitor unit according to the 
position of dedicated switches. Therefore a SpiNNaker 
network model was implemented using the mentioned three 
components: Processor, Comms NoC and Router. 

A model of a 5×5 SpiNNaker topology (triangular torus) 
with wrap-around connection (Fig. 4) was designed in BSV. 
A monitor unit was designed to gather monitor packets of 
all SpiNNaker nodes and send them to the front-end 
software in LabVIEW. A RAM unit has been implemented 
for initializing the network parameter during system start 
up. Finally the whole system was developed in BSV and the 
functionality was analysed using Bluesim. ISE has been 
used for the synthesis of generated Verilog files by Bluespec 
compiler and producing the bit stream file for FPGA. A 
Virtex-5 XC5VLX110T was used as a FPGA target platform 
for this study.  

BSV was a productive way of fast prototyping and 
developing the computer architecture models for FPGA 
design. Its powerful compiler makes it easy to debug the 
design in a very short time and generate a reliable 
implementation of a hardware model. Graphical environment 
of LabVIEW makes it easy to generate desirable GUI for 
hardware interfaces as well as speed up the design process. 
Also, inherently parallel nature of “G” language makes 
LabVIEW an excellent choice for developing the front-end 
software for FPGA based systems.   

Synthesis results present 87% utilization of Virtex-5 slice 
LUTs. Serial communication degraded the performance of 
the system due to its low baud rate. Ethernet could be a 
better choice for communicating with the front-end software 
which may be considered in the future work. Navaridas et al. 
[15] developed a software simulator for analysing the traffic 
behaviour of the largest (256×256) SpiNNaker system (65K 
nodes). By some modification on the software simulator, 
some accurate comparison could be done between our 
hardware accelerator and software simulator. Finally, as 
future work we intend to develop a real time monitoring 
platform, using multiple FPGA boards, for analysing the 
behaviour of the network traffic for the multicast routing 
packets in SpiNNaker.  
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