
Parallel Computing 36 (2010) 71–85
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco
Reducing complexity in tree-like computer interconnection networks

Javier Navaridas a,*, Jose Miguel-Alonso a, Francisco Javier Ridruejo a, Wolfgang Denzel b

a Department of Computer Architecture and Technology, The University of the Basque Country, San Sebastian, Spain
b IBM Research GmbH, Rüschlikon, Switzerland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 March 2008
Received in revised form 13 August 2009
Accepted 21 December 2009
Available online 28 December 2009

Keywords:
k-ary n-tree topology
Traffic characterization
Simulation
Performance evaluation
0167-8191/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.parco.2009.12.004

* Corresponding author.
E-mail addresses: javier.navaridas@ehu.es (J. Nav

ibm.com (W. Denzel).
Interconnection networks based on the k-ary n-tree topology are widely used in high-per-
formance parallel computers. However, this topology is expensive and complex to build. In
this paper we evaluate an alternative tree-like topology that is cheaper in terms of cost and
complexity because it uses fewer switches and links. This alternative topology leaves
unused upward ports on switches, which can be rearranged to be used as downward ports.
The increase of locality might be efficiently exploited by applications. We test the perfor-
mance of these thin-trees, and compare it with that of regular trees. Evaluation is carried
out using a collection of synthetic traffic patterns that emulate the behavior of scientific
applications and functions within message passing libraries, not only in terms of sources
and destinations of messages, but also considering the causal relationships among them.
We also propose a methodology to perform cost and performance analysis of different net-
works. Our main conclusion is that, for the set of studied workloads, the performance drop
in thin-trees is less noticeable than the cost savings.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The k-ary n-tree topology [22], based on the classic fat-tree topology introduced by Leiserson [17], is often the topology of
choice to build low latency, high bandwidth and high connectivity interconnection networks (hereafter IN) for parallel com-
puters. Its main characteristics are the low mean path length and the multitude of paths from a source to a destination node,
which increases exponentially with the distance between nodes (in number of hops). This high path diversity provides a
good performance rate for almost all kind of workloads, independently of their spatial, temporal and length distributions.

However, its design does not take into account that parallel applications usually arrange their processes in such a way that
communicating processes are as close as possible (in terms of process identifier) to each other, trying to obtain advantages
from locality in communication. A network design that ignores locality could be a good option because, in some of the largest
parallel systems currently operating, schedulers see processors as an unstructured pool of resources, and assigns them to par-
allel jobs without guaranteeing that neighbor processes (i.e., consecutive identifiers) run in neighboring compute nodes (at-
tached to the same or adjacent switches). The result is a random mapping of processes to nodes that may require high
bandwidth at all network levels, because many nodes will generate messages addressed to distant pairs. Not all the sched-
ulers function this way: there are a few that are topology-aware and schedule applications in consecutive partitions of the
network, thus allowing for an effective exploitation of locality. In these cases, for most applications, the bisection bandwidth
would no longer be the main performance limiting factor, and the upper levels of network would be under-utilized.
. All rights reserved.

aridas), j.miguel@ehu.es (J. Miguel-Alonso), franciscojavier.ridruejo@ehu.es (F.J. Ridruejo), wde@zurich.

http://dx.doi.org/10.1016/j.parco.2009.12.004
mailto:javier.navaridas@ehu.es
mailto:j.miguel@ehu.es
mailto:franciscojavier.ridruejo@ehu.es
mailto:wde@zurich. ibm.com
mailto:wde@zurich. ibm.com
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco

72 J. Navaridas et al. / Parallel Computing 36 (2010) 71–85
We can reduce cost and complexity of the IN by reducing the ratio between the number of links connected to upper levels
and those connected to lower ones. This can be done reducing the radix of the switches or, alternatively, increasing the local-
ity by rearranging the upward ports and making them downward. In both cases the total cost of the system is reduced: fewer
switches, fewer links and, in the former case, switches of lower complexity. If parallel applications are correctly placed, per-
formance should not suffer. They could even experience an improvement due to the increased locality of the latter case. In
this paper we propose to use thin-trees to, this way, reduce cost and complexity of interconnection networks by doing what
we have just described. Thin-trees are directly derived from the k-ary n-tree topology, reducing the number of upward ports
of all switches.

In order to test the different networks, we have performed a throughput study for uniform traffic, both analytically and
via simulation. Ideally we would evaluate performance using real traces taken from actual scientific applications running on
very large systems but, as large traces are difficult to obtain and not very manageable, we have used a collection of synthetic
workloads that emulate their behavior. This mimicry is done not only in terms of spatial patterns, but also in terms of the
causality of the injected messages. Some of the communication patterns replicate the way collectives are implemented in
common MPI libraries. Others reproduce data interchanges performed in applications that rely on virtual topologies – usu-
ally, meshes – commonly used in matrix calculus. The length of the messages and the number of nodes can be specified as
parameters.

We have selected some instances of the topologies under study, fed the simulator with the proposed workloads for a vari-
ety of message lengths, and measured their performance. A comparison of alternatives is done using raw performance or a
performance/cost ratio. As performance is application-dependent, we define a model to compute a performance indicator
that can be tailored to fit the characteristics of a given supercomputing center. We will see that, in terms of this indicator,
the k-ary n-tree shows its superiority as a general-purpose topology, although slimmed topologies perform equally well for
some relevant application mixes. If cost is considered too, the complexity of the k-ary n-trees plays against them and the
thin-tree is the clear winner: cost is lower and performance is good – in some cases, even better than that of the regular tree,
due to a better exploitation of locality.

The rest of this paper is organized as follows: In Section 2 we discuss some topologies in use in former and current high
performance computers and also some schedulers and their job placement policies. In Section 3 we present the topologies
we will evaluate. The experimental environment – model of the elements, selected topologies and proposed workloads – is
explained in Section 4. In Section 5 we show the experimental work and analyze results taking into account only the raw
performance. To obtain a fairer comparison of the different topologies, we make a proposal of cost and performance func-
tions, and carry out a performance/cost study in Section 6. We close this work with some conclusions and a future work out-
look in Section 7.
2. Related work

Indirect interconnection networks have evolved noticeably from the first multi-stage networks as those proposed by Clos
[7]. Those networks were built with low-radix switches (typically 4 or 8) and aimed to interconnect at most a few hundred
nodes. Current spines, as that on the MareNostrum supercomputer [5], have switches with hundreds of ports and are able to
interconnect thousands of nodes. Former trees were low-radix: the CM-5 [18] had a radix-8 data network. Current ones use
switches with higher radices, as those radix-24 of the Cray XD1 [9]. There are also recent tree-like proposals as the Black
Widow Clos network [11] that takes advantage of the high availability of ports (radix-64 switches) to add side-links to
the common tree-like arrangement. However, the most noticeable change in these networks is that former indirect networks
were built ad hoc for the target systems, whereas current high-performance networking technologies as QsNet [21], Myrinet
[19] or InfiniBand [15] have favoured building super-clusters with off-the-shelf components.

Network bandwidth and latency have experienced notable improvements during the last 10 years, from the 800Mbps of
the ASCI Red (1997) [26] to the 20Gbps currently available in InfiniBand [15] when using 4X, dual-data-rate connections, or
the 10Gbps by Myri-10G and 10Gb Ethernet, both offered by Myricom [19]. Soon we will see offers of 100–120 Gbps (100G
Ethernet, InfiniBand 12X-QDR). This takes us to a network bandwidth improvement over 100 times in 10 years. The latency
of the full protocol and the network in the ASCI Red (taking into account message passing library) is 12 ls. Both Myri-10G
and InfiniBand latencies are around 2 ls. Thus, latency has been improved (around 6 times), but not as noticeably as band-
width has.

Taking a look at the most current Top500 list [12], we can see two clear trends. On the one hand, the choice of topology for
custom-made, massively parallel computers is the 3D cube. On the other, commodity-based systems (super-clusters) are built
around the class of trees discussed in this paper. Most of the machines in the middle positions are arranged this way, which
justifies our interest in tree-like topologies.

We stated in Section 1 that common schedulers do not take into account the underlying network topology. The only
supercomputer we have found that tries to maintain locality is the BlueGene family (3D tori), whose scheduler [3] puts
tasks from the same application in one or more mid-planes (8 � 4 � 4). On the contrary, the scheduling strategy [1] of
Cray XT3/XT4 family (also 3D tori) gets the first available compute processors. Some job queuing and scheduling managers
like Sun Grid Engine [27], LoadLeveler [14], or MOAB [8] do not offer locality-aware politics, but provide mechanisms to
implement them.

J. Navaridas et al. / Parallel Computing 36 (2010) 71–85 73
3. Topologies under study

In this section we will describe two different multi-stage, tree-based topologies. In these descriptions we assume that all
switches used to build a given network have the same radix. For the purpose of this paper we leave unplugged the upward
ports of the topmost level of switches. This assumption has advantages in terms of simplicity in the descriptions, and also
provides scalability. The disadvantage is in terms of cost, because some resources are unused; this is particularly relevant for
those topologies with more switches in the top level. In practical implementations, all ports of the highest switch level may
be used as downward ports, eventually resulting in a larger network size. Alternatively, we may consider a single switch as
an aggregation of lower radix virtual switches, which results in a smaller number of switches in the topmost stage of the
system.

3.1. Definitions

In the graphical representations of the topologies (see Fig. 1), boxes represent switches and lines represent links between
them. Note that we show neither the compute nodes connected to the first level switches and their links, nor the last level of
upward links (which, as we stated before, are unplugged). These elements are hidden for the sake of clarity.

Throughout this paper we will use n to denote the number of levels in a network, and N to denote the number of compute
nodes (leaves) attached to it. We will denote the total number of switches in a topology as S, and the number of switches at
level i as Si. The total number of links will be denoted as L. The switch radix will be denoted as R. LB will denote the link
bandwidth, BB the bisection bandwidth, and BC the number of channels in the bisection. We will denote the theoretical, ideal
throughput for uniform traffic as H. We call the relation between the number of downward ports of a switch and the number
of upward ports the slimming factor. For example, taking a look at the switches in the topology shown in Fig. 1b, four ports are
downward ports, linked to switches in the next lower level. The remaining two ports of each switch are upward ports that
connect to switches in the next higher level; therefore the slimming factor is 2:1, or simply 4:2.

In the topological descriptions that follow, we denote each switch port within the system as the level where the switch is,
the position of the switch in that level, and the number of the port in that particular switch. We call the lower level of
switches (those attached to compute nodes) level 0; obviously, level n� 1 is the one on the top of the tree. We number
the switches in each level from left to right, starting from 0. Ports in a switch are denoted as upward ð"Þ or downward
ð#Þ, and numbered from left (0) to right. Thus, a port can be addressed as a 4-tuple hlevel, switch, port, directioni.

Given two ports P and P0, they are linked ðP $ P0Þwhen there is a connection (link) between them. As links are full-duplex,
in the expressions concerning linkage we avoid the redundancy of showing downward connections. We will call level, switch
and port the address components of a given port, and nlevel, nswitch and nport the address components of the port to which it
is connected (its upper neighbor). Therefore,
Fi
hlevel; switch; port; "i $ hnlevel;nswitch;nport; #i
Along this paper, we will refer to heavy and light workloads. Light workloads are those in which the number of messages
circulating simultaneously through the network is low, and the length of the messages is short. In contrast, heavy workloads
are those in which most of the nodes are injecting messages at once so that the network will experience peaks of congestion;
this situation would be even worse if messages are addressed to distant destinations.

3.2. k-ary n-tree

This is the best-known of the topologies considered in this study. It will be the yardstick to compare the thin-tree against.
k-ary n-trees [22], where k is half the radix of the switches – actually, the number of links going upward (or downward) from
the switch – and n the number of levels, will be denoted through this paper as k:k, n-tree. Note that in this case the slimming
factor is 1:1, or simply k:k.

A k-ary n-tree is typically built in a butterfly fashion between each two contiguous levels. Fig. 1a shows a depiction of a 4-
ary 3-tree. The topological neighborhood description is as follows:
ba
g. 1. Samples of the topologies under study to build 64 nodes networks. (a) 4-ary 3-tree or 4:4, 3-tree (b) 4:2-ary 3-thin-tree or 4:2,3-tree.

Table 1
Topolog

Nod
Swit

Swit

Link
Swit
Chan

Bisec

Theo

74 J. Navaridas et al. / Parallel Computing 36 (2010) 71–85
8 level 2 ½0;n� 1Þ; 8 switch 2 ½0; kn�1Þ; 8 port 2 ½0; kÞ :

nlevel ¼ levelþ 1

nswitch ¼ ðport � klevelÞ þ klevel�1 � switch

klevel þ 1

� �� �
þ ðswitch mod klevelÞ

� �
mod kn�1

nport ¼ switch

klevel

� �
� klevelþ1 � switch

klevel

� �� �� �
mod k
The main advantages of this topology are the high bisection bandwidth and the large number of routing alternatives for
each pair of source and destination – a path diversity that can be exploited via adaptive routing. Nevertheless, they might be
expensive and complex to deploy, because of the large number of switches and links.

Note that bandwidth remains constant in all levels. Most parallel application exhibit some level of locality in communi-
cation. This means that, in actual scenarios, the higher the level, the lower is the utilization of resources in that level. This is
what supports the utilization of slimming strategies: an attempt to reduce complexity in the upper levels without sacrificing
application performance.

3.3. k:k0-ary n-thin-tree

We define a thin-tree as a cut-down version of a k-ary n-tree in which we apply a given slimming factor. We will denote
them as k:k0, n-tree, being k the number of downward ports, k0 the number of upward ports and n the number of levels. The
slimming factor is, obviously, the ratio between k and k0. k does not need to be a multiple of k0 so that we can produce a thin-
tree with arbitrary values of k and k0. It is remarkable that a k-ary n-tree is actually a k:k-ary n-thin-tree.

A 4:2-ary 3-thin-tree is depicted in Fig. 1b. Removed switches and links from a full-fledged k-ary n-tree are shaded. The
topological neighborhood relationship between ports in a thin-tree is described as follows:
8 level 2 ½0; n� 1Þ; 8 switch 2 0; k � k
k0

� �n�level
" !

; 8 port 2 ½0; k0Þ :

nlevel ¼ levelþ 1

nswitch ¼ ðport � k0levelÞ þ ðswitch mod k0levelÞ þ switch

k � k
k0

j klevel

66664
77775 � k0 � k

k0

� �level

0
B@

1
CA

nport ¼ switch

k
k0

j klevel

66664
77775mod k
In this topology the bisection bandwidth has been reduced, as well as the number of switches and links (i.e., cost and com-
plexity). We want to investigate how applications suffer this reduction. Thin-trees are easier to deploy than regular trees
and, if k and n values are kept, the radix of switches is smaller.

3.4. Theoretical throughput

We open this sub-section with Table 1, which summarizes the relations between network parameters (n, k and k0), num-
ber of elements ðN; S; Si; L;RÞ and topological properties ðBB;BC ;HÞ for the topologies under study. The computation of H for
both topologies – a common way to evaluate interconnection networks performance – is done in the following paragraphs,
via an analytical study.
ical characteristics of the topologies.

k-ary n-tree k:k0-ary n-thin-tree

es N ¼ kn N ¼ kn

ches S ¼ n � kn�1 S ¼
Pn�1

i¼0 k0ðn�iÞ�1 � ki

ches per level 8i 2 ½0; n� 1� Si ¼ kn�1 Si ¼ kðn�iÞ�1 � k0i

s L ¼ S � k L ¼ S � k
ch radix R ¼ 2 � k R ¼ kþ k0

nels in bisection BC ¼ kn

2 BC ¼ k0ðn�1Þ �k
2

tion bandwidth BB ¼ kn

2 � LB BB ¼ k0ðn�1Þ �k
2 � LB

retical throughput H ¼ 1
H ¼ k0

k

� �n�1

J. Navaridas et al. / Parallel Computing 36 (2010) 71–85 75
As the real throughput of a system depends on the link bandwidth, we will focus the study on the accepted load relative
to the maximum load a node is able to inject. To do this, we assume that the link bandwidth is constant trough the whole
network. This way, as every node is connected to the network via a single link, the throughput should be in (0,1]. Note that
zero-throughput means the absence of connectivity.

As stated in chapter 3 of [10] the upper boundary of the throughput of a given topology could be expressed as the ratio
between the bisection bandwidth and the number of nodes. Therefore, the theoretical ideal relative throughput (hereafter
ideal throughput) is:
H ¼ 2 � BB

N � LB
ð1Þ
As the link bandwidth is constant, the number of channels in the bisection is calculated as:
BC ¼
BB

LB
ð2Þ
From (1) and (2) we obtain:
H ¼ 2 � Bc

N
ð3Þ
In both cases, the number of channels in the bisection is half the number of links at the last stage, i.e.:
BC ¼
Sn�1 � k

2
ð4Þ
This way, we can compute the ideal throughput for uniform traffic as:
H ¼ 2 � Sn�1 � k
2 � N ð5Þ
Thus, from (5) and looking at the values of Si in Table 1, the ideal throughput of a k-ary n-tree is:
H ¼ kn�1 � k
kn ¼ 1 ð6Þ
And the ideal throughput of a k:k0-ary n-thin-tree is:
H ¼ k0ðn�1Þ � k
kn ¼ k0

k

� �n�1

ð7Þ
4. Experimental set-up for simulation-based evaluation

We use INSEE [23] to evaluate some different tree-like networks, feeding them with a collection of application-inspired
synthetic workloads. The simulator measures time in terms of cycles, the time required by a phit to traverse one switch –
switching plus transmission.

4.1. Switches

For this work, we have used simple input-buffered switches whose radices range from 9 to 16, depending on the topology.
In order to keep things simple, we do not use virtual channels, except if explicitly indicated. The arbitration of each output
port is performed in a random way, that is, every time an output port is free it randomly chooses among all the input ports
that have requested this resource. Transit queues are located in the input ports and are able to store 4 packets. A schematic
model of the switch is depicted in Fig. 2.

In this work we model the node as a traffic generation source with one injection queue, which is able to store 8 packets. It
is also the sink of the arrived messages. When generating traffic, we consider reactive sources, meaning that the reception of
a message may trigger the release of a new one. This way we can model the causality inherent to actual application traffic.
Messages are split into packets of a fixed size of 16 phits. One phit is the smallest transmission unit, fixed to 128 bits. If a
message does not fit exactly in an integral number of packets, the last packet contains unused phits.

The switching strategy is virtual cut-through. Routing is adaptive – but restricted to shortest paths in order to avoid dead-
lock – using a credit-based mechanism, being the credit the space in the queue of the neighbor’s input port. This mechanism
works as follows: when several output ports are feasible, the one with more available credits – more room in the neighboring
queue – is selected; if several ports have the same amount of credit, one of them is selected at random. Credits are commu-
nicated out-of-band, so they do not interfere with regular traffic. The use of adaptive routing allows taking the best of each of
the topologies, which in turn allows for a fairer comparison among them. Reader should note that optimal static routing
functions are application-dependent and have established a line of research by themselves. An interesting contribution that

0

1

r-1

Crossbar

0

1

r-1

Fig. 2. Model of the switch used in the simulations given a radix r. Ports at the left are input ports and those at the right are output ports.

76 J. Navaridas et al. / Parallel Computing 36 (2010) 71–85
is in line with the contents of this paper is the static routing algorithm presented in [25] which was used with the kind of
trees studied in this paper.

4.2. Networks under study

In this work we have performed three sets of evaluations for the topologies under study. In the first evaluation, which
revolves around the theoretical throughput, we have fixed the number of downward ports per switch (set to 8), the slimming
factors (set to 8:6, 8:4 and 8:2) and the target number of connectable compute nodes (set to 4096). With these restrictions,
we have worked with the following topologies: 8:8,4-tree, 8:6,4-tree, 8:4,4-tree and 8:2,4-tree.

The second set of experiments used traffic from some kernels of applications to feed a wide variety of networks, all of
them using switches with 8 downward ports. All the possible slimming factors have been used, from 8:8 (the complete tree)
to 8:1. Furthermore we have tested three different scales of the system, able to connect 64 nodes (2 levels), 512 (3 levels) and
4096 nodes (4 levels). All the evaluated topologies and some of their characteristics are summarized in Table 2.

As we have just stated, all the switches have 8 downward ports. However, the actual radix of the switches is not always
the same, being smaller in the more slimmed topologies. Thus, in these two evaluations the complete tree has advantage
compared with the thinner alternatives: it uses more links, and more switches that also are larger. Thus performance mea-
surements are biased towards the 8:8,4-tree.

In the last evaluation set we have fixed the radix of the switches (set to 12), and used all the feasible slimming factors
(from 11:1 to 6:6). Under these restrictions we have created the smallest topologies capable to connect at least 64, 512
and 4096 nodes. The result of the evaluations would be fairer than in the previous set, because all the switches have the same
radix. Note how thinner topologies have lower bandwidth and path diversity than regular trees, but in return locality is in-
creased. Unfortunately, the proposed networks have different sizes, in terms of the number of compute nodes they can con-
nect. As we are using workloads that emulate a fixed number of tasks, we are not capable of using all the trees’ leaves. Table 3
summarizes some characteristics of the networks in this third evaluation set. For example note how it is possible to build a
Table 2
Characteristics of the topologies in the second set of experiments.

(a) 8:1,2-tree 8:2,2-tree 8:3,2-tree 8:4,2-tree 8:5,2-tree 8:6,2-tree 8:7,2-tree 8:8,2-tree

Nodes 64 64 64 64 64 64 64 64
Switches 9 10 11 12 13 14 15 16
Radix 9 10 11 12 13 14 15 16
Links 72 80 88 96 104 112 120 128

(b) 8:1,3-tree 8:2,3-tree 8:3,3-tree 8:4,3-tree 8:5,3-tree 8:6,3-tree 8:7,3-tree 8:8,3-tree

Nodes 512 512 512 512 512 512 512 512
Switches 73 84 97 112 129 148 169 192
Radix 9 10 11 12 13 14 15 16
Links 584 672 776 896 1032 1184 1352 1536

(c) 8:1,4-tree 8:2,4-tree 8:3,4-tree 8:4,4-tree 8:5,4-tree 8:6,4-tree 8:7,4-tree 8:8,4-tree

Nodes 4096 4096 4096 4096 4096 4096 4096 4096
Switches 585 680 803 960 1157 1400 1695 2048
Radix 9 10 11 12 13 14 15 16
Links 4680 5440 6424 7680 9256 11200 13560 16384

(a) 64-node systems. (b) 512-node systems. (c) 4096-node systems.

Table 3
Characteristics of the topologies in the third set of experiments.

(a) 11:1,2-tree 10:2,2-tree 9:3,2-tree 8:4,2-tree 7:5,3-tree 6:6,3-tree

Nodes 121 100 81 64 343 216
Switches 12 12 12 12 109 108
Radix 12 12 12 12 12 12
Links 132 120 108 96 763 648
.
(b) 11:1,3-tree 10:2,3-tree 9:3,3-tree 8:4,3-tree 7:5,4-tree 6:6,4-tree

Nodes 1331 1000 729 512 2401 1296
Switches 133 124 117 112 888 864
Radix 12 12 12 12 12 12
Links 1463 1240 1053 896 6216 5184

(c) 11:1,4-tree 10:2,4-tree 9:3,4-tree 8:4,4-tree 7:5,5-tree 6:6,5-tree

Nodes 14641 10000 6561 4096 16807 7776
Switches 1464 1248 1080 960 4440 5184
Radix 12 12 12 12 12 12
Links 16104 12480 9720 7680 31080 31104

(a) Small-scale systems. (b) Medium-scale systems. (c) Large-scale systems.

J. Navaridas et al. / Parallel Computing 36 (2010) 71–85 77
8:4,4-thin-tree with exactly 4096 nodes, but the complete 6:6,5-tree built with 12-port switches has 7776 leaf-nodes. In
terms of cost this plays against the topologies that provide the worst fit to the target number of nodes.
4.3. Workloads

First of all we fed the networks under study with synthetic uniform traffic from independent sources to perform a classic
throughput evaluation. This set of experiments will show us a first estimation of the networks’ potential, and their capacity
to handle heavy workloads. It also will validate the analytical study performed in Section 3.4.

As we stated in the introduction, we would also like to test the selected networks with realistic traffic, ideally taken from
traces obtained from applications running in actual supercomputers. Since it is difficult to obtain and handle traces of appli-
cations running on thousands of nodes, we decided to create instead some synthetic traffic generators which emulate data
interchanges typically used in scientific parallel applications.

The patterns of choice will be described in the following paragraphs. In the descriptions that follow, N is the number of
processes in the parallel application, identified from 0 to N � 1. Note that we assume a mapping of one process to one com-
pute node attached to one leave of the network, which results in the consecutive allocation of the tasks into the nodes – i.e.,
task n goes to node n. The graphical representation of these patterns is depicted in Fig. 3.
Fig. 3. Graphical representation of the traffic patterns: time flows from left to right. Grey lines and squares represent nodes. Each black arrow start means a
message send. The end of the black arrows means that the node has to stop until receiving the corresponding message. (a) Wave-front (Green) in a 3 � 3 2D-
mesh. (b) Neighbor interchange in a 4 � 4 2D-mesh. (c) Butterfly that emulates N-to-N collectives (8 nodes). (d) Binary tree that emulates N-to-1 collectives
(8 nodes) and (e) Waterfall pattern (9 nodes).

78 J. Navaridas et al. / Parallel Computing 36 (2010) 71–85
For all patterns each node starts with an initial set of messages that have to be injected into the network. The length of
these messages is configurable. Messages must be packetized before injection, thus long messages generate a burst of pack-
ets. The reception of a message may trigger the release of some additional ones; this means that patterns include causal rela-
tionships. In the simulator, we start with an empty network and measure the time used to consume the initial collection of
messages, plus all additional messages generated by causal relationships, until the network is empty again.

We have generated these patterns for fixed network sizes of N = 64, N = 512 and N = 4096 compute nodes and message
lengths of 40KB – as will be explained later, in waterfall pattern the size of the actual messages is much smaller. Most of
the patterns in use in this work were further defined and justified in [20].

The 2D and 3D wave-front patterns (W2 and W3) perform a diagonal sweep from the first node to the last one in MPI
virtual square (or cubic) meshes, and then returns to the first node. The simulation of this patterns starts with two (three
for W3) messages in node 0, and ends with the finalization of the return sweep. These patterns are considered light – note
that there are only a few nodes injecting at once – but create some contention in the destination nodes because they have to
receive data from several neighbors. We can observe this pattern in applications implementing the Symmetric Successive
Over-Relaxation (SSOR) [6] algorithm – used to solve sparse, triangular linear systems.

The 2D and 3D mesh patterns (M2, M3) perform data movements in MPI virtual square (or cubic) meshes from every node
to all its neighbors; after that, each node waits for the reception of all messages from its neighbors. Simulation starts with all
nodes injecting one message per direction (2–4 for M2, 3–6 for M3), and ends once all messages arrive. These patterns im-
pose a very heavy load on the network, because all nodes inject simultaneously several messages at once before stopping to
wait for the receptions. These patterns can be observed in applications using finite difference methods [2].

The butterfly pattern (BU) provides an efficient implementation of MPI N-to-N collectives (MPI_Alltoall, MPI_Allreduce,
etc.) [28]. It is also known as ‘‘recursive doubling”. Simulation of BU starts with a message at each node, and ends when de-
fined by the pattern. This is a heavy pattern because all the nodes inject at once, and also in the last stages of the butterfly the
messages have to traverse the whole network, which may exhacerbate congestion.

The binary tree pattern (BT) provides an efficient implementation of some N-to-1 MPI collective operations, such as
MPI_Reduce and MPI_Gather [16]. Simulation of this pattern starts with a message at odd-numbered nodes, and ends when
node 0 receives the messages from all power of two nodes (included 20 = 1). This is the lightest of the patterns because there
is almost no contention in the delivery of the messages.

The waterfall traffic pattern (WF) is inspired in a pattern we have observed in the NAS Parallel Benchmark LU [24]. It con-
sists of a large collection of small messages, with causal dependencies. For this pattern, we define a total number of bytes to
transmit (length) and, instead of starting with a single 40KB message, a burst of 40 messages of 1KB length is generated. WF
can be seen as a burst of W2s (actually, LU uses SSOR) but using small message, of fixed length. Node 0 starts a burst of mes-
sages that flood the network. The simulation ends when the last burst arrives to node N � 1. The main characteristic of WF is
the presence of causality chains. Latencies in the delivery of messages accumulate at the end of the chain. We can consider
this pattern heavy because during most of the execution time, the majority of the nodes are injecting messages at once, how-
ever it is not as heavy as BU or M2 and M3 because the causality chains throttle the injection of messages.
5. Experiments and analysis of results

In this section we will evaluate the networks described above. In the initial set of experiments we feed the networks with
uniform traffic from independent traffic sources. These preliminary, non-realistic tests could make us think that thin-trees
are not a good topological choice. However, a deeper study using a selected mix of workloads that mimic applications behav-
ior tells us a different story: when taking into account that high performance applications’ processes synchronize and main-
tain causal relationships, the load that traverses the upper stages of a tree-like topology is smaller than that traversing the
lower stages; therefore, we can build trees that are thinner at the upper stages without adversely affecting the execution
time of applications – but with a very positive impact in terms of budget.
5.1. Throughput

The first set of experiments to evaluate the performance of the topologies under test will be by means of a classical
throughput measurement for uniform traffic from independent traffic sources. We will plot the accepted load versus the of-
fered load to, this way, have a first estimation of how fast the networks reach saturation and what performance could we
expect from them under heavy loads. We perform these measurements via simulation using the following methodology.
First of all, there is a fixed warm-up period of 30K cycles. After that, a convergence phase is started. In this phase we measure
the average load every 1K cycles. When four consecutive measurements are within a range of 5%, we consider that the con-
vergence phase is finished and that the simulation has reached a stationary phase. After this point, the throughput measure-
ment is started. This is the last phase in which 10 batches of 5K cycles each are captured. The result shown is the average
accepted load of these ten batches. Note that the standard deviation of the average accepted load of the batches in all exper-
iments is lower than the 0.5% of the average value.

We plot in Fig. 4 the throughput evaluation for the four networks under study. As stated in Chapter 13 of [10], when add-
ing virtual channels the average throughput of the network is increased due to contention reduction. Thus, in order to

0.000

0.005

0.010

0.015

0.020

0.000 0.005 0.010 0.015 0.020

Injected Load

A
cc

ep
te

d
Lo

ad

w/o VC
2VC
4VC
Ideal

a) 8:2,4-tree

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15 0.20

Injected Load

A
cc

ep
te

d
Lo

ad

w/o VC
2VC
4VC
Ideal

b) 8:4,4-tree

0.00

0.15

0.30

0.45

0.0 0.1 0.2 0.3 0.4 0.5

Injected Load

A
cc

ep
te

d
Lo

ad

w/o VC
2VC
4VC
Ideal

c) 8:6,4-tree

0.0

0.4

0.8

1.2

0.0 0.2 0.4 0.6 0.8 1.0

Injected Load
A

cc
ep

te
d

Lo
ad

w/o VC
2VC
4VC
Ideal

d) 8:8,4-tree

Fig. 4. Relative throughput for networks under study with uniform traffic with independent traffic sources. With 1, 2 or 4 VC and the upper boundary of the
throughput. Note the difference in the axis ranges of each topology.

J. Navaridas et al. / Parallel Computing 36 (2010) 71–85 79
compare and validate the analytical study in Section 3.4, we also plot the results for the same topologies using 2 and 4 virtual
channels (denoted as 2VC and 4VC, respectively) and the computed ideal throughput curve.

We can observe that the k-ary n-tree topology is not able to reach the ideal limit, not even when using 4 VC. Note that the
ideal limit of 1 means that all nodes send and receive one phit per cycle which is the maximum allowed by any link attaching
a node to the network. Any form of contention, including that at destination nodes, will reduce the actual throughput. The
utilization of multiple VCs can help reducing unnecessary contention, but it cannot be completely eliminated. In the case of
the thin-trees (8:6,4-tree 8:4,4-tree and 8:2,4-tree), nodes can still inject up to one phit per cycle, which is much higher that
the theoretical throughput limit. Consumption is never a bottleneck, and the utilization of a few virtual channels allows the
network to reach the ideal throughput.

The reader should note the difference in the axis range for the three experiments. This is because the ideal throughput for
the networks under study is 1 for the 8:8,4-tree, �0.42 for the 8:6,4-tree, 0.125 for the 8:4,4-tree and �1.6E-2 for the 8:2,4-
tree.

This first performance evaluation say us that thin-trees are not a good idea if we have to deal with random traffic from
independent sources. However, in the next subsections we will study the networks with workloads that mimic actual parallel
applications.
5.2. Experiments with same size networks

In this set of experiments we have gathered the time (in simulation cycles) used by the networks to deliver all the mes-
sages of each of the application-kernels. As these times differ widely, due to the characteristics of the patterns, we have nor-
malized them, using the times for the complete trees as the reference. These normalized times are represented in Fig. 5. Note
that we have truncated the results to 10, in order to allow a clear depiction of the values. When a measured value exceeds
this value, the actual value is plotted close to the corresponding bar.

The reader can observe that most thin-tree networks perform acceptably with light traffic patterns (BI, W2 and W3). With
them, the k-ary n-tree cannot take advantage of its high bandwidth and path diversity, just because the network occupancy
is low and so is the probability of two packets competing for an output port in a switch. In contrast, under heavy loads, the
high bandwidth of the k-ary n-tree topology is able to handle the high amount of packets inside the network. In the slimmed
networks, still, there is too much contention due to the bandwidth reduction between each level so the packet delivery is
slower. This is especially noticeable in the large-scale configuration in which delivery of the messages may suffer a slow-
down of up to 41.

Regarding the slimming factors, the topologies with the 8:7 slimming factor show delays in therms of the delivery times
that were always below 13% and in most cases below 5% compared to those obtained by the complete tree. 8:6 slimmed
topologies were always below 21% and in most cases below 10%. 8:5 slimmed topologies were always below 50% and in most

0

2

4

6

8

10

BI BU M2 M3 W2 W3 WF

S
lo

w
do

w
n

8:1,2-tree 8:2,2-tree 8:3,2-tree 8:4,2-tree 8:5,2-tree 8:6,2-tree 8:7,2-tree 8:8,2-tree

a) 64-node workloads

0

2

4

6

8

10

BI BU M2 M3 W2 W3 WF

S
lo

w
do

w
n

8:1,3-tree 8:2,3-tree 8:3,3-tree 8:4,3-tree 8:5,3-tree 8:6,3-tree 8:7,3-tree 8:8,3-tree

16 11 11

b) 512-node workloads

0

2

4

6

8

10

BI BU M2 M3 W2 W3 WF

S
lo

w
do

w
n

8:1,4-tree 8:2,4-tree 8:3,4-tree 8:4,4-tree 8:5,4-tree 8:6,4-tree 8:7,4-tree 8:8,4-tree

35 23 41

c) 4096-node workloads

Fig. 5. Normalized time to perform all communications of each traffic pattern in the same-sized networks.

80 J. Navaridas et al. / Parallel Computing 36 (2010) 71–85
cases below 30%. The 8:4 slimmed topologies are shown to be the inflection point of performance; the slowdown values of
the networks with more aggressive slimming factors rocket to values that may be intolerable.

Obviously, the smaller is the network, the less noticeable is the effect of thinning the topology, but, as we will see later,
the reduction in terms of cost are also smaller. It is also noticeable that the behaviour of the networks does not scale with the
size of the network.

We can conclude from this set of experiments that the k-ary n-tree is the best-performing topology in almost all exper-
iments (combinations of pattern and message length). Nonetheless, in many cases thin-trees with reduced slimming factors
(up to 8:5 or 8:4, depending on the workload) performs equally well. Additional slimming causes excessive network conten-
tion, so results are noticeably worse (over 40 times in the largest configuration).
5.3. Experiments with same radix switches

In this subsection we analyze the results of the experiments comparing topologies built with switches with the same
radix (12 ports). Results are plot in Fig. 6. In general, they confirm what we learned from the previous set of experiments.

0

2

4

6

8

10

BI BU M2 M3 W2 W3 WF

S
lo

w
do

w
n

11:1,2-tree 10:2,2-tree 9:3,2-tree 8:4,2-tree 7:5,3-tree 6:6,3-tree
a) 64-node workloads

0

2

4

6

8

10

BI BU M2 M3 W2 W3 WF

S
lo

w
do

w
n

11:1,3-tree 10:2,3-tree 9:3,3-tree 8:4,3-tree 7:5,4-tree 6:6,4-tree

29 13 16

b) 512-node workloads

0

2

4

6

8

10

BI BU M2 M3 W2 W3 WF

S
lo

w
do

w
n

11:1,4-tree 10:2,4-tree 9:3,4-tree 8:4,4-tree 7:5,5-tree 6:6,5-tree

90 18 27 28

c) 4096-node workloads

Fig. 6. Normalized time to perform all communications of each traffic pattern in the networks with radix-12 switches.

J. Navaridas et al. / Parallel Computing 36 (2010) 71–85 81
Nevertheless, in this case, the slimmed topologies have an additional advantage: the increased ability to exploit locality in
communication. A switch in a 6:6,5-tree uses 6 ports as downward ports, and 6 ports as upward ports. In contrast, the
same switch in a 8:4,4-thin-tree has 8 downward and 4 upward ports. In other words, in the slimmed topologies the un-
used upward ports are rearranged to work as downward ports. To a certain extent, this compensates the reduction of
links and switches in the upper levels. The result is that slimmed topologies may outperform the complete trees. For
example, the BU pattern is one of the heaviest workloads, and the 8:4,2-tree is able to deliver it in less time than the
6:6,3-tree.

The W2 and W3 patterns require specific attention. Note the excellent performance of thin-trees. The high causality of
this pattern does not allow the utilization of all the resources of the complete trees, but allows for a productive exploitation
of additional levels of locality – for instance, 7:5,5-tree and 8:4,4-tree deliver both workloads faster than the 6:6,5-tree.

Again, the slimming factor should not go very far. The performance of the thinnest topologies (9:3,4-tree and thinner) is
too low for the heavier workloads, reaching slowdowns of up to 90 times in the largest configuration.

To summarize this section, we can state that for the lighter workloads, there is almost no difference between topologies –
again, ignoring cost. For heavy loads, networks with 2:1 slimming factor, perform as well as, or even better, than those with
1:1. Growing up to higher slimming factors is counter-productive.

82 J. Navaridas et al. / Parallel Computing 36 (2010) 71–85
6. Performance/cost analysis

In the previous section we have carried out a comparison of topologies taking into account only their raw performance.
We have ignored the costs of the networks under evaluation. These costs differ widely from network to network, and must be
taken into account if we want to make a fair comparison. We propose a methodology to compare the networks. It takes into
account that it is necessary to measure the performance of the network by evaluating it with appropriate workloads.
6.1. Characterizing performance

If we had unlimited (financial) resources we could just select the best-performing option, but that option may not be the
most cost-effective. Here we propose a means to measure the effectiveness of a network that takes into account the work-
loads using it.

Actual workloads vary widely from site to site, depending on the applications in use. In this work we are not using actual
applications, but a collection of synthetic – but representative – workloads. We describe a network-efficiency function in the
context of these workloads that can be extended with further workload types.

For each given workload simulation reported a (relative) time TW. For example, we have a certain execution time TBU for
butterfly. Note that these values are relative to the complete trees: consequently they are always 1 for this topology. Depend-
ing on the application mix of interest in a particular computing center, we may apply a weighting factor to each workload
wW. This weight should be large for those applications that are used often. For a given network, we define its performance /
as follows:
Table 4
Perform

(a)
8:1,2
8:2,2
8:3,2
8:4,2
8:5,2
8:6,2
8:7,2
8:8,2

(b)
8:1,3
8:2,3
8:3,3
8:4,3
8:5,3
8:6,3
8:7,3
8:8,3

(c)
8:1,4
8:2,4
8:3,4
8:4,4
8:5,4
8:6,4
8:7,4
8:8,4

(a) 64-n
/ ¼ 1P
W wW � TW
Note that for a given application mix (and a set of weights) a higher value of / represents a better-performing network. As
in this work we can neither identify all representative application mixes nor even use actual applications, we decided to use
a constant value of one for all the weights, with the solely purpose of illustrating the proposed methodology. With this con-
stant weight, the denominator in our efficiency value is just the addition of the (relative) times obtained in the experiments.
This yields a value of / ¼ 1=7 for the k-ary n-trees. We further normalize this value to be in the range [0, 1]. Tables 4 and 5
show the normalized performance values for the two sets of experiments. Note how, using this criterion, the best performing
networks are the complete trees, however some configurations of thin-trees have similar / value.
ance of the same size networks.

/

-tree 0.4419
-tree 0.6970
-tree 0.8354
-tree 0.9094
-tree 0.9539
-tree 0.9791
-tree 0.9900
-tree 1.0000

-tree 0.1410
-tree 0.4272
-tree 0.6746
-tree 0.8273
-tree 0.9088
-tree 0.9523
-tree 0.9695
-tree 1.0000

-tree 0.0628
-tree 0.3157
-tree 0.5164
-tree 0.7243
-tree 0.8569
-tree 0.9276
-tree 0.9647
-tree 1.0000

ode systems. (b) 512-node systems. (c) 4096-node systems.

Table 5
Performance of the same radix networks.

/

(a)
11:1,2-tree 0.3491
10:2,2-tree 0.6277
9:3,2-tree 0.7341
8:4,2-tree 0.9969
7:5,3-tree 0.8644
6:6,3-tree 1.0000

(b)
11:1,3-tree 0.0980
10:2,3-tree 0.3105
9:3,3-tree 0.5135
8:4,3-tree 0.8653
7:5,4-tree 0.7453
6:6,4-tree 1.0000

(c)
11:1,4-tree 0.0441
10:2,4-tree 0.1667
9:3,4-tree 0.3633
8:4,4-tree 0.7359
7:5,5-tree 0.6411
6:6,5-tree 1.0000

(a) 64-node systems. (b) 512-node systems. (c) 4096-node systems.

J. Navaridas et al. / Parallel Computing 36 (2010) 71–85 83
6.2. Cost of the networks

Performing an exhaustive cost analysis of a complete system is, clearly, a difficult task that requires the knowledge of a
large number of parameters, including the choice of technologies and physical placement of the elements of the system
(nodes, racks). A proper cost evaluation should take into account both deployment and maintenance costs. Deployment cost
must consider the number of switches and links, that may, and probably will, have different characteristics – for instance, the
use of wires of different length would be needed for most plant organizations. Maintenance costs include the power con-
sumption and the heat dissipation.

At any rate, all this concerns are outside of the scope of this paper. For this reason, we will consider three simple functions
to compute the cost of each network in order to be able to carry out a performance/cost comparison. Note that these func-
tions bear in mind some different aspects of the design of a system and, consequently the actual cost function may be a mix-
ture of these three.

In these functions, S represents the total number of switching elements of the network and R their radix. Note that in our
topological model the upward ports of the topmost stage are unplugged, and therefore the topmost level of all trees is
formed by switches with a smaller radix. However, for the sake of simplicity, we will consider that all the switches have
the same radix. Furthermore, to simplify these functions, the number of links is not taken into account as it depends on
the number of switches and ports.

The considered cost functions are the following:

� In the first function cC , the cost of the switch is constant regardless of its radix, cC ¼ S. Several aspects of the manufacture
of the network scale linearly with the number of switches independently of their radix, such as the cost related to the
plant area, the rack space or the packaging of the switch.

� In the second function cL, the cost of the switch depends linearly on the radix, cL ¼ S � R. For instance the number of links
scales linearly with the radix, as well as the cost of the hardware associated to each port.

� In the third function cQ , the cost increases quadratically with the radix, cQ ¼ S � R2. Note that the heart of a switch (the
crossbar) scales quadratically with the number of ports [13].

Using the characteristics of the networks previously introduced in Table 2, we have computed the cost of the same size
systems using each of the three cost functions. Furthermore, using the performance figures shown in Table 4 we have shown
the cost-efficiency of the systems, calculated as the performance divided by the cost, and normalized to that of the complete
tree. All these values are collected in Table 6. Note that measuring the cost of the same radix networks would be a bit tricky –
and probably unfair – because every configuration has a different number of nodes. For this reason we will restrict the eval-
uation of the performance/cost efficiency to the same size networks.

For the small-scale configuration, we can see how the performance/cost efficiency of the 8:2,2-tree is the highest for the
linear and quadratic cost functions, being 8:3,2-tree the most efficient when considering the constant cost function. This is
because its performance is good, but the cost is reduced almost to one half compared with the complete tree. In this case all

Table 6
Performance/cost efficiency of the same size networks.

(a) 8:1,2-tree 8:2,2-tree 8:3,2-tree 8:4,2-tree 8:5,2-tree 8:6,2-tree 8:7,2-tree 8:8,2-tree

cC 9 10 11 12 13 14 15 16
/=cC 0.7857 1.1152 1.2152 1.2125 1.1740 1.1190 1.0560 1.0000
cL 81 100 121 144 169 196 225 256
/=cL 1.3967 1.7843 1.7675 1.6166 1.4449 1.2789 1.1264 1.0000
cQ 729 1000 1331 1728 2197 2744 3375 4096
/=cQ 2.4831 2.8549 2.5709 2.1555 1.7783 1.4616 1.2015 1.0000

(b) 8:1,3-tree 8:2,3-tree 8:3,3-tree 8:4,3-tree 8:5,3-tree 8:6,3-tree 8:7,3-tree 8:8,3-tree

cC 73 84 97 112 129 148 169 192
/=cC 0.3708 0.9765 1.3352 1.4182 1.3527 1.2354 1.1014 1.0000
cL 657 840 1067 1344 1677 2072 2535 3072
/=cL 0.6592 1.5623 1.9421 1.8910 1.6648 1.4119 1.1748 1.0000
cQ 5913 8400 11737 16128 21801 29008 38025 49152
/=cQ 1.1719 2.4997 2.8249 2.5213 2.0490 1.6136 1.2531 1.0000

(c) 8:1,4-tree 8:2,4-tree 8:3,4-tree 8:4,4-tree 8:5,4-tree 8:6,4-tree 8:7,4-tree 8:8,4-tree

cC 585 680 803 960 1157 1400 1695 2048
/=cC 0.2197 0.9509 1.3171 1.5452 1.5167 1.3569 1.1656 1.0000
cL 5265 6800 8833 11520 15041 19600 25425 32768
/=cL 0.3906 1.5214 1.9158 2.0602 1.8668 1.5508 1.2434 1.0000
cQ 47385 68000 97163 138240 195533 274400 381375 524288
/=cQ 0.6944 2.4342 2.7866 2.7470 2.2976 1.7723 1.3262 1.0000

(a) 64-node systems. (b) 512-node systems. (c) 4096-node systems.

84 J. Navaridas et al. / Parallel Computing 36 (2010) 71–85
the configurations have better efficiency than the complete tree regardless of the used cost function. The only exception is
the 8:1,2-tree with the constant cost function, whose loss in terms of performance is not compensated by the reduction in
number of switches.

In the case of the medium-scale configuration, the 8:4,3-tree is the best contender when using the constant cost function,
while the 8:3,3-tree wins for the other two cost functions. In this case, not all the thinned topologies are able to beat the
complete tree, 8:1,3-tree only wins with the quadratic cost function.

If we focus on the large-scale configuration, we can notice that things are not as clear as before. The 8:4,4-tree is the most
cost-effective for the linear and constant cost functions, but its performance is reduced considerably, around 30% lower than
that of the complete tree. The 8:5,4-tree may be a better option due to a noticeable boost in terms of performance, even
when its cost-efficiency is not as high as the 8:4,4-tree’s. Finally, it is remarkable that, even an awful-performing configura-
tion, the 8:2,4-tree, with a measured performance of 0.32, overtakes the complete tree when using the quadratic cost
function.

The reader should note that the network is only a part of the system, so that the execution time depends (greatly) on the
behavior of the other components, and the interactions between all of them. In other words, the advantages or disadvantages
of a given network might not be as clear as shown in our evaluations. This is an argument against the better-performing,
more-expensive networks, because in real set-ups the benefit of using them will be diluted. The extent of this dilution de-
pends on the applications and their data-sets, as well as on the architecture of the system. Furthermore, the collection of
workloads used in this analysis might not be representative – and probably is not—of all actual workloads used at supercom-
puting centers. A thorough study should be customized for a particular site, taking into account their applications and fine-
tuning their relative weights.

7. Conclusions and future work

In this paper we have described and characterized a slimmed version of k-ary n-trees: the k:k0-ary n-thin-trees. A thin-
tree can be seen as a k-ary n-tree after removing some links and switches. A thin-tree costs a fraction of the price of a com-
plete tree, in terms of deployment and maintenance. In terms of performance, thin-trees with low slimming factor perform
as well as comparable k-ary n-trees. Excessive slimming (beyond 2:1 in our workbench) results in bad performance results. A
qualitative comparison of performance/cost ratios turns out to be very favorable for the thin-trees in the studied cases.

Thin-trees are obviously cheaper than the complete tree, but their bandwidth in the upper levels is greatly reduced. After
removing links and switches in the upper levels, performance can be maintained (or even increased) due to an effective
exploitation of locality. Using fixed-radix switches, a thin-tree devotes more ports to downward links, so more nodes can
communicate without using the upper levels.

At least three super-clusters that are in positions #2 (RoadRunner), #56 (Tsubame) and #85 (Thunderbird) of November
2009 edition of Top500 list were built with InfiniBand networks arranged as thin trees—actually, narrowed spines. In Thun-
derbird the slimming factor is 2:1; RoadRunner and Tsubame goes further, to 4:1 and 5:1, respectively. We have not found
any evaluation work providing the rationale behind those decisions. However, in this work we have shown that, compared to

J. Navaridas et al. / Parallel Computing 36 (2010) 71–85 85
full-fledged k-ary n-trees, thinner topologies provide comparable performances at much lower cost. The savings in the num-
ber of networking elements could be invested in other ways to improve the system (faster CPUs, better-performing network-
ing technology, enlarge the system, etc.).

This study opens several lines for future work. We want to further explore the workload generation mechanism, to make
it mimic the characteristics of parallel applications as accurately as possible. One interesting place to start is [4], were 13
‘‘dwarfs” are identified as representative scientific applications (an extension of the original ‘‘seven dwarfs” introduced by
Phil Colella).

The scheduling problem is also of interest. The advantage of slimmed topologies is obtained through an efficient exploi-
tation of locality – something that is impossible to achieve under the flat-network assumption in commonly used schedulers.
As in the case of the BlueGene [3], we need to make scheduler’s topology-aware.

Acknowledgments

This work has been supported by the Ministry of Education and Science (Spain), Grant TIN2007-68023-C02-02, and by
Grant IT-242-07 from the Basque Government. Mr. Javier Navaridas is supported by a doctoral grant of The University of
the Basque Country.

References

[1] R. Ansaloni, The cray XT4 programming environment. <www.csc.fi/english/csc/courses/programming_environment>.
[2] Y. Aoyama, J. Nakano, RS/6000 SP: practical MPI programming, IBM Red Books SG24-5380-00, Chapter 4, ISBN:0738413658. August, 1999, pp. 99–153.

<http://www.redbooks.ibm.com/abstracts/sg245380.html>.
[3] Y. Aridor et al., Resource allocation and utilization in the Blue Gene/L supercomputer, IBM J. Res. & Dev. vol. 49 No. 2/3 March/May 2005, <http://

www.research.ibm.com/journal/rd/492/aridor.pdf>.
[4] K. Asanovic et al., The landscape of parallel computing research: a view from berkeley, EECS Department, University of California, Berkeley, Technical

Report No. UCB/EECS-2006-183. December 18, 2006. <http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf>.
[5] Barcelona Supercomputing Center Mare Nostrum. <http://www.bsc.es/>.
[6] E. Barszcz, R. Fatoohi, V. Venkatakrishnan, S. Weeratunga, Solution of regular, sparse triangular linear systems on vector and distributed-memory

multiprocessors, Technical Report NAS RNR-93-007, NASA Ames Research Center, Moffett Field, CA, 94035-1000, April 1993.
[7] C. Clos, A study of non-blocking switching networks, Bell System Technical Journal (1953) 406–424.
[8] Cluster Resources, Moab Workload Manager Administrator’s Guide. <http://www.clusterresources.com/moabdocs/MoabAdminGuide510.pdf>.
[9] Cray Inc., Cray XD1 Overview. <http://www.cray.com/products/xd1/>.

[10] W.J. Dally, B. Towles, Principles and Practices of Interconnection Networks, Morgan-Kaufmann, 2004.
[11] W.J. Dally et al., The BlackWindow high-radix Clos network, in: Proceedings of the 33rd annual international symposium on Computer Architecture,

June 17–21, 2006, pp. 16–28.
[12] J.J. Dongarra, H.W. Meuer, E. Strohmaier, Top500 Supercomputer sites, 2007 edition. <http://www.top500.org/>.
[13] H. El-Rewini, M. Abd-El-Barr, Advanced Computer Architecture and Parallel Processing, Wiley, 2005. ISBN 978-0-471-46740-3.
[14] IBM, IBM LoadLeveler for AIX 5L: Using and Administering. <http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/IBMp690/IBM/usr/lpp/LoadL/

html/am2ugmst02.html>.
[15] Infiniband Trade Association, Infiniband� Trade Association. <http://www.infinibandta.org>.
[16] S. Labour, MPICH-G2 collective operations, performance evaluation, optimizations. <http://www-unix.mcs.anl.gov/~lacour/argonne2001/report.ps>.
[17] C.E. Leiserson, Fat-trees: universal networks for hardware efficient supercomputing, IEEE Transactions on Computers C-34 (10) (1985) 892–901.
[18] C.E. Leiserson et al., The network architecture of the connection machine CM-5, in: Symposium on Parallel Algorithms and Architectures (April 1992).
[19] Myricom, Myrinet home page. <http://www.myri.com/>.
[20] J. Navaridas, J. Miguel-Alonso, F.J. Ridruejo, On synthesizing workloads emulating MPI applications, in: The Ninth IEEE International Workshop on

Parallel and Distributed Scientific and Engineering Computing (PDSEC-08), Miami, Florida, USA, April 14–18, 2008.
[21] F. Petrini, W. Feng, A. Hoisie, S, Coll, E. Frachtenberg, The quadrics network: high-performance clustering technology, in: IEEE Micro 22, 1 (Jan. 2002),

pp. 46–57. http://dx.doi.org/10.1109/40.988689.
[22] F, Petrini, M. Vanneschi, k-ary n-trees: high performance networks for massively parallel architectures, in: Proceedings of the 11th International

Parallel Processing Symposium, IPPS’97, Geneva, Switzerland, 1997, pp. 87–93.
[23] F.J. Ridruejo, J. Miguel-Alonso, INSEE: an interconnection network simulation and evaluation environment, in: Proceedings of the Euro-Par 2005,

Lecture Notes in Computer Science, vol. 3648, 2005, pp. 1014–1023.
[24] F.J. Ridruejo, J. Navaridas, J. Miguel-Alonso , C. Izu, Realistic evaluation of interconnection network performance at high loads, in: 8th International

Conference on Parallel and Distributed Computing Applications and Technologies – PDCAT 2007, Adelaide, Australia, 3–6 December 2007.
[25] G. Rodriguez, R. Beivide, C. Minkenberg, J. Labarta, M. Valero, Exploring pattern-aware routing in generalized fat tree networks, in: Proceedings of the

23rd International Conference on Supercomputing, Yorktown Heights, NY, USA, 2009, pp. 276–285, doi:10.1145/1542275.1542316.
[26] Sandia National Labs, ‘‘ASCI Red”. <http://www.sandia.gov/ASCI/Red/>.
[27] Sun Microsystems, Inc. ‘‘N1 Grid Engine 6 User’s Guide”. <http://docs.sun.com/app/docs/coll/1017.3>.
[28] R. Thakur, W. Gropp, Improving the performance of collective operations in MPICH. <http://www-unix.mcs.anl.gov/~thakur/papers/mpi-coll.pdf>.

http://www.csc.fi/english/csc/courses/programming_environment
http://www.redbooks.ibm.com/abstracts/sg245380.html
http://www.research.ibm.com/journal/rd/492/aridor.pdf
http://www.research.ibm.com/journal/rd/492/aridor.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.bsc.es/
http://www.clusterresources.com/moabdocs/MoabAdminGuide510.pdf
http://www.cray.com/products/xd1/
http://www.top500.org/
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/IBMp690/IBM/usr/lpp/LoadL/html/am2ugmst02.html
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/IBMp690/IBM/usr/lpp/LoadL/html/am2ugmst02.html
http://www.infinibandta.org
http://www-unix.mcs.anl.gov/~lacour/argonne2001/report.ps
http://www.myri.com/
http://dx.doi.org/10.1109/40.988689
http://dx.doi.org/10.1145/1542275.1542316
http://www.sandia.gov/ASCI/Red/
http://docs.sun.com/app/docs/coll/1017.3
http://www-unix.mcs.anl.gov/~thakur/papers/mpi-coll.pdf

	Reducing complexity in tree-like computer interconnection networks
	Introduction
	Related work
	Topologies under study
	Definitions
	k-ary n-tree
	k:k'-ary n-thin-tree
	Theoretical throughput

	Experimental set-up for simulation-based evaluation
	Switches
	Networks under study
	Workloads

	Experiments and analysis of results
	Throughput
	Experiments with same size networks
	Experiments with same radix switches

	Performance/cost analysis
	Characterizing performance
	Cost of the networks

	Conclusions and future work
	Acknowledgments
	References

