
DFScala: High Level Dataflow Support for Scala

Daniel Goodman∗ Salman Khan Chris Seaton Yegor Guskov Behram Khan Mikel Luján Ian Watson
University of Manchester

Oxford Road
Manchester, UK

{goodmand, salman.khan, seatonc, guskovy9, khanb, mlujan, watson}@cs.man.ac.uk

Abstract—In this paper we present DFScala, a library
for constructing and executing dataflow graphs in the Scala
language. Through the use of Scala this library allows the pro-
grammer to construct coarse grained dataflow graphs that take
advantage of functional semantics for the dataflow graph and
both functional and imperative semantics within the dataflow
nodes. This combination allows for very clean code which
exhibits the properties of dataflow programs, but we believe is
more accessible to imperative programmers. We first describe
DFScala in detail, before using a number of benchmarks
to evaluate both its scalability and its absolute performance
relative to existing codes. DFScala has been constructed as
part of the Teraflux project and is being used extensively as a
basis for further research into dataflow programming.

Keywords-Dataflow; Scala; Coarse Grained; Programming
Model

I. INTRODUCTION

In this paper we introduce and evaluate DFScala, a
dataflow programming library to allow the construction of
coarse grained Dataflow programs [20] in the Scala [14]
programming language.

The recent trend towards ever higher levels of parallelism
through rising core counts in processors has reinvigorated
the search for a solution to the problems of constructing
correct parallel programs. This in turn has revived interest
in Dataflow programming [20] and associated functional
programming approaches [2]. With these the computation is
side-effect free and execution is triggered by the presence of
data instead of the explicit flow of control. These constraints
simplify the task of constructing and executing parallel
programs as they guarantee the absence of both deadlocks
and race conditions.

The Teraflux [19] project is investigating highly extensible
multi-core systems including both hardware architectures
and software systems built around the dataflow approach.
One part of this project is the construction of a high level
dataflow implementation which serves two purposes:

1) To provide a high productivity language in which to
construct dataflow programs.

2) To provide a high level platform for experimenting
with new ideas such as using the type system to

enforce different properties of the dataflow graph and
different memory models [16].

DFScala provides a key foundation and implements the
base functionality of this research platform. One distin-
guishing feature of DFScala is the static checking of the
dynamically constructed dataflow graph. This static checking
ensures that at runtime there will be no mismatch of the
arguments to functions. DFScala does not require the usage
of special types and thus a node can be generated from any
existing Scala function without complex refactoring of code.
Each node in the dataflow graph is a function which cannot
be subdivided; a function is sequential. To support nested
parallelism within a function, subgraphs can be created
which are wholly contained within a function, returning a
value to the node upon completion.

In the remainder of this paper we first describe the
dataflow programming model in more detail; we then in-
troduce Scala before describing why we feel that a new
dataflow library in Scala can improve on the existing li-
braries available in other languages. Next we describe the
implementation and API of DFScala before evaluating its
scalability and performance, considering alternative Scala
dataflow libraries and finally making our concluding re-
marks.

II. DATAFLOW PROGRAMS

In a dataflow program the computation is split into sec-
tions. Depending on the granularity of the program these
vary from a single instruction to whole functions which can
include calls to other functions, allowing arbitrarily large
computation units. All of these sections are deterministic
based on their input and side-effect free. To enforce this,
once a piece of data has been constructed it remains im-
mutable for the lifetime of the program. The execution of
the program is then orchestrated through the construction of
a directed acyclic graph where the nodes are the sections
of computation and the vertices are the data dependencies
between these. An example of this can be seen in Figure 1.
Once all the inputs of a node in the graph have been
computed the node can be scheduled for execution. As such
the execution of the program is controlled by the flow of

Figure 1. An instance of a dataflow graph for a circuit routing algorithm.

data through the graph unlike imperative programs where
control is explicitly passed to threads.

Dataflow programming has been shown to be very effec-
tive at exposing parallelism [7] as the side-effect free nature
means segments of code forming nodes whose inputs have
been generated can be executed in parallel regardless of the
actions of other segments in the graph and without effect on
the deterministic result. Dataflow programs are by definition
deadlock and race condition free. These properties make it
easier to construct correct parallel programs.

In addition to having properties that reduce the complexity
of constructing parallel programs, dataflow programs also
reduce the required complexity of the supporting hardware.
The explicit description within dataflow programs of when
results must be passed allows for a relaxation of the cache
coherency requirements. Instead of maintaining coherence
at the instruction level it is now only necessary to ensure
that results from one segment are written back to main
memory before the segments that depend on these results
begin. While it is argued that cache coherency does not
limit the core count on processors [12] it is observable that
well blocked programs that do not require cache coherency
outperform those that do, and processors such as GPGPU’s
which are closer to the dataflow model achieve better
performance per watt and higher peak performance.

III. THE CHOICE OF SCALA

Scala [14] is a general purpose programming language de-
signed to smoothly integrate features of object-oriented [21]
and functional languages [2]. By design it supports seamless
integration with Java, including existing compiled Java code
and libraries. The compiler produces Java byte-code [11],
meaning that Scala can be called from Java and visa versa.

apply(life _, (x:Int) => x*x)

......

def life():Int = { 42 }

......

def apply(f1:() => Int, f2:Int => Int) =
{
println(f2(f1()))

}

Figure 2. A snippet of Scala code demonstrating the construction of
conventional and anonymous functions and their use as arguments in other
function calls. The first line calls apply with the function life and
an anonymous function as inputs. life returns the value 42 and the
anonymous function takes an integer as an input and returns this value
squared. apply takes these two functions as arguments and applies the
second function to the output of the first. It then prints the resulting value,
in this case 1764.

Scala is a pure object-oriented language in the sense that
every value is an object. Types and behaviour of objects are
described by classes and traits, and classes are extended by
sub-classing and a flexible mixin-based composition mech-
anism as a replacement for multiple inheritance. However,
Scala is also a functional language in the sense that every
function is a value. This power is furthered through the
provision of a lightweight syntax for defining anonymous
functions as shown in Figure 2, support for higher-order
functions, also seen in Figure 2, the nesting of functions, and
for currying. Scala’s case classes and its built-in support for
pattern matching and algebraic types is equivalent to those
used in many functional programming languages.

Scala is statically typed and equipped with a type system
that enforces that abstractions are used in a safe and coherent
manner. A local type inference mechanism means that the
user is not required to annotate the program with redundant
type information.

Finally, Scala provides a combination of language mech-
anisms that make it easy to smoothly add new language
constructs in the form of libraries. Specifically, any method
may be used as an infix or postfix operator, and closures are
constructed automatically depending on the expected type
(target typing). A joint use of both features facilitates the
definition of new statements without extending the syntax
and without using macro-like meta-programming facilities.

A. Why Create a New Dataflow Library

Having introduced Scala we will now describe how a
Scala based dataflow framework extends the functionality
provided by existing dataflow frameworks.

Current dataflow frameworks overwhelmingly fall into
two categories: those implemented in pure functional pro-
gramming languages [4], [5] and those implementations

based on low level languages such as C [1], [18]. In addition
to these there are a small number implemented in managed
environments such as Java [10]. Scala’s combination of both
functional and imperative elements in a high level language
allows it to add to these by introducing a dataflow program-
ming library that maintains the accessibility to programmers
of high level imperative languages by allowing imperative
code in the dataflow nodes while adding the strengths and
functionality of pure functional programming. In doing so
it creates a bridge between these two styles of dataflow
language.

Purely Functional Implementations: While functional
programming is extremely powerful, the lack of mutable
state prevents the construction of many intuitive program-
ming constructs such as loops. This in turn makes these im-
plementations challenging for many imperative programmers
to use, limiting their uptake. While the functional semantics
between nodes in a dataflow graph is the key to their power,
there is no need to restrict the programmer to using purely
functional semantics within the single threaded execution of
the dataflow nodes. Scala provides the semantics and a clean
syntax with which to add this freedom.

Other attempts have been made to address this by either
adding specific imperative constructs to functional languages
such as OCamel [17], which maintains a functional style
of syntax and semantics while allowing a set of imperative
constructs, or alternatively by the addition of functional
constructs into languages such as C# [9] for specific tasks.
However to date we are unaware of a language that would be
familiar to imperative programmers both supporting dataflow
computations and functional programming is such a way that
these programs can be both clean and high level.

Pure Imperative Languages: Imperative libraries often
allow for coarse grained dataflow nodes where the code
within the node is imperative. However, the libraries that do
this can be split into those supporting high level languages
and those supporting low level languages.

Libraries based on low level languages have weaker type
systems and do not support features such as garbage col-
lection. For example StarSS [1] and TFlux [18] are pragma
based systems, where sequential C code is annotated with
task information including inputs and outputs or specific
tasks and their dependences respectively.

High level languages are able to maintain a strong type
system, and a managed environment with features such as
garbage collection, however, the code can become restrictive
or verbose as functions are explicitly wrapped to be passed to
the library. For example the absence of functional semantics
in Out of Order Java [10] requires the user to manually mark
up tasks in the code which can then be examined by the
compiler and runtime to determine if they can be executed in
parallel. Scala’s inbuilt ability to pass functions as first class
variables removes this complexity allowing for cleaner code
while maintaining the properties of a high level language.

This is furthered by Scala’s type inference system which
prevents users from having to appreciate the subtleties of
the types used by the underlying library. We are aware that
there are other dataflow libraries for Scala available and we
will consider these in section VI after we have described
DFScala.

IV. DFSCALA LIBRARY

The DFScala library provides the functionality to con-
struct and execute dataflow graphs in Scala. The nodes in
the graph are dynamically constructed over the course of a
program and each node executes a function which is passed
as an argument. The arcs between nodes are all statically
typed. An example of a function using the library can be
seen in Figure 3.

The library is constructed from two principal components:
a Dataflow Manager that controls the execution of the graph
and a hierarchy of thread classes which represent the nodes
in the graph. For any given dataflow graph there will be a
single manager object; however, as we discuss in more detail
later, within a given program there may be many independent
dataflow graphs calculating different results for the overall
program. These can exist either because dataflow functions
have been inserted into legacy code, or because dataflow
graphs are being nested within other dataflow graphs to
calculate sub-results. We will now look at these components,
starting with the Dataflow Manager.

A. Dataflow Manager

The Dataflow Manager performs two functions.
1) Scheduling dataflow threads to execute when all their

inputs become available.
2) Providing a factory which takes a function and con-

structs the appropriate node for the graph (DFThread).
To achieve this, the Dataflow Manager is constructed from

two parts: a static singleton object that contains the factory
methods to construct new threads and a dynamic object
that manages the scheduling of threads for a given dataflow
graph. This separation allows the factory methods to be
accessed directly from anywhere without having to explicitly
pass a manager around, while at the same time there can be
many managers each managing a separate dataflow graph.

B. Dataflow Threads

Threads are implemented through a hierarchy of classes.
This hierarchy allows threads to be passed between functions
without forcing the receiving functions to be overly specific
about the type of thread they are expecting, instead merely
specifying the required properties of the thread within the
function.

Passed arguments are called tokens. The threads support
static type checking of the tokens they pass between each
other. This checking allows the compiler to guarantee the

Expanded Version

def fib(n :Int , out:Token[Int]){
if(n <= 2)

out(1)
else {

var t1 = createThread(
(x:Int, y:Int,
out:Token[Int]) => {out(x + y)}

)
var t2 = createThread(fib _)
var t3 = createThread(fib _)

t2.arg1 = n - 1
t2.arg2 = t1.token1

t3.arg1 = n - 2
t3.arg2 = t1.token2

t1.arg3 = out
}

}

Concise Version

def fib(n :Int):Int = {
if(n <= 2)

1
else

fib(n-1) + fib(n-2)
}

Figure 3. An example of a dataflow program to compute Fibonacci
numbers. This demonstrates the API, but the functional nature of the
language means this function could be automatically constructed from the
more concise function appearing below.

type correctness of a dataflow graph. To improve pro-
grammability threads will not release any threads or tokens
they create or pass until the thread completes its execution.
This restriction simplifies the task of keeping track of the
order in which events can occur when debugging.

All dataflow threads are constructed from a base class
DFThread which contains all the logic required to inter-
act with the Dataflow Manager, and manage the storing
of tokens and newly constructed threads until the thread
completes. This class is then extended by a chain of abstract
classes, each of which represents a thread that takes at least
n arguments for increasing values of n. Finally each of these
classes is extended with a concrete class that contains the
functionality to execute a single method.

This separation of methods and the collection of ar-
guments not only saves re-implementing code for each
of the concrete classes, but also allows the casting down
of DFThreads to threads that expect less arguments, and

def join (arg1 :Int, arg2 :Int,
out: DFThread4[Int, Int, _, Pos, _],
position :Int)

{
if(position == 1)
out.arg1 = arg1 + arg2

else
out.arg2 = arg1 + arg2

}

Figure 4. An example of a function for reducing multiple values through a
binary tree. Note the additional complexity determining which value to set
and the fixed type of the thread argument. Compare this with the reduction
using tokens in Figure 5. Figure 3 shows a function using tokens to pass
data between threads when reducing a binary tree.

def join (arg1 :Int, arg2 :Int,
out: Token[Int])

{
out(arg1 + arg2)

}

Figure 5. Using the indirection provided by tokens to simplifiy the code
in Figure 4

the construction of special classes of thread. Such special
threads include those used to collect a number of elements
and either return them as a collection or reduce them to a
single value using an appropriate function. This is achieved
by allowing the thread to have multiple tokens passed to
one argument. The number of times tokens can be passed is
specified at runtime when the thread is created. This class
of threads is required because, while the number of threads
spawned can be defined at runtime, for example by iterating
round a loop and spawning a thread on each iteration, the
number of tokens received by a regular thread is set by the
thread type at compile time.

C. Passing Tokens

Tokens can either be pushed by the producing thread, or
they can be pulled by the consuming thread.

Pushing Tokens: If a thread is available in the code
that generates its token, the token can be directly assigned,
for example: t.arg2 = 10. This invokes an underlying
setter method which handles the control logic. The type of
the thread specifies the number and types of arguments that
can be passed. As threads with higher numbers of arguments
extend threads with lower numbers of arguments any thread
which has n or more arguments of the appropriate type can
be used.

Setting thread arguments directly can be convenient, how-
ever, as the signature of the thread is fixed, this can also
be restrictive. For example to reduce a binary tree to a
single value a thread can be constructed for each node, these
threads take two arguments, a thread and a parameter to

Figure 6. A diagram of the events when a token is used in Figure 3. 1.
The thread calculating fib(n) requests the token for the first argument of
the function that will perform the addition. 2. This token is passed to the
thread calculating fib(n-1). 3. This thread sets the token to the correct value
once it is known, in doing so it passes this value

indicate if the result is output to the left or right argument
of the next thread. See Figure 4. This approach has two
problems:

1) First the parameter indicating where to assign the
argument adds complexity;

2) Second the signature of the thread that the final result
is to be passed to, is now required to match that of the
intermediate threads. This will clearly not normally be
the case.

Token objects address this by acting as a proxy for
the argument setter method, so allowing the consumer and
producer to be decoupled. Tokens can be retrieved from
threads for each argument. As the token is a proxy for the
setter method it handles all the required control logic to
manage the release of the input once the thread has finished
executing. An example of this technique also being used
to merge two values in a binary tree can be seen in the
Fibonacci program in Figure 3, and the resultant sequence
of events can be seen in Figure 6. The code that would be
used to replace that presented in Figure 4 can be seen in
Figure 5.

Pulling Tokens: Pushing values into threads directly
from within the code allows for very descriptive code, but
it has two key weaknesses:

1) The executing thread has to be aware of how many
other threads need to receive a given value as a token.

2) Legacy functions cannot be used as they do not include
the required code to push tokens to other threads.

To address this all DFThreads have the ability to take Tokens
as listeners. Then, once the thread has completed, these
Tokens will be assigned the value returned by the thread’s
function. This allows the thread’s result to be distributed to
an arbitrary number of threads, and allows legacy functions
to be included within a dataflow graph.

D. Constructing a Dataflow Graph

Two techniques are provided to start the initial thread of
a dataflow graph depending on the situation in which the
thread is to be started.

1) Dataflow Applications: The simplest way to start a
dataflow graph in DFScala is, instead of constructing a main
method to start the program, to extend the class DFApp
implementing the method dfMain. When this extended
class has its main method called to start the program, it
will perform all the required initialisation and start a thread
which will call the function dfMain with the arguments
provided to main.

2) Nested Dataflow Graphs: Extending a class and call-
ing its main method is not always an appropriate way to
start a dataflow graph, either because another library such as
QT [13] that uses this technique is being used, or because it
is desirable to insert independent dataflow graphs into either
a legacy program, or into another dataflow graph. We will
now look at this final scenario in more detail.

As this is a coarse grain dataflow model, dataflow threads
may call other functions. These functions may contain code
that it is advantageous to run in parallel. However, to
ensure the absence of deadlocks in the dataflow graph,
once a thread has started it cannot receive input from any
other thread within the graph. This prevents the creation
of additional worker threads within called functions. This
could be addressed by splitting the thread into two threads
at the function call. This would then allow the first thread
to create the worker threads and then for the worker threads
to pass their results on to the second thread. However, this
has several disadvantages:

• It requires the tokenizing of any thread local data that
spans the split threads.

• The separation either has to be done at runtime which
could be expensive, or the compiled code has to know if
the function will be executed in parallel, which prevents
the decision from being made at runtime based on data
set size etc.

To overcome this a dataflow thread can create a Nested-
Graph object representing an independent dataflow graph.
This will run to completion and return a result. The inde-
pendent execution allows the function to continue to execute
as pure dataflow while spawning helper threads.

The NestedGraph provides two elements: An object of
type Token that can be passed into the dataflow graph to
return a result; and a function that takes a function and a
set of arguments for the function. The passed function is
then executed as the root of a separate dataflow graph. This
separate execution allows it to spawn additional threads to
handle the computation. An example of this can be seen in
Figure 7.

To implement the nested dataflow graphs, the Nested-
Graph object creates a new manager object to manage the
graph. It then runs the passed function using a new thread
obtained from this manager. This ensures that all threads
created by this function will also be run using this new
manager so ensuring their independence of the existing

def foo(argument: Int): Int = {
val subgraph = new NestedGraph[Int]
subgraph.createThread(

bar _,
argument,
subgraph.token1
)

}

Figure 7. An example of using a NestedGraph object to nest a separate
dataflow graph in a function. The nested graph is spawned by executing the
function passed to createThread (in this case bar) in a new dataflow
thread. createThread also takes the arguments for bar as its remaining
arguments.

Figure 8. The chain of events involved in the construction and execution
of an independent dataflow graph within an existing program. 1. A Nest-
edGraph object is created by the function foo (subgraph). 2. A result token
is retrieved from this object. 3. The root thread of the independent graph is
constructed by foo providing a function (bar) and the required arguments.
This call blocks while the graph is executed. 4. subgraph constructs all
the required framework and executes bar and any resulting child threads.
5. The dataflow graph sets the value of the passed token, in doing so this
value is passed to the object subgraph. 6. The create thread method returns
the resultant value passed from the dataflow graph.

dataflow graph. A diagram detailing this chain of events can
be seen in Figure 8

E. Debugging and Performance Analysis

It is important to be able to extract from an execution the
dataflow graph that was executed. This information is needed
for the detection of errors, performance measuring and
optimisation. In terms of error detection, there is potential
for both deadlocks and livelocks resulting from the failure to
pass tokens. This can result from an error that occurred in a
thread that has long since finished executing, and being able
to trace where a thread was expecting an argument from
is important. To address this the library makes calls out
to a DFLogging object which, depending on the way the
application was started, will record the information passed
to it in such a way that debugging tools can read this
information while the program is executing, or it can be
saved onto disk or into a database for later analysis.

V. EVALUATION

To evaluate the scalability of DFScala we implemented
four benchmarks and ran them on both Intel and AMD
based systems. The benchmarks we used were: KMeans,

0-1 Knapsack, Monte-Carlo Tree Search, and Matrix Ma-
trix Multiplication. To evaluate absolute performance we
implemented a version of Scala Parallel Collections based
on DFScala. All tests used Scala 2.9.

KMeans is an algorithm that groups points into clusters
through a process of iterative refinement. In this instance
there are 16 thousand 24 dimensional points which form 16
clusters.

0-1 Knapsack is an optimisation problem requiring items
to be picked from a set such that their weight does not
exceed a given amount while maximising the overall value
of the items. This benchmark solves the problem through
the use of dynamic programming. In this instance there are
1000 items and a maximum weight of 10,000.

Monte-Carlo Tree Search is a randomised technique
used to search a state space for a best guess at an optimum
solution. It is used in situations where searching exhaustively
is too costly. In this instance it is used by a computer player
to look for moves in a game of Go [6].

Matrix Matrix Multiplication For this benchmark we
performed Matrix Matrix multiplication on matrices of size
varying from 256x256 to 2048x2048.

A. Results

For each of these we used a constant problem size and var-
ied the number of system threads. For KMeans we recorded
the time for each iteration, for the other benchmarks we
iterated the algorithm numerous times. We then took the
median time and used this to determine the speedup relative
to the single threaded solution. The result of this analysis
can be seen in Figures 9 and 10 for these run on a 1.6GHZ
4 core Intel Xeon machine and a dual socket 2.2GHz 12
core AMD Opteron machine. These show that for both test
platforms DFScala shows very good scaling properties for all
four benchmarks. The inflection point on the Xeon processor
is a well documented artefact of Hyper Threading, not a
property of the library.

B. Performance

To demonstrate that this scalability was not gained at
the expense of performance when compared with existing
solutions we also implemented a version of Scala Parallel
Collections based on DFScala. Both this version and the
current Scala Parallel Collections shipped with the Scala
runtime had their performance compared relative to the
standard single threaded Scala Collections libraries. This
means that the speed improvements shown in the graphs
in Figure 11 and 12 is the improvement that would be seen
by replacing the currently shipping single threaded libraries
with these implementations, not just the performance gain by
adding more threads to our own implementation. The results
of these tests on a 4 socket 48 core 2.2 GHz AMD Opteron
based system can be seen in Figures 11 and 12. The specific
test used here was mapping a function to count the prime

Figure 9. Benchmark performance on a 4 core Intel Xeon processor with
Hyper Threading.

Figure 10. Benchmark performance on a machine with two 6 core AMD
Opteron processors.

factors of an integer across all the elements in a collection
. These show that the scalability of the library based on
DFScala is maintained and the ultimate performance exceeds
that of the current implementations of Parallel Collections
as the size of the datasets increases. We attribute the better
performance to the dataflow framework resulting in better
separation of the data used by the different threads and
reducing the need for inter-thread communication. Unfortu-
nately due to limitations of the existing parallel collections
library it was not possible to compare the performance of
the two with differing numbers of threads.

VI. ALTERNATIVE LIBRARIES

We are aware of two other implementations of dataflow
for the Scala programming language, Akka [15] and CNC-
Scala [8]. Akka is a Scala framework for highly concurrent,

Figure 11. Graph showing the speedup provided by our Dataflow
collections with differing numbers of elements and threads. All speedups are
normalised against the performance of the standard Scala single threaded
collections.

Figure 12. Graph showing the performance of Scala Parallel collections
and our Dataflow collections library on a 48 core AMD based machine for
differeing sizes of collection. Again all speedups are normalised against the
performance of the standard Scala single threaded collections.

distributed, event-driven applications. It provides a set of
tools for concurrency in a distributed environment including
dataflow. CnC-Scala is a port of the Intel Concurrent Col-
lections programming model [3] from C++ to Scala. Like
DFScala, both the Akka and CnC-Scala models are coarse-
grained, deterministic dataflow. All three models require
that the programmer either writes side-effect free code,
or carefully implements synchronisation to maintain the
dataflow properties.

CnC-Scala is aimed at the “parallelism oblivious devel-
opers” [8] and like DFScala places an emphasis on high
productivity. However, the CnC-Scala implementation uses
a pre-processor to translate a DSL into pure Scala. This
has implications for tooling such as IDEs and debuggers

that are not aware of the DSL. The programming model of
CnC- Scala is closer to that of the C++ original, requiring
each node to be a method in a separate class. We think
that our model of one function per node, without any
extra infrastructure, is more likely to encourage the kind
of parallel- programming-by-default that may be needed for
many-core architectures. Like Akka, by default the user’s
kernel function is run before all input is ready and then
explicitly waits.

VII. CONCLUSION

In this paper we have presented a library for constructing
and executing coarse grained dataflow tasks in Scala. In
doing so we have built on Scala’s merging of Object Ori-
ented programming and Functional programming to provide
a means of constructing dataflow graphs that cleanly takes
advantage of functional semantics while allowing the user to
use more familiar imperative programming within the node.
We believe that this will allow the construction of cleaner
dataflow codes that are more accessible to the majority of
programmers.

This library forms the basis of a wide range of work
within the Teraflux project and has been used to implement
a sizable number of applications of varying sizes from
small benchmarks to entire parts of the Scala runtime. A
subset of these applications is described here, along with
measurements of their scalability and performance on a
range of systems. These results show that DFScala provides
effective scaling, and good performance. There is always
room for improvement and targets for such improvement
include the addition of a more advanced scheduler and
reducing the overhead of creating DFThread objects. How-
ever, as described in the introduction the Teraflux project
aims to develop a complete system including processors,
compilers, tools and languages for dataflow computing, and
as a result many of the overheads in this first software
implementation will ultimately be able to be off loaded onto
dedicated hardware. Applications written using this library
can then be used to assess the effectiveness of any such
hardware. In addition this library is also being used as a
platform to experiment with different memory models, the
automatic insertion of dataflow constructs into programs and
the enforcement of specific properties of dataflow graphs.

ACKNOWLEDGMENT

The authors would like to thank the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013)
for funding this work under grant agreement no 249013
(Teraflux-project). Chris Seaton is an EPSRC funded stu-
dent. Dr. Luján is supported by a Royal Society University
Research Fellowship.

REFERENCES

[1] AYGUADÉ, E., BADIA, R. M., IGUAL, F. D., LABARTA, J.,
MAYO, R., AND QUINTANA-ORTÍ, E. S. An Extension of
the StarSs Programming Model for Platforms with Multiple
GPUs. In Proceedings of the 15th International Euro-Par
Conference on Parallel Processing (Berlin, Heidelberg, 2009),
Euro-Par ’09, Springer-Verlag, pp. 851–862.

[2] BIRD, R. Introduction to Functional Programming using
Haskell, second ed. Prentice Hall, 1998.

[3] BURKE, M. G., KNOBE, K., NEWTON, R., AND SARKAR,
V. The concurrent collections programming model. Tech.
Rep. TR 10-12, Rice University, 2010.

[4] CANN, D. Retire Fortran?: a debate rekindled. Commun.
ACM 35 (August 1992), 81–89.

[5] C.A.R. HOARE, Ed. OCCAM Programming Manual. Oren-
tice Hall International Series in Computer Science. Prentice
Hall International, 1984.

[6] CHASLOT, G., WINANDS, M. H. M., AND VAN DEN HERIK,
H. J. Parallel monte-carlo tree search. In Computers and
Games (2008), pp. 60–71.

[7] GURD, J. R., KIRKHAM, C. C., AND WATSON, I. The
Manchester prototype dataflow computer. Commun. ACM 28
(January 1985), 34–52.

[8] IMAM, S., AND SARKAR, V. Cnc-scala: a declarative ap-
proach to multicore parallelism. In Scala Days (2012).

[9] INTERNATIONAL, E. Standard ECMA-334 - C# Language
Specification, 4 ed. June 2006.

[10] JENISTA, J. C., EOM, Y. H., AND DEMSKY, B. C. Ooojava:
software out-of-order execution. In Proceedings of the 16th
ACM symposium on Principles and practice of parallel pro-
gramming (New York, NY, USA, 2011), PPoPP ’11, ACM,
pp. 57–68.

[11] LINDHOLM, T., AND YELLIN, F. Java Virtual Machine
Specification, 2nd ed. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[12] MARTIN, M. M. K., HILL, M. D., AND SORIN, D. J. Why
on-chip cache coherence is here to stay. Communications of
the ACM (2012).

[13] NOKIA. QT, http://qt.nokia.com/, 2012.

[14] ODERSKY, M., SPOON, L., AND VENNERS, B. Program-
ming in Scala: [a comprehensive step-by-step guide], 1st ed.
Artima Incorporation, USA, 2008.

[15] SCALABLE SOLUTIONS AB. Akka project, February 2011.

[16] SEATON, C., GOODMAN, D., LUJÁN, M., AND WATSON,
I. Applying dataflow and transactions to Lee routing. In
Workshop on Programmability Issues for Heterogeneous Mul-
ticores (2012).

[17] SMITH, J. B. Practical OCaml (Practical). Apress, Berkely,
CA, USA, 2006.

[18] STAVROU, K., NIKOLAIDES, M., PAVLOU, D., ARANDI, S.,
EVRIPIDOU, P., AND TRANCOSO, P. Tflux: A portable plat-
form for data-driven multithreading on commodity multicore
systems. In Proceedings of the 2008 37th International
Conference on Parallel Processing (Washington, DC, USA,
2008), ICPP ’08, IEEE Computer Society, pp. 25–34.

[19] TERAFLUX. The TERAFLUX project, http://www.teraflux.org,
2010.

[20] WATSON, I., WOODS, V., WATSON, P., BANACH, R.,
GREENBERG, M., AND SARGEANT, J. Flagship: A parallel
architecture for declarative programming. In ISCA (1988),
pp. 124–130.

[21] WU, C. T. An Introduction to Object-Oriented Programming
with Java 2nd Edition, 2nd ed. McGraw-Hill, Inc., New York,
NY, USA, 2000.

