
Deadlock Recovery in Asynchronous Networks on
Chip in the Presence of Transient Faults

Guangda Zhang∗, Jim Garside∗, Wei Song† and Javier Navaridas∗, Zhiying Wang‡
∗School of Computer Science, University of Manchester, Manchester, M13 9PL, United Kingdom

Email: {zhangga, jgarside, javier.navaridas}@cs.man.ac.uk
†Computer Laboratory, University of Cambridge, Cambridge, CB3 0FD, UK

Email: ws327@cam.ac.uk
‡School of Computer Science, National University of Defense Technology, Changsha, 410073, China

Email: zywang@nudt.edu.cn

Abstract—Asynchronous Networks-on-Chip (NoCs) have been
proposed as a promising infrastructure to provide scalable and
efficient on-chip communication for many-core systems. Using
the Quasi-delay-insensitive (QDI) implementation, asynchronous
NoCs could achieve timing-robustness. However, the advancing
semiconductor technology leads to shrinking transistor dimen-
sions and increasing chip density, accelerating the occurrence
of faults, especially transient faults. Transient faults emerging on
QDI circuits could cause not only data errors (symbol corruption
and insertion), but also deadlock. When the deadlock happens on
asynchronous NoCs, it can spread over the whole network and
paralyse its function. This deadlock has not been fully studied
while most traditional fault-tolerant techniques cannot deal with
it. Using a new model built for QDI pipelines, the formation
and behaviour of the deadlock caused by transient faults are
systematically studied. Using the summarized deadlock patterns,
the fault position can be precisely located and the fault type can
be diagnosed. A fine-grained recovery mechanism is proposed
to recover the network from different deadlocks. As a design
case, an asynchronous NoC is designed which can recover from
the deadlock caused by both transient and permanent faults on
links. Detailed experimental results are given.

I. INTRODUCTION

With the developing of semiconductor technologies, more
and more intellectual property (IP) cores can be integrated
on a single chip, proposing an urgent requirement for scal-
able, efficient and reliable on-chip communication. Network-
on-Chip (NoC) [1] emerges as a promising infrastructure
to support this kind of communication. It can be imple-
mented using either synchronous or asynchronous circuits.
Most existing NoCs are synchronously built. Controlled by
handshake protocols instead of global clocks, asynchronous
NoC has many promising advantages over the synchronous
one [2]. It divides the whole chip into multiple independent
synchronous domains, constructing a Globally-Asynchronous,
Locally-Synchronous (GALS) system [3] (Fig. 1a), enabling
individual voltage/frequency control and simplifying the chip-
level timing closure. Quasi-delay-insensitive (QDI) circuits [2]
are a family of asynchronous circuits that can tolerate de-
lay variations. Using the QDI implementation, the resulting
QDI NoC is timing-robust and could tolerate Process-Voltage-
Temperature (PVT) variations.

On the other hand, increasing chip density, shrinking tran-
sistor dimensions, increasing clock frequency and decreasing
critical charge continuously intensify the fragility of electronic

Router Router

Router Router

Asyn. domainIndependent
Syn. domains

link

Syn. IP0 Syn. IP1

Syn. IP2 Syn. IP3

NI

NI

NI

NI

data

ack St
ag
edi

dia

output buf. input buf.

St
ag
e

St
ag
e

St
ag
e...

...

...

... St
ag
e

St
ag
e do

doa

...
ack

Network
Interface

transient
faults

crosstalk

power
supply noise

 electromagnetic
interference

electrostatic
discharge

 alpha
particles

cosmic
rays

transient errors
(soft errors)

radiation

Single Event
Transient (SET)

Single Event
Upset (SEU)

A belongs to BA B A B A causes B

(a)

Router Router

Router Router

Asyn. domainIndependent
Syn. domains

link

Syn. IP0 Syn. IP1

Syn. IP2 Syn. IP3

NI

NI

NI

NI

data

ack St
ag
edi

dia

output buf. input buf.

St
ag
e

St
ag
e

St
ag
e...

...

...

... St
ag
e

St
ag
e do

doa

...
ack

Network
Interface

transient
faults

crosstalk

power
supply noise

 electromagnetic
interference

electrostatic
discharge

 alpha
particles

cosmic
rays

transient errors
(soft errors)

radiation

Single Event
Transient (SET)

Single Event
Upset (SEU)

A belongs to BA B A B A causes B

(b)

Fig. 1. (a) A Globally-Asynchronous, Locally-Synchronous (GALS) system
constructed by an asynchronous NoC (b) Sources of transient faults

devices to environmental variations, accelerating the occur-
rence of faults, especially transient faults [4]. Transient faults
usually last for a short period. They can be provoked by
various sources, including noise [5], electromagnetic interfer-
ence, electrostatic discharge [4] and radiation [6] (Fig. 1b).
Besides transient faults, permanent faults may also happen at
runtime with the ageing process, bringing lifetime reliability
problems [7]. As a result, high reliability has become an
essential design objective for critical electronics.

In traditional synchronous NoCs, transient faults typically
cause data errors. The packet transmission can be assured
to be running because the synchronous sampling proceeds
under the control of the clock. In QDI circuits without the
clock, time is elastic. Data is encoded into delay-insensitive
(DI) codes to contain timing information [2]. As a result,
transient faults emerging on asynchronous NoCs could cause
not only data errors (including symbol corruption and symbol
insertion), but also deadlock [8], [9]. This deadlock is different
from the conventional one happening in the routing layer [10].
Most traditional fault-tolerant techniques, including the error
detection/correction codes, cannot deal with it. This deadlock
has not been fully studied. It could spread over the whole
asynchronous NoC and paralyse its function. The error de-
tection and correction on synchronous NoCs have been fully
studied [11]; recovery of the deadlock caused by transient
faults on asynchronous NoCs represents a different challenge.

This paper focuses on the deadlock caused by transient
faults emerging on asynchronous NoCs. A new model is built
to demonstrate the handshake process of 4-phase 1-of-n QDI

2015 21st IEEE International Symposium on Asynchronous Circuits and Systems

1522-8681/15 $31.00 © 2015 IEEE

DOI 10.1109/ASYNC.2015.23

100

Idle

Start

DK_Enquiry

Output of Ri

timeout

DK_Confirm
(Link)

DK_Confirm
(Router)

DK_Confirm
(Link)

Reset all
stages

Drain &
Release

Transient or
permanent?

Block OVC

p

transient

permanent

DK_Confirm
(Router i)

Reset all
stages

Stage i
i0

in‐1

Stage i+1

acki acki+1

Ai Ai+1

CD CD

Stage i

i0,0

i0,n‐1

Stage i+1

Aouti+1

acki acki+1

Bouti Bouti+1

i1,0

i1,n‐1

forward backward

①

②

victim
region

acki↑
Ai+1↑

(a) Single-word

corruption

Stage i
i1,0

i1,n‐1

Stage i+1

acki
acki+1

iN,0

iN,n‐1

... ...

... ...

... ...

Ai,1 Ai+1,1

Ai,N Ai+1,N

victim
region

...
...

...
...

...

CD

CD

CD

CD

(b) Multi-word (N-word)

Fig. 2. 4-phase 1-of-n QDI pipelines

pipelines and the effect of transient faults. Using this pipeline
model, the formation and behaviour of the deadlock caused by
transient faults are systematically studied. Common deadlock
patterns are summarized, using which the fault position can be
precisely located. Utilizing the difference between deadlock
patterns caused by transient and permanent faults, the fault
type can be diagnosed. A fine-grained recovery mechanism is
proposed to recover the network from the deadlock so that
system reboot is avoided when deadlock happens. Finally, an
asynchronous NoC using the proposed techniques is imple-
mented which can recover from the deadlock caused by both
transient and permanent faults on links. Since the proposed
techniques do not rely on the network structure, they can be
used in any 4-phase QDI pipelines to deal with the deadlock
caused by transient faults.

II. PIPELINE MODELS AND DEADLOCK ANALYSES

A. Modelling 4-phase 1-of-n QDI pipelines

Buffers are usually inserted to the input and output of a
router to support specific flow control and improve the network
performance. Therefore, a generic asynchronous router can be
modelled as a QDI pipeline where the input/output buffers
construct pipeline stages. A packet traversing through multiple
routers will experience a long QDI pipeline. Fig. 2a shows
a single-word 4-phase 1-of-n QDI pipeline with two stages
built from half-buffer latches. The OR-gates are completion
detectors (CD) which acknowledge the preceding stages the
successful latching of a complete data word (ack+) or a spacer
(ack-). Fig. 2b shows a multi-word pipeline built from N
single-word sub-pipelines. To synchronize all sub-pipelines,
their CDs are connected to a multi-input C-element to produce
a common acknowledge signal (ack) to the preceding stage.

A fault may occur on any of the n data wires of a single-
word 1-of-n pipeline or the ack wire. To identify the fault
position, the wire carrying ‘1’ in a handshake cycle is defined
as the “active” wire while the others are “inactive”. The faulty
wire (or the output wire of the faulty gate) is defined as the
“victim” wire. For an N -word (N ≥ 1) wide pipeline (Fig. 2b),
Ai,j (1 ≤ j ≤ N) belonging to the j-th sub-pipeline is the
input active wire of Stage i. Produced at Stage i, acki is the
ack signal to the preceding Stage (i-1).

A linear pipeline with depth d can be divided into (d− 1)
segments, each of which contains two continuous pipeline
stages. In the proposed pipeline model, segment is used as
the object of study. The state of one segment Si (1 ≤

Ai↑

0000

1000 1010Ai+1↑ 1011acki+1↑

acki↑ acki↑ acki↑

1100 1110Ai+1↑ 1111acki+1↑

Ai↓ Ai↓ Ai↓

0100 0110Ai+1↑ 0111acki+1↑ 0101Ai+1↓ 0100acki+1↓

acki↓ acki↓ acki↓

0011 0001Ai+1↓ 0000acki+1↓

Ai↑

1011

Ai↑

1001

Ai↑

1000Ai+1↓ acki+1↓ Ai+1↑

acki↑

{Ai, acki, Ai+1, acki+1}
State:

0010Ai+1↑ 0011

Ai↑

acki+1↑ 0001 0000

1001 1000

1101 1100Ai+1↓

Ai+1↓

Ai+1↓

acki+1↓

acki+1↓

acki+1↓

Ai↑

acki↑ acki↑

Ai↓ Ai↓

0000

1000

0010

1010

Ai+1↑

Ai+1↑

acki+1↑

acki+1↑

acki↓acki↓

Ai↑Ai↑

corruption

Ai↑ Ai↑

data:

ack: 0 1 0

complete dataspacer almost_emptyalmost_full spacertype:

Fig. 3. State transitions of a 4-phase QDI pipeline stage

i ≤ d) contains input active wires and output ack wires of
both stages (Stage i and Stage (i+1)). Therefore, we have
Si=({Ai,1...Ai,N}, acki, {Ai+1,1...Ai+1,N}, acki+1). The ini-
tial state after reset is Si = ({0...0}, 0, {0...0}, 0).

Production Rule Set (PRS) for basic logic gates [12] is
borrowed to describe the behaviour of a pipeline segment.
A production rule with a form of A ∧ B −→ C ↑, D ↓ is
equivalent to A ∧ B −→ C ↑ and A ∧ B −→ D ↓, meaning
that if both A and B are true, the assignments C ↑ and D ↓
are fired. The firing of C ↑ and D ↓ is independent and has
no sequence. According to the 4-phase handshake protocol,
the PRS for an N -word pipeline segment Si is (1 ≤ j ≤ N):

Ai,1 ∧ ... ∧Ai,j ... ∧Ai,N ∧ ¬acki+1 −→ acki ↑ (1)

Ai,j ∧ ¬acki+1 −→ Ai+1,j ↑ (2)

¬Ai,1 ∧ ... ∧ ¬Ai,j ... ∧ ¬Ai,N ∧ acki+1 −→ acki ↓ (3)

¬Ai,j ∧ acki+1 −→ Ai+1,j ↓ (4)

The PRS of the environment of segment Si is defined as
follows:

acki −→ Ai,j ↓ (5)

¬acki −→ Ai,j ↑ (6)

Ai+1,1 ∧ ... ∧Ai+1,j ... ∧Ai+1,N −→ acki+1 ↑ (7)

¬Ai+1,1 ∧ ... ∧ ¬Ai+1,j ... ∧ ¬Ai+1,N −→ ¬acki+1 ↓ (8)

B. Deadlock caused by transient faults

A transient fault could happen on any wires and gates
of a pipeline, including pipeline stages (including the latch
and CD), data and ack wires. The proposed model uses two
assumptions to analyse the pipeline:

1) Though multi-bit faults could happen in practical, only
1-bit fault is considered to simplify the proposed model
since it is enough to deadlock a QDI pipeline.

2) It is assumed that a fault could happen only after Stage i
in segment Si, which is called the “victim” region (the
grey area in Fig. 2). Stage i is the pre-fault stage while
Stage (i+1) is the post-fault one. Thus, a fault could affect
only Ai+1 and acki+1 while the input side (Ai and acki)
is fault-free. If a fault happens on Stage i, it will be
considered in segment Si−1 rather than Si.

In a 4-phase 1-of-n QDI pipeline, data is encoded as
delay-insensitive (DI) symbols which are either complete or
incomplete. Incomplete data exists between a complete data
word and a spacer. Fig. 3 shows the normal state transition of
a 4-phase QDI pipeline stage. For an N-word 1-of-n pipeline
(N>2), two types of incomplete data are defined: almost full
and almost empty. The almost empty data has only one 1-
of-n symbol. After receiving one more 1-of-n symbol, the
almost full symbol will become complete. It has been reported

101

that a transient fault on 4-phase 1-of-n QDI pipelines could
cause symbol corruption (1-of-n is changed to 2-of-n), symbol
insertion (a new 1-of-n code is inserted to the original data
sequence, leading to misalignment) or deadlock [8], [9]. This
paper focuses on the deadlock caused by a 1-bit transient fault.

Definition 1 (Deadlock): In a deadlocked QDI pipeline, no
transitions could be fired any more and the pipeline gets stuck
at a “stable” state.

For the half-buffer latch built from C-elements, it means inputs
of the C-element fail to match so that no transition could
happen at its output.

Theorem 1: A transient fault happening on a single-word
4-phase 1-of-n QDI pipeline can cause symbol corruption and
insertion, but not deadlock.

Proof: It has been proved that a transient fault could cause
symbol corruption and insertion on a single-word 4-phase 1-
of-n QDI pipeline [8], [9]. Here we need to prove only that a
transient fault cannot deadlock the pipeline.

Assuming a transient fault on the “victim” region of
segment Si could deadlock the pipeline, the input active wire
and the ack wire to the pre-fault stage Stage i, (Ai, acki+1),
should get stuck at either (11) or (00) to avoid any state
transitions according to the deadlock definition.

a) (Ai, acki+1) gets stuck at (11).

Ai comes from the external environment of this segment
and it is fault-free. A positive fault may fire acki+1 ↑ but will
disappear after some time. Ai+1 should keep positive to make
acki+1 high and acki should keep negative to make Ai high
according to (7) and (6). Because a transient fault can make
Ai+1 positive for only some time, a positive Ai should have
been latched and outputted by Stage i to keep Ai+1 high in
the 1-bit fault case. As a result, acki will go high, leading to a
negative Ai according to (5), which is in contradiction to the
assumption.

b) (Ai, acki+1) gets stuck at (00).

Similarly, a negative fault may fire acki+1 ↓ but will
disappear after some time. A negative Ai should have been
latched and outputted by Stage i to make acki+1 negative.
However, this will make acki low, permitting Ai to go high
according to (6), which is in contradiction to the assumption.

Therefore, a transient fault on a single-word 4-phase 1-of-n
QDI pipeline cannot cause deadlock.

In a multi-word pipeline, multiple sub-pipelines are syn-
chronized using a multi-bit wide C-element connected to
their CDs, which is different from a single-word pipeline
(Fig. 2). In other words, there are two kinds of synchronization
points in a multi-word pipeline. One is the asynchronous latch
which synchronizes the forward and backward events (Ai,j

and acki+1). The other is the CD which synchronizes the
parallel multiple forward events (Ai,1, ..., Ai,N in Fig. 2b) and
generates the backward event (acki). A 2-word pipeline is used
as an example in the following, which can be extended to all
multi-word or m-of-n (2≤m<n) pipelines.

Theorem 2: In a deadlocked multi-word 4-phase QDI
pipeline, the two adjacent ack signals of the faulty segment
cannot be equal.

Proof: Assume that acki and acki+1 of segment Si are
equal. Since Stage i is in the fault-free region (Fig. 2b), the
part of the segment state ({Ai,1Ai,2}, acki, acki+1) should be
either ({11}, 0, 0) or ({00}, 1, 1) in a deadlock state.

If acki+1 is negative, acki ↑ will surely be fired according
to (1) which is in contradiction to the assumption. If acki+1 is
positive, acki ↓ will surely be fired according to (3) which is
in contradiction to the assumption as well. Therefore, acki and
acki+1 cannot be equal in a deadlock state. In other words,
the segment state ({Ai,1Ai,2}, acki, acki+1) should be either
({11},0,1) or ({00},1,0) (Ai,j is equal to acki+1 according to
the deadlock definition).

Theorem 3: A transient fault could deadlock a multi-word
4-phase 1-of-n QDI pipeline.

Proof: Since it is assumed that a transient fault happens
only in the victim region (Fig. 2), Stage i is fault-free. If the
pipeline could be deadlocked, the final state of segment Si

must contain either ({Ai,1Ai,2}, acki, acki+1) =({11},0,1) or
({00},1,0) according to Theorem 2.

a) ({Ai,1Ai,2}, acki, acki+1) = ({11},0,1).

In this case, the two positive inputs {Ai,1Ai,2}={11}
should not be latched and outputted together by Stage i
(otherwise, acki is positive according to (1), which is in
contradiction to the precondition).

1) If neither Ai,1 nor Ai,2 is latched, both Ai+1,1 and Ai+1,2

are negative eventually according to (4) (a transient fault
cannot change the final value of acki+1 in this case),
leading to a negative acki+1 according to (8), which is
in contradiction to the precondition.

2) Assume only one of {Ai,1Ai,2} has been latched by
Stage i (Ai,1 for example, it means the positive transition
of Ai,2 is delayed). In this case, a positive transient fault
could make acki+1 high according to (7). The segment
state is shown in (9). According to the PRS (Section II-A),
no transitions could happen as long as the environment
of the segment does not change which means the pipeline
is deadlocked.

({Ai,1Ai,2}, acki, {Ai+1,1Ai+1,2}, acki+1)

= ({11}, 0, {10}, 1) (9)

In this case, the normal transmission of Ai,2 ↑ is so slow
that it arrives at Stage i later than acki+1 ↑. As a result,
Ai,2 ↑ is blocked before Stage i by the positive acki+1

forever. Since Ai,2 ↑ cannot be latched, acki will be
negative forever and the input positive Ai,1 cannot be
reset though it has been latched by Stage i.
Stage (i,j) denotes the ith pipeline stage of sub-pipeline
j (1 ≤ j ≤ N). In this deadlocked state, all downstream
stages from Stage (i,1) in the first sub-pipeline keep
holding the same 1-of-n word and waiting for being reset.
For the second sub-pipeline where the transmission of
Ai,2 ↑ is delayed, all downstream stages from Stage (i,2)
keep holding spacers. The positive acki+1 blocking the
latching of Ai,2 ↑ may be caused by a positive transient
fault on the input data wire or the half-buffer latch of
Stage(i+1,2). The fault first gets latched by the latch
of Stage(i+1,2), which triggers the CD and sets acki+1

high. After the fault disappears, all the latched fault bit is

102

11 0 10 1

di

dia

do

doa

Stage
data

ack

0‐1‐0

Pre‐fault

10 0 0 11 0

di

dia

do

doa

Stage
data

ack

Pre‐fault Post‐fault

upstream downstream

Permanent fault
Complete dataSpacer Incomplete data

00 1 01 0

di

dia

do

doa

Stage
data

ack

1‐0‐1

Pre‐fault

ii‐1 i+1 i+2

ii‐1 i+1 i+2

data:

ack: 0 1 0

set phase reset phase

00 1 01 0

di

dia

do

doa

Stage
data

ack

11 0 10 1

di

dia

do

doa

Stage
data

ack

0 1 11 1

di

dia

do

doa

Stage
data

ack

s‐a‐0

s‐a‐1

Pre‐fault Post‐fault

Pre‐fault Post‐fault

Pre‐fault Post‐fault

s‐a‐0
0 1

1 0 00 0

di

dia

do

doa

Stage
data

ack

Pre‐fault Post‐fault

s‐a‐1
1 0

& ack‐ & ack+

& ack+ & ack‐Permanent

Transient

Post‐fault

Post‐fault

(a) A positive fault
11 0 10 1

di

dia

do

doa

Stage
data

ack

0‐1‐0

Pre‐fault

10 0 0 11 0

di

dia

do

doa

Stage
data

ack

Pre‐fault Post‐fault

upstream downstream

Permanent fault
Complete dataSpacer Incomplete data

00 1 01 0

di

dia

do

doa

Stage
data

ack

1‐0‐1

Pre‐fault

ii‐1 i+1 i+2

ii‐1 i+1 i+2

data:

ack: 0 1 0

set phase reset phase

00 1 01 0

di

dia

do

doa

Stage
data

ack

11 0 10 1

di

dia

do

doa

Stage
data

ack

0 1 11 1

di

dia

do

doa

Stage
data

ack

s‐a‐0

s‐a‐1

Pre‐fault Post‐fault

Pre‐fault Post‐fault

Pre‐fault Post‐fault

s‐a‐0
0 1

1 0 00 0

di

dia

do

doa

Stage
data

ack

Pre‐fault Post‐fault

s‐a‐1
1 0

& ack‐ & ack+

& ack+ & ack‐Permanent

Transient

Post‐fault

Post‐fault

(b) A negative fault

Fig. 4. Deadlocked pipelines caused by transient faults on link wires

cleared. A positive fault happening on CD of Stage (i+1)
could fire the acki+1 ↑ directly.

b) ({Ai,1Ai,2}, acki, acki+1) = ({00},1,0).

Similarly, only one of the (Ai,1Ai,2)={00} could have been
latched by Stage i. The transmission of the negative Ai,2 is
so slow and later than acki+1 ↓ which can be caused by a
negative transient fault on the input data wire to Stage (i+1,2),
the half-buffer latch or the CD of Stage (i+1,2). As a result,
the deadlock state is:

({Ai,1Ai,2}, acki, {Ai+1,1Ai+1,2}, acki+1)

= ({00}, 1, {01}, 0). (10)

The above proof can be extended to all multi-word (or
m-of-n, 2≤m<n) pipelines. Therefore, a transient fault could
deadlock a multi-word 4-phase QDI pipeline. Along with
the deadlock, a transient fault could cause symbol corruption
and insertion as well, whose proof is omitted in this paper.
The network will continue and the polluted packets can be
corrected using other fault-tolerant techniques. This paper
focuses on the deadlock of multi-word QDI pipelines which
could cause serious consequence when it happens on QDI
NoCs.

C. Deadlock analyses

For an N-word wide 4-phase QDI pipeline, four binary sets
are defined as follows (Ai = {Ai,j |1 ≤ j ≤ N}):

• complete data (Ai,complete): all elements are ‘1’s.
• almost full (Ai,almost full): all elements are ‘1’s ex-

cept for the fault-related one which is ‘0’.
• spacer (Ai,spacer): all elements are ‘0’s.
• almost empty (Ai,almost empty): all elements are ‘0’s

except for the fault-related one which is ‘1’.

It can be concluded from Theorem 3 that possible deadlock
states of an N-word 4-phase QDI pipeline caused by a transient
fault are (11) and (12). Fig. 4 presents two examples that
pipelines are deadlocked by transient faults on link wires. Data
symbols listed in Fig. 3 are used.

(Ai, acki,Ai+1, acki+1)

= (Ai,complete, 0,Ai+1,almost full, 1)
(11)

(Ai, acki,Ai+1, acki+1)

= (Ai,spacer, 1,Ai+1,almost empty, 0)
(12)

corruption

00 1 01 0

di

dia

do

doa

Stage
data

ack

11 0 10 1

di

dia

do

doa

Stage
data

ack

0 1 11 1

di

dia

do

doa

Stage
data

ack

s‐a‐0

s‐a‐1
Pre‐fault Post‐fault

Pre‐fault Post‐fault

Pre‐fault Post‐faults‐a‐0
0 1

1 0 00 0

di

dia

do

doa

Stage
data

ack

Pre‐fault Post‐faults‐a‐1
1 0

i i+1

i i+1(a) Data stuck-at-0

corruption

00 1 01 0

di

dia

do

doa

Stage
data

ack

11 0 10 1

di

dia

do

doa

Stage
data

ack

0 1 11 1

di

dia

do

doa

Stage
data

ack

s‐a‐0

s‐a‐1
Pre‐fault Post‐fault

Pre‐fault Post‐fault

Pre‐fault Post‐faults‐a‐0
0 1

1 0 00 0

di

dia

do

doa

Stage
data

ack

Pre‐fault Post‐faults‐a‐1
1 0

i i+1

i i+1

(b) Data stuck-at-1

corruption

00 1 01 0

di

dia

do

doa

Stage
data

ack

11 0 10 1

di

dia

do

doa

Stage
data

ack

0 1 11 1

di

dia

do

doa

Stage
data

ack

s‐a‐0

s‐a‐1
Pre‐fault Post‐fault

Pre‐fault Post‐fault

Pre‐fault Post‐faults‐a‐0
0 1

1 0 00 0

di

dia

do

doa

Stage
data

ack

Pre‐fault Post‐faults‐a‐1
1 0

i i+1

i i+1

(c) ACK stuck-at-0

corruption

00 1 01 0

di

dia

do

doa

Stage
data

ack

11 0 10 1

di

dia

do

doa

Stage
data

ack

0 1 11 1

di

dia

do

doa

Stage
data

ack

s‐a‐0

s‐a‐1
Pre‐fault Post‐fault

Pre‐fault Post‐fault

Pre‐fault Post‐faults‐a‐0
0 1

1 0 00 0

di

dia

do

doa

Stage
data

ack

Pre‐fault Post‐faults‐a‐1
1 0

i i+1

i i+1

(d) ACK stuck-at-1

Fig. 5. Deadlocked pipelines caused by permanent faults on link wires [7]

Tskew is used to represent the data skew between the two
slowest parallel sub-pipelines. The loop latency Tloop can be
expressed as (13) where Tforward and Tbackward represent the
propagation delay of the forward data and the backward ack
respectively. Tforward and Tbackward can be expressed as (14)
and (15) where tlatch, tCD, tdwire and tawire are propagation
delays of the asynchronous latch, the CD, data wires and
the ack wire, respectively. It can be concluded that (16) is
the necessity that a transient fault deadlocks a 4-phase QDI
pipeline.

Tloop = Tforward + Tbackward (13)

Tforward = 2tlatch + tdwire (14)

Tbackward = tCD + tawire (15)

Tskew > Tloop (16)

D. Deadlock detection and fault diagnosis

It can be found from Fig. 4 that the deadlock caused by a
transient fault has the same pattern as the pattern caused by
permanent faults [7]. The common deadlock pattern shared by
both faults is:

1) No transitions are detected on the pipeline;
2) All pipeline stages downstream of the fault have the same

ack while the ack signals in stages upstream of fault are
alternately valued.

Without considering permanent faults, the position of the
transient fault causing deadlock can be located using the
proposed techniques in [7]. If both transient and permanent
faults are considered, the fault type should be diagnosed first
and then different recovery methods are used. Fig. 5 presents
four cases that stuck-at permanent faults deadlock the pipeline,
which has been fully studied [7]. Comparing Fig. 4 with
Fig. 5, it can be found that, transient and permanent faults

103

11 0 10 1

di

dia

do

doa

Stage
data

ack

0‐1‐0

Pre‐fault

00 1 01 0

di

dia

do

doa

Stage
data

ack

1‐0‐1

Pre‐fault

ii‐1 i+1 i+2

ii‐1 i+1 i+2

& ack‐ & ack+

& ack+ & ack‐Transient

Permanent

data:

ack: 0 1 0

complete dataspacer almost_emptyalmost_full spacertype:

00 1 01 0

di

dia

do

doa

Stage
data

ack

11 0 10 1

di

dia

do

doa

Stage
data

ack

0 1 11 1

di

dia

do

doa

Stage
data

ack

s‐a‐0

s‐a‐1
Pre‐fault Post‐fault

Pre‐fault Post‐fault

Pre‐fault Post‐faults‐a‐0
0 1

1 0 00 0

di

dia

do

doa

Stage
data

ack

Pre‐fault Post‐faults‐a‐1
1 0

i i+1

i i+1

Post‐fault

Post‐fault

spacer

almost_full

almost_empty

complete data

Fig. 6. Deadlock patterns of stages downstream of the fault

cause different combinations of the input data symbol and the
generated ack (acki+1) at the post-fault stage (Stage (i+1)).

For the deadlock caused by a transient fault, the input to the
post-fault stage is an almost full/complete data symbol with a
positive ack to the preceding stage, or an almost empty/spacer
symbol with a negative ack. For permanent faults, the input
to the post-fault stage is an almost full/complete data symbol
with a negative ack, or an almost empty/spacer symbol with a
positive ack. Fig. 6 concludes the difference which is the key
to diagnose the fault type.

III. IMPLEMENTATION OF AN ASYNCHRONOUS NOC

This section presents the implementation of a 2D-mesh
asynchronous NoC to demonstrate the deadlock detection, fault
diagnosis and network recovery processes. Both transient and
permanent faults are considered. The NoC uses 4-phase 1-of-4
protocol and works in a QDI fashion.

A. Router structure

Fig. 7a presents an asynchronous wormhole router with
five bidirectional ports. Pipelined buffers using 4-phase 1-of-4
protocols are inserted at both the input and output ports of the
router. A switch allocator controls the connection between the
input and output ports through the crossbar. The NoC employs
an XY-dimension-ordered routing algorithm and wormhole
routing [10]. Packets are divided into head, body and tail flits
(Fig. 7b). Address information is stored in the head flit while
a tail flit indicated by a positive end-of-packet (eop) is used
to separate consecutive packets.

Fig. 7c shows the connection between two continuous
routers. When a new packet arrives, its head flit is blocked
before the first stage (Stg 1) by the Buffer controller, awaiting
the XY controller to generate a routing request (rt req) to the

(0,0) (0,1) (0,2) (0,3)

(1,0)

(2,0)

(3,0)

y

x

(x,y)

data

ack St
ag
edi

dia

output buf. input buf.
St
ag
e

St
ag
e

St
ag
e...

...

...

... St
ag
e

St
ag
e do

doa

South
West
North
East
Local

......

Crossbar South
West
North
East
Local

Switch Allocator

BufferBuffer

cia

rt_req

Stg 1

Switch
Allocator

rt_ack

Stg j

ipia ipoa

ipeop

link
Stg i

...

...

...
Stg 1

...

...

...

XY
Contr.

Output Input

opia opoa

Buf.
Contr.

(a) Router structure

a)

_ack

detected
conf=1)

N

nsitions on
or ipdia?

'0'

data

eop

addr.datadata ...

headbodybodytail tail

...
ack

...

...

itoring the input
uffer (iena=1)

R R R

RRR

RRR

vc0

vc1

SDM
NoC

link

router

router monitor

ipdia

rt_ackTDU

+
C

‐
C

ena

sig
act

c2p

c2n

ipdoaTDU

TDU

start

TranDeti

TDU

clk

act0

act2

act1

AckSeqo
det_rstn

Q D

Q D

Q D

err_conf

err_r

start

ipdia

rt_ack

ipdoa

timeout

ipeof-
C

TranDeto

Comb.

TDU
ena

sig

+
C

FDi

FDo

opdoa
opdia

TD

router_p (OBUF) router_s (IBUF)

vc_busy

vc_rdy
-
C

ri

h

ci

cb
o cbi

rbo

rb
i

ri

h

ci

cb
o cbi

rbo

rb
i

rt_r0

2-
in

pu
t a

rb
ite

r

rt_ack0

rt_r1
rt_ack1

ri

h

ci

cb
o cbi

rborb
i

ri

h

ci

cb
o cbi

rborb
i

2-input arbiter

vc_rdy0 vc_rdy1

vc_busy0 vc_busy1

r_
b
lo
ck

0
r_
b
lo
ck

1

h0,0 h1,0

h0,1 h1,1

rt_r0

h1,0h0,0

h0,1 h1,1

rt_r1

cfg0,0

cfg0,1

cfg1,0

cfg1,1

rt_ack0

rt_ack1

Tile0,0

Tile0,1 Tile1,1

+C
+ Crbo

cbo rbi
cbi

h

ri ci

Tile

counter

Tile1,0

+
C

+
C

+
C

+
C

(b) Flit sequence

(0,0) (0,1) (0,2) (0,3)

(1,0)

(2,0)

(3,0)

y

x

(x,y)

data

ack St
ag
edi

dia

output buf. input buf.

St
ag
e

St
ag
e

St
ag
e...

...

...

... St
ag
e

St
ag
e do

doa

South
West
North
East
Local

......

Crossbar South
West
North
East
Local

Switch Allocator

BufferBuffer

cia

rt_req

Stg 1

Switch
allocator

rt_ack

Stg j

ipia ipoa

ipeop

link
Stg i

...

...

...
Stg 1

...

...

...

XY
contr.

Output Input

opia opoa

Buf.
contr.

data

eop

addr.datadata ...

headbodybodytail tail

...
ack

...

...

rt_req

Stg 1

rt_ack

Stg j
ipia ipoa

ipeop

link

Stg i

...

...

...

Stg 1

...

...

...

Output Input

opia opoa

Deadlock
detector

Pattern
checker

ft_type[1:0]

dk_req

ft_ack[1:0]

clk timeout

(c) Connection between two routers

Fig. 7. An asynchronous wormhole router

(0,0) (0,1) (0,2) (0,3)

(1,0)

(2,0)

(3,0)

y

x

(x,y)

data

ack St
ag
edi

dia

output buf. input buf.

St
ag
e

St
ag
e

St
ag
e...

...

...

... St
ag
e

St
ag
e do

doa

corruption

South
West
North
East
Local

......

Crossbar South
West
North
East
Local

Switch Allocator

BufferBuffer

cia

rt_req

Stg 1

Switch
allocator

rt_ack

Stg j

ipia ipoa

ipeop

link
Stg i

...

...

...
Stg 1

...

...

...

XY
contr.

Output Input

opia opoa

Buf.
contr.

data

eop

addr.datadata ...

headbodybodytail tail

...
ack

...

...

Stg 1

rt_ack

Stg j
ipia ipoa

ipeop

Stg i

...

...

...

Stg 1

...

...

...

opia opoa

Deadlock
detector

Pattern
checker

ft_type[1:0]
dk_req

ft_ack[1:0]clk

timeout
tr

Post‐fault (input)Pre‐fault (output)

dk_conf

2
counter

protected link region

Fig. 8. Deadlock detection on the link of the NoC

switch allocator. After a free output is allocated to the input
request, denoted by a positive rt ack, the Buffer controller
enables the transmission of the packet through the crossbar
until a tail flit is noticed through the eop wire. Details about
the router implementation can be found in [7], [13].

B. A time-out mechanism

The proposed techniques (Section II-D) are general and can
be used in any 4-phase QDI pipelines to detect the deadlock
and diagnose the fault type. In this design, they are used
to protect links of the NoC (including pipelined input/output
buffers and link wires) from deadlock. In [7], a time-out
mechanism was proposed to detect the deadlock caused by
permanent faults. This paper proposes an improved version
which could detect the deadlock caused by both transient and
permanent faults.

To detect the deadlocked link, extra circuits are added
to the output and input of each pair of adjacent routers to
monitor intermediate pipeline stages and link wires (Fig. 8).
Faults can happen at any gates and wires between the leftmost
(Stg 1 at the output) and the rightmost (Stg 1 at the input)
stages of the link (which is the protected region). Since the
common deadlock pattern shared by transient and permanent
faults is valid only when the status of the pipeline is stable
(deadlocked), a time-out mechanism can be used to control
the deadlock detection. As Fig. 8 shows, a deadlock detector
is added to each output of a router, which also controls the
pattern checker at the input of the succeeding router. Each
router has a counter to generate a timeout signal controlling
a state machine in the deadlock detector, so that the detector
is a sync/async hybrid circuit. If the monitored pipeline stages
have been inactive for a long timeout period, the detector
and pattern checker are assumed safe to sample asynchronous
signals. Synchronizers are added to the sync/async interface
to further reduce the possibility of metastability. If sampled
asynchronous signals satisfy the deadlock pattern, the deadlock
is detected and located.

Four flip-flops (perm fault, dk conf, dk req and start)
construct the state machine in the deadlock detector. The local
clock signal used to drive the state machine and the counter
can be easily got from the local synchronous IP cores. There
is no requirement on its skew, jitter and frequency [7]. Fig. 9a
presents the state graph, which has five states:

Idle: This is the default state after reset with all flip-flops
being low.

104

Start: After a time-out period, start is set high, enabling
the transition detector (Fig. 9b) to monitor the ack signal
(opoa) at the output. Initially the transition detector is disabled
and outputs ‘0’. When it is enabled to work (start+), any
transitions of the monitored signal (sig) will set the output
high. When the 2nd timeout comes, the deadlock detector
either transits to Enquiry (no transitions are detected and two
adjacent ack signals at the output (opia and opoa in Fig. 8)
are complementary, satisfying the deadlock pattern at the pre-
fault stage) or gets reset to Idle (transitions are detected or
opia==opoa).

Enquiry: In this state, dk req signal is set high by the
deadlock detector to enquire the input of the succeeding
router about the deadlock pattern. The pattern checker samples
asynchronous signals from Stg 1 of the input buffer. Since
the output of the preceding router has satisfied the deadlock
pattern of the pre-fault stage, the link will be confirmed to
be deadlocked if no transitions are detected during the 3rd
timeout period and one of the following cases keeps true: 1©
the input buffer is transmitting a packet (a path connected to
the output through the crossbar has been allocated, denoted by
a high rt ack) and the two consecutive ack signals connected
to stage Stg 1 keep equal (ipia==ipoa) due to a fault; 2© a fault
may destroy the head flit so that the head of a packet is blocked
before Stg 1 (!rt ack). Consequently, both the two consecutive
ack signals are low (!ipia and !ipoa); 3© an unallocated input
buffer (!rt ack and !ipoa) with a fake incoming tail flit (ipeop)
may get blocked before Stg 1 of the input.

Using the fault type information collected from the fault
diagnosis circuit at the 1st pipeline stage (Stg 1) of the post-
fault router (Section III-C), the result from the pattern checker
is encoded into a 1-of-2 signal (ft ack[1:0]). If the deadlock
pattern passes the check, ft ack equals to either 2’b01 or 2’b10
indicating which kind of faults causes this deadlock (transient
or permanent). The state machine will transit to DK Confirm
when the next timeout comes. If none of the above cases is
matched or transitions are detected, the pattern checker outputs
2’b00, resetting the state machine to Idle immediately.

DK Confirm: When the 3rd timeout arrives, a positive
(|ft ack) will set dk conf high to announce that a deadlock
has been detected and the fault position is located (in the
protected link region in Fig. 8). The deadlock must be caused
by either a transient (ft ack==2’b01) or a permanent fault
(ft ack==2’b10) in this paper. Then different recovery methods
are provoked. If the deadlock is caused by a permanent fault,
the state machine will get stuck at this state to block the
defective link; Otherwise, the deadlock is caused by a transient
fault and the state machine will go to TF Confirm.

TF Confirm: If the fault deadlocks the link is diagnosed
as a transient one, the state machine goes to TF Confirm to
resume the previously blocked link to use when the 4th timeout
comes. When the 5th timeout arrives, the state machine goes
back to the initial Idle state and the detection process restarts.

It can be inferred that it needs two to four time-out periods
to detect the deadlock (or the permanent fault), and four to six
time-out periods to recover the link from the deadlock caused
by a transient fault. This implemented NoC protects only the
link (including the intermediate pipeline stages and link wires).
The proposed methods can also protect the crossbar of the

Idle

Start

DK_Enquiry

Output of Ri

timeout

DK_Confirm
(Link)

DK_Confirm
(Router)

DK_Confirm
(Link)

Reset all
stages

Drain &
Release

Transient or
permanent?

Block OVC

p

transient

permanent

DK_Confirm
(Router i)

Reset all
stages

Idle

Start

timeout

No transitions on opoa
&& (opia !=opoa)

Any transitions on opoa
or (opia ==opoa)

Enquiry

TF_Confirm
(transient)

④ others

State: [perm_fault, dk_conf, dk_req, start]

timeout

timeouttimeout

[0000]

[0001]

[0011]

[0111]

DK_Confirm
(permenent)

Permanent
fault?

No

Yes

timeout

[1111]

(a)

sig

start

act

TD

TD

TDstart
ipdoa

rt_ack

ipdia

act0

act2

act1

TranDeti

cfg

cia

rt_r

Stage 0

Switch
Allocatorrt_ack

Stage j
ipdia ipdoa

ipeop

opdia opdoa

IVC0OVC0

link
IVC1OVC1

router_p router_s

Stage i

acken

rt_rst
rt_en

...

...

...

Stage 0

...

...

...

buffer
controllerXY‐controller

Output Input

C

ackeop

eop

a

b

ipdia
ipdoa

rt_ack
ipeof

Ackseqi

err_r

eia[0]

eia[1]
+
C

TD

TD

TD

[011]

Case 1

Case 2

Case 3

R0 R2

R3R1
link

router

x

y(0,0)

South
West
North
East
Local

......

Crossbar South
West
North
East
Local

Switch Allocator

BufferBuffer

la
tc
h

(b)

Fig. 9. (a) State machine (b)Transition detector [14]

router if a pair of the deadlock detector and the pattern checker
are put at the output and input of the same router so that the
full data-path is protected.

C. Fault diagnosis

When the deadlock is detected and located (DK Confirm),
fault diagnosis is required to determine the fault type and then
relevant methods are used to recover the network. According
to Section II-C and II-D, we know that different faults cause
different patterns at the post-fault pipeline stage (Stg 1 of
the input in Fig. 8) which are summarized in Fig. 6. The
key operation to diagnose fault type is to differentiate the al-
most full/complete data from almost empty/spacer symbols.

Fault diagnosis circuit is put at the CD of the post-fault
pipeline stage (Stg 1 at the input of the post-fault router,
Fig. 8). Its input comes from the CD of each sub-pipeline
stage (Fig. 2). Therefore, if the pipeline is N -word wide, the
fault diagnosis circuit has N inputs. Assume that one 1-of-
n pipeline is N-word wide (N>2) and the set of completion
detection signals from all CDs of the post-fault pipeline stage
is SCD={cd1, ...cdN}. Num(1) denotes the number of ‘1’s
in SCD and Num(0) denotes the number of ‘0’s. Under the
assumption of 1-bit fault, only one “cd” in the SCD could be
different from the others at most. It can be inferred that:

• If Num(1)>Num(0), the latched data symbol is an
almost full or complete data one;

• If Num(1)<Num(0), the latched data symbol is an
almost empty one or a spacer;

• Num(1) and Num(0) cannot be equal.

If N==1, the deadlock can be caused only by a permanent
fault according to Theorem 1 in Section II-B. If N==2, the
symbol type can be decided by adding one more redundant
word (so that N==3) with which symbol corruption caused by
transient faults can be tolerated [9].

Fig. 10 shows the implementation of fault diagnosis circuits
for an 8-word wide pipeline, with which we can compare
the value of Num(1) and Num(0). Fig. 10a shows the circuit
that decides if the latched data by the pipeline stage is an
almost full/complete data symbol or not. Since at most one
“cd” in SCD could be affected and different from the others
under the assumption of 1-bit fault, if two or more ‘1’s
are detected by the diagnosis circuit (leading to a positive
almost full), it can be assured that Num(1)>Num(0) and
the latched data is an almost full or complete data symbol.

105

1+

1+

ack2+

iack2‐

ack2‐

Ain1+

Bin1+

Aout1+

Bout1+

Ain2+

Bin2+

Aout2+

Bout2+

Ain1‐

Bin1‐

Aout1‐

Bout1‐

Ain2‐

Bin2‐

Aout2‐

Bout2‐

Acd1+
Bcd1+

ack1+ iack1‐

Acd2+
Bcd2+

ack2+ iack2‐

ack3+

ack3‐

Acd1‐
Bcd1‐ack1‐

iack1+

Acd2‐ Bcd2‐

ack2‐

iack2+

Acd1'+ Bcd1'+

Acd2'+Bcd2'+

almost_empty almost_full

cd1 cd2 cd3 cd4 cd5 cd6 cd7 cd8 cd1 cd2 cd3 cd4 cd5 cd6 cd7 cd8

(a) Almost full/complete

1+

1+

ack2+

iack2‐

ack2‐

Ain1+

Bin1+

Aout1+

Bout1+

Ain2+

Bin2+

Aout2+

Bout2+

Ain1‐

Bin1‐

Aout1‐

Bout1‐

Ain2‐

Bin2‐

Aout2‐

Bout2‐

Acd1+
Bcd1+

ack1+ iack1‐

Acd2+
Bcd2+

ack2+ iack2‐

ack3+

ack3‐

Acd1‐
Bcd1‐ack1‐

iack1+

Acd2‐ Bcd2‐

ack2‐

iack2+

Acd1'+ Bcd1'+

Acd2'+Bcd2'+

almost_empty almost_full

cd1 cd2 cd3 cd4 cd5 cd6 cd7 cd8 cd1 cd2 cd3 cd4 cd5 cd6 cd7 cd8

(b) Almost empty/spacer

Fig. 10. Fault diagnosis circuits for an 8-word wide pipeline

Similarly, Fig. 10b shows the circuit deciding if the latched
data is an almost empty/spacer symbol or not. If two or more
“cd”s are ‘0’s, it can be assured that Num(0)>Num(1). The
output almost empty goes high and the latched data is an
almost empty symbol or a spacer.

Fault type is denoted by a 1-of-2 signal ft type[1:0] whose
default value is 2‘b00. When a deadlock is detected, it should
be either 2‘b01 (a transient fault) or 2‘b10 (a permanent fault),
while 2‘b11 is invalid (it is assumed that the transient and
permanent fault cannot happen and deadlock the same pipeline
segment at the same time). In a deadlocked state, the output
of the diagnosis circuit ft type has the same value as the
output of the pattern checker ft ack. Therefore, we have (17)
corresponding to Fig. 6 (ack corresponds to the ipoa in Fig. 8).

ft type ={(almost full & !ack) | (almost empty & ack),

((almost full & ack) | almost empty & !ack)}
(17)

For example, if SCD={00010000} where cd4 from the 4th
sub-pipeline is affected by the fault, using the diagnosis circuit
we have almost full==0 and almost empty==1. The fault type
can be decided using (17). The proposed diagnosis circuit can
be extended to the case of multi-bit faults.

D. A fine-grained network recovery

If the deadlock is caused by a permanent fault, the de-
fective component should be blocked so that the following
traffic could detour around the defective one and the network
function is recovered. This has been fully studied where the
Spatial-division Multiplexing (SDM) is used to implement
the NoC [7]. As a result, each link is divided into multiple
independent sub-links physically. If one sub-link is defective,
the other fault-free ones can still be used to transfer packets
with a slightly decreased performance. The defective sub-link
can be blocked by configuring the switch allocator of the pre-
fault router. The remaining flits in the fault-free deadlocked
pipeline stages upstream of the fault can be drained out at
the output of the pre-fault router (Drain operation) while the
deadlocked pipeline stages downstream of the defective link
are released by creating a fake tail flit at the input of the post-
fault router (Release operation). Details can be found in [7].

Differently, the link deadlocked by a transient fault is
not defective which should be reused again. A fine-grained
recovery mechanism is proposed to avoid an expensive system
reboot. When the state machine goes to DK Confirm where
the deadlock has been detected and the fault type is known, the
fault deadlocking the link is regarded as permanent in default.
All recovery operations dealing with the permanent faulty link

TABLE I. HARDWARE EVALUATION OF ASYNCHRONOUS NOCS

Original Protected Overhead

Area (µm2) 63446 72394 14.1%
Throughput
(MByte/s/node)

693 648 -6.5%

Energy (pJ/Byte) 3.7 4.3 16 %

(including Drain& Release and the blockage of the link) are
executed. It is reasonable to assume that they can finish in one
long time-out period. If the fault is transient, the state machine
will transits to TF Confirm where the blocked link is resumed
to use. Otherwise, the fault is permanent (DK Confirm) and
the defective sub-link is blocked forever.

IV. EXPERIMENTAL RESULTS

A. Performance evaluation

The asynchronous NoC router using the proposed deadlock
management techniques are implemented using the 130nm
standard cell library. Asynchronous cells, such as C-elements
and MUTEX, are built using standard cells. The router has five
input/output ports and each port is 32-bit wide. Using Spatial-
division Multiplexing (SDM) [7], [13], each link is divided
into two sub-links physically to support the recovery from
permanent faults. Both the input and output buffers have two
pipeline stages. 4-phase 1-of-4 protocol is used to implement
the whole network. The original asynchronous SDM NoC
using the same configuration is also designed for comparison.
TABLE I presents the experimental results. It can be found
that, after adding extra circuits dealing with the deadlock, the
area of the protected router increases 14.1%.

A SystemC/Verilog mixed environment is built to evaluate
the network performance. 16 post-synthesis routers (annotated
with the gate latency) are connected to build a 4×4 2D-
mesh network. Mounted synchronous processors and network
interfaces are implemented in SystemC. The packet size is
fixed to 64 bytes while the flit width equals to the width of the
sub-link (2 bytes). Using the maximum rate, processors inject
random packets into the network so that the network traffic is
uniformly distributed. The clock and time-out frequencies are
set to 100MHz and 1.5MHz respectively. It can be found from
TABLE I that the saturation throughput of the protected NoC
decreases by 6.5% compared to the unprotected one while the
energy of the protected router increases 16%.

B. Reliability analyses

Transient faults may cause symbol corruption, symbol
insertion and deadlock on an asynchronous NoC. This paper
targets on the deadlock occasion. The other faulty behaviour
can be tolerated using fault-tolerant codes [9] or physical
redundancy techniques [8], which is not the focus of this paper.

To verify the proposed deadlock recovery theorems, ran-
dom faults are inserted to the built network during the simula-
tion using scripts written in Tool Command Language. Faults
could happen at pipelined buffers (including the asynchronous
latch and CD) and link wires. It is straightforward that a
permanent fault could cause deadlock on the asynchronous

106

NoC. For deadlock caused by a transient fault, data skew
has to be inserted accompanied with the fault. For instance,
along with a (positive/negative) transient fault inserted to
Ai+1,1, a delay has to be inserted to Ai,1 to block its normal
(positive/negative) transition to produce a deadlock on this
segment (Fig. 2b). The fault level should be the same as the
level of the delayed signal. Following this rule, deadlocks
caused by transient faults are randomly generated through the
network. Test results show that the fault type can be precisely
diagnosed according to the deadlock pattern. The deadlock
caused by transient or permanent faults on data or ack wires
of links can be 100% detected and recovered.

It should be noticed that the deadlock recovery techniques
bring extra circuits to original routers, which are not protected
in this paper. They increase the router area by 14.1% which
has a negative impact on the chip reliability. Given the fact
that most runtime permanent faults are strongly related to the
workload of the device [15], it is reasonable to assume that the
overall reliability against permanent faults largely increases
since there are far fewer activities on these extra circuits
compared with the usual router logic, especially when a long
time-out period is used. However, transient faults could happen
randomly on the network. Considering our design, the state
machine in the deadlock detector is critical and should be safe.
Most of transient faults happening on detection circuits could
be masked [6]. A transient fault may cause a wrong deadlock
indication, provoking the recovery process. This could result
data errors which can be tolerated using other techniques [8],
[9]. The state machine would keep running under the control of
the clock and finally goes back to the initial state. One possible
risk is that a transient-fault-caused deadlock is mistaken into a
permanent one due to a transient fault on the fault type signal.
Under the assumption of 1-bit fault during a detection cycle,
this cannot happen. Since the deadlock caused by a transient
fault can paralyse the function of the whole network, using
reasonable redundancy for deadlock detection and recovery
could avoid expensive system reboot and make the network
more reliable, especially when both transient and permanent
faults are considered. Some other techniques such as scan
chains [16] can be used to monitor and protect the behaviour of
these redundant circuits periodically. In addition, a fault or the
deadlock recovery operation can destroy a transmitting packet,
resulting packet loss. Extra retransmission mechanisms should
be employed to redeliver the lost packet. These are left as the
future work.

V. CONCLUSION

A transient fault happening on a QDI pipeline with a
delayed signal transition could cause deadlock, which has not
been fully studied. This deadlock could spread over the whole
asynchronous NoC and paralyse its function. By modelling
the 4-phase QDI pipeline, this paper systematically studies
the formation and behaviour of the deadlock caused by a
transient fault. Common deadlock patterns caused by both the
transient and permanent faults are summarized which can be
used to detect the deadlock and diagnose the fault type. The
proposed theorems apply to all 4-phase 1-of-n QDI pipelines
and can be extended to m-of-n pipelines (m≥2). As a design
case, this paper implements an asynchronous NoC whose links
(including the pipelined buffers and link wires) are protected.
The deadlock caused by a transient or permanent fault on the

link could be detected and diagnosed precisely. A fine-grained
recovery mechanism is proposed to avoid the expensive system
reboot and recover the network. Detailed experimental results
show that the overhead brought by the redundant circuits are
reasonable. The proposed deadlock recovery technique can be
easily extended to protect the whole data-path of the NoC
(including the crossbar).

This paper studies the deadlock which could cause serious
consequence on the network. The deadlock does not happen so
often as the symbol corruption (symbol insertion requires data
skew as well) since only a transient fault accompanied with a
long enough data skew could cause this deadlock. The future
work is to combine the proposed deadlock recovery methods
with fault-tolerant codes [9] or other redundancy techniques [8]
to tolerate symbol corruption (or insertion) and extend the
protection from the data-path to the control-path, so that a
systematic protection of the NoC could be achieved.

ACKNOWLEDGMENT

The authors would like to thank various grants from the
National Natural Science Foundation of China (61272144,
61402497 and 61402501), the China Scholarship Council,
and the Engineering and Physical Sciences Research Council
(EP/I038306/1).

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. of DAC, 2001, pp. 684–689.

[2] J. Sparsø and S. B. Furber, Principles of Asynchronous Circuit Design:
a Systems Perspective. Kluwer Academic Publishers, 2001.

[3] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Fichtner,
“Globally-asynchronous locally-synchronous architectures to simplify
the design of on-chip systems,” in Proc. of International ASIC/SOC
Conference, 1999, pp. 317–321.

[4] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
IEEE Micro, vol. 23, no. 4, pp. 14–19, 2003.

[5] K. L. Shepard and V. Narayanan, “Noise in deep submicron digital
design,” in Proc. of ICCAD, 1996, pp. 524–531.

[6] T. Karnik and P. Hazucha, “Characterization of soft errors caused by
single event upsets in CMOS processes,” IEEE Tran. on Dependable
and Secure Computing, vol. 1, no. 2, pp. 128–143, 2004.

[7] G. Zhang, W. Song, J. Garside, J. Navaridas, and Z. Wang, “An
asynchronous SDM network-on-chip tolerating permanent faults,” in
Proc. of ASYNC, May 2014, pp. 9–16.

[8] W. Jang and A. J. Martin, “SEU-tolerant QDI circuits,” in Proc. of
ASYNC, 2005, pp. 156–165.

[9] G. Zhang, W. Song, J. Garside, J. Navaridas, and Z. Wang, “Protecting
QDI interconnects from transient faults using delay-insensitive redun-
dant check codes,” Microprocessors and Microsystems, vol. 38, no. 8,
Part A, pp. 826 – 842, 2014.

[10] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers, 2003.

[11] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods for fault
tolerance in Networks-on-chip,” ACM Computing Surveys, vol. 46,
no. 1, pp. 8:1–8:38, Jul. 2013.

[12] A. J. Martin, Synthesis of asynchronous VLSI circuits. No. CALTECH-
CS-TR-93-28, California Institute of Technology, 1991.

[13] W. Song and D. Edwards, “Asynchronous spatial division multiplexing
router,” Microprocessors and Microsystems, vol. 35, no. 2, pp. 85–97,
2011.

[14] Y. Shi, S. B. Furber, J. Garside, and L. A. Plana, “Fault tolerant delay
insensitive inter-chip communication,” in Proc. of ASYNC, 2009, pp.
77–84.

[15] R. Aitken, G. Fey, Z. T. Kalbarczyk, F. Reichenbach, and M. Sonza Re-
orda, “Reliability analysis reloaded: How will we survive?” in Proc. of
DATE, 2013, pp. 358–367.

[16] X.-T. Tran, Y. Thonnart, J. Durupt, V. Beroulle, and C. Robach,
“Design-for-test approach of an asynchronous network-on-chip archi-
tecture and its associated test pattern generation and application,” IET
Computers Digital Techniques, vol. 3, no. 5, pp. 487–500, 2009.

107

