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Abstract. The optimistic nature of Transactional Memory (TM) systems can
lead to the concurrent execution of transactions that are later founchfficto
Conflicts degrade scalability, and may lead to aborts that increase wastkd w
and degrade performance. A promising approach to reducing dsndlicun-
time is dynamically, and transparently, reordering the execution of trtioea
upon discovery of conflicts. This approach has been explored in SthMs
(STMs), but not in Hardware TMs (HTMs). Furthermore, STM implerta¢ions
of this approach cannot be ported to HTMs easily.

This paper investigates the feasibility of such reordering in HTMs, ansepis
two designs that are scalable, independent of the on-chip intercomequire
only minor modifications to each core, and add no execution overheaccidm-
flicts occur. The evaluation takes LogTM-SE as a base line and conbielech-
marks with different levels of contention (transactional conflicts). Téwmults
show that the preferred design increases HTM performance by uptonhen
contention is low, 57% when contention is high, and never degradesmerfice.
Finally, the designs are orthogonal to LogTM-SE; they require no matiific

to cache structures, and continue to support transaction virtualizatien, o
closed unbounded nesting, paging, thread suspension, and threationig

1 Introduction

Traditionally, locks have been used to provide synchrdiimabetween threads that
access shared data concurrently. Locks are known to beenlgalg to use, with well-
documented challenges such as deadlocks, race conditmmgying, and debugging.
Transactional Memory (TM) [1] proposes a programming madedimplify safe ac-
cess to shared data, which is achieved by providimglicit synchronizationthe pro-
grammer marks, as transactions, those blocks of code tbessishared data, and TM
ensures correct synchronization when those blocks of ceetaige concurrently.

TM provides implicit synchronization by checking, at run&, whether accesses by
concurrently executing transactions intersect, i.e.flanlf a transaction completes

* A large part of this work was conducted while the author was with the Sabfo@bmputer
Science, University of Manchester.



executing and detects no conflict, it commits, but if a conhficdetected, one of the
conflicting transactions is usually aborted. TM impleméotes may detect conflicts
eagerly (upon access to a data element), or lazily (whenréimsactional code block
has been completely executed). TM implementations wrightyed data, i.e., perform
version management, eagerly (write to shared data in plackzily (write to a buffer).
The former has a fast commit phase, but a slower abort phaseegsires the transac-
tion to undo all its updates to shared data, while the lathsranfast abort phase, but a
slower commit phase as it must copy updates from the bufféreshared data.

TM has been implemented in hardware (HTM) [2—7], softwar€\$ [8—13], or
a hybrid of the two (HyTM) [14-17]. The advantage of HTMs iscavloverhead in
performing transactional conflict detection, but at thet od$éimiting the total accesses
of each transaction to the size of the L1 or L2 cache. STMs ventlis limitation,
but at the cost of increased conflict detection overheaded&ek in TM has focused
on reducing the overhead of conflict detection, but also atetstanding TM behavior
[18], and even on adapting to dynamic workload charactesigl9, 20]. This paper
focuses on HTMs.

As the number of cores on a chip multiprocessor (CMP) ridésiently exploiting
the cores to achieve high speedup becomes more challeegemgwith TM. TM appli-
cations that scale ideally up to, say, 16 cores, may well fiatithey scale poorly when
executed on 128 cores due to more and more transactionsctiogfiand aborting. To
make matters worse, TM implementations have often trieghtroze the execution of
a committing transaction at the cost of penalizing aboasgkample, by using eager
version management.

Steal-on-Abort (SOA) [21] is our technique to improve thefpemance of TM
when noticeable contention (i.e., transactional conjlictzurs. SOA targets a patho-
logical interaction between conflicting transactionsexibpeat conflictsThis occurs
when a specific transaction A conflicts with, and is abortedabgpecific transaction
B. Transaction A is restarted after its abort, but performsaecess that causes it to
repeatits conflict with transaction B, and then transaction A abagain. This scenario
may repeat a number of times. SOA proposes that transactioot Ae restarted, and
instead be stolen by transaction B, to prevent it from be@gxecuted until transac-
tion B commits. Once B commits, A is made available for exiecutBy not executing
transaction A again, a potential repeat conflict and abavdisded, which could have
wasted cycles, power, and degraded application perforenakaditionally, on SOA-
enabled STMs [21], the thread on which transaction A wasingnacquires a new,
third, transaction C, to execute. If transaction C comnaipglication performance may
improve.

However, implementations of SOA exist only in STMs [21]. thaérmore, they have
used dynamic data structures such as double-ended queupe§) that make it diffi-
cult to perform a straightforward port of SOA to HTMs. As auksthe feasibility of
implementing SOA in HTMs remains unexplored.

This paper is the first to investigate implementing SOA in HSTMnd presents
two designs: SOA-HTM-PURE, and SOA-HTM-UTLZN. The formearagantees re-
peat conflicts are eliminated, but implements a restrictethfof SOA compared to
STMs. The latter implementation is less restricted, bumsrrepeat conflicts in cer-



tain scenarios. Notably, both implementations requirg simhple modifications to each
core, are independent of the on-chip interconnect, andyhggtalable. For evaluation,
the designs are implemented in LogTM-SE [7], and continuefer all the advantages
of LogTM-SE such as unmodified cache structures, and sufmontansaction virtu-
alization, open and closed unbounded nesting, pagingadhsaspension, and thread
migration. Results show that the benefit of SOA seen in STManels to HTMs; im-
proving speedup up to 57%, reducing processor usage up to &6dereducing the
number of aborts up to 54%. In addition, the HTM designs of S improve perfor-
mance in low contention benchmarks, and, promisingly, owpispeedup by increasing
margins as the number of cores rises.

The remainder of this paper is organized as follows. Se@ipresents the designs
of SOA for HTM, and Section 3 discusses how they impact ottrectures. Section 4
evaluates the designs by implementing them in LogTM-SE,exgtuting a range of
benchmarks. Section 5 discusses related work, and Sectiondiudes the paper.

2 Steal-on-Abort Hardware Implementation

SOA abstractly consists of the three following actions:

1. Upon abort, a transaction is stolen, and hidden, by it®oept.
2. Upon commit, a transaction makes available for execw@intransactions it stole.
3. Optionally, another transaction is acquired and exekcint@lace of the stolen one.

The first two actions are enough to support SOA: they prewegmat conflicts be-
tween two transactions by preventing them from executimgaoently. The third ac-
tion attempts to increase speedup (if the new transactiomts).

However, these actions are non-trivial to support in hardwBor example, trans-
actions are often tightly-coupled to the threads on whigly tre executing, as threads
maintain the execution state of an application. It may beoissjble for a core to steal
an opponent transaction without stealing the thread ontwiiis executing. Assum-
ing transactions can be stolen, storing them in hardwaraathar challenge as there
is no limit to the number of steals that may be performed byaadaction. Thus, it
may become necessary to overflow stolen transactions to mgewitich could signifi-
cantly slow down an executing transaction, and increagedahnect bandwidth usage.
Nevertheless, promising results from SOA on STMs give itigerfor exploring if an
efficient design for SOA on HTMs can be achieved.

This paper proposes two carefully constructed designsihato minimise perfor-
mance degradation, interconnect traffic, and modificatiogsres and cache structures.
The latter is particularly important for keeping the designactically feasible. The first
proposal is called SOA-HTM-PURE, which supports only thetftevo actions men-
tioned above, and the second is called SOA-HTM-UTLZN, whinaplements all three
actions.

2.1 SOA-HTM-PURE

A single register, called SOAMAP (SOA abort map), is added to each core, and has
one bit for each core in the CMP. If a core aborts another,ti e relevant bit in
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Fig. 2. SOA example. Core 2 has a (data) cache miss, and makes a requeshterttonnect that
is forwarded to Core 1. Core 1 responds with a NACK, and records A@Nn its SOA AMAP.
Core 2 receives the NACK, aborts, and suspends. Upon commit,1Gmfies all cores recorded
in its SOA AMAP to resume.



SOA_ AMAP. Since aborting an opponent requires communicatingr ¢kre intercon-
nect, setting a bit in the register adds negligible overh€aaes that are aborted stall
indefinitely, and are restarted later by their opponents.néw we assume threads do
not migrate; we address this issue later.

Once a core commits, it checks if any bits are set in its SWAP. If all the bits
are clear, the core commits as normal. In this way, SOA-HTMRE adds no overhead
when there is no contention. If one or more bits are set, theesponding cores are
resumed by sending a message across the interconnect. dd¢tarechanism for send-
ing such a message is architecture specific. In Sectione3anessaging mechanism
is described for our implementation using LogTM-SE, andiitesn a single outgoing
message from a committing core, and a single multi-cast agesom a directory. In
this way, commit overhead is kept low by only adding a singé-broadcast, message.

SOA should reduce communication traffic if repeat conflictisteas fewer data
requests will be received from cores that restart aborgsactions, and fewer abort
messages will be sent to them in reply. Furthermore, it mgydssible to power down
stalled cores to save energy.

The design can feasibly scale to 2048 cores, requiring o248 bit register per
core (existing HTM implementations, for example, have ssggd implementing 2048
bit signatures per core [7]), easily exceeding the numbepr#s expected on CMPs in
the near future.

2.2 SOA-HTM-UTLZN

SOA-HTM-UTLZN is an acronym for “SOA on HTM for utilization”and extends
SOA-HTM-PURE to add the last action of SOA. SOA-HTM-UTLZNggiybacks on
hardware thread context support that is common in CMPs 22{dware context sup-
port allows a core to store several thread contexts in hawlvesisters, and swap ex-
ecution between them quickly, primarily to hide memory et SOA-HTM-UTLZN
extends SOA-HTM-PURE by swapping threads in hardware gtsiéthe currently
executing thread is stalled (due to executing a transattianhas been aborted). For
now we assume thread contexts do not migrate; we addressdheslater.

SOA-HTM-UTLZN adds a single bit, called CTXBOA, to each hardware thread
context, which is set if the transaction being executed kytlinead is aborted. A core
does not switch to any context that has its CTXDA bit set. When a core sends a
resumption message to another core, the other core cleaiGTRKT_SOA bit in all
its thread contexts. This reintroduces the chance of regedticts as the resumption
message will have been sent for only one of the contexts ootttex core, and waking
up all contexts prematurely allows them to repeat their anflith their respective
opponents. However, the benefit of this approach is thaaitde the SOAAMAP reg-
ister unchanged; one bit per core, maintaining the sc#habil the design. To support
resuming specific contexts SOAMAP must map one bit per context, which requires
either the register to increase in size, or the the potestalhbility to be reduced.

It should be noted that using hardware contexts to increiiggation has its limits;
if all contexts on a core are stalled due to transactionallicts) then that core can no
longer execute transactions until a resumption messageé$ved. One option may be



to swap contexts with another core, but there are severgrdgade-offs involved with
such a mechanism, and we leave it for future work.

3 Impact of SOA

The previous sections described two proposals for implémgisOA in HTM. This
section explores the impact of those designs on processbitenture, transactional
execution, and the operating system.

3.1 Processor Architecture

Each core is extended with a single register called SOMP. A simple messaging

protocol is also required to resume cores, requiring theréonnect to simply forward

the necessary messages to predefined destinations. Atktdrige SOA designs pro-
posed is that no other change is required. No other hardwadfigations are needed,
and in particular the pipeline, private caches, and shasetdes of the core are left un-
changed. This significantly reduces the impact on desigfication, making the SOA

proposals attractive for practical implementation.

3.2 Transactional Execution

SOA is only applicable to eager conflict detection, as lazyflad detection only detects

conflicts with transactions that have committed, which suleat repeat conflicts. The
use of eager version management may increase the benefittofaS@ should reduce

the overhead of roll backs if it reduces the number of abdtg. benefit of SOA may

also increase if it is used in conjunction with signatureduhconflict detection, as they
may lead to false-positives, which may increase the numb@peat conflicts.

A committing core incurs an overhead of sending messagesstore other cores
if any bits in its SOAAMAP are set. In our implementation, only a single message
sent by a committing core. There is no increase in overheaborting cores. Nested
transactions, both open and closed, are orthogonal to S@Ayark in harmony with it.
For example, the Deque benchmark used in the evaluatiom&secested transactions.

3.3 OS Context Migration

Earlier, the SOA designs were restricted to prevent thréaxts leaving their cores,
because a stalled thread expects to receive a resumpticgageeBom the core of the
opponent thread, and the opponent core holds only enoughmation to send a re-
sumption message to the core that it aborted, not the stififedd itself. This restric-
tion is simple to remove. First, a stalled thread that is needdfrom a core needs to
be marked as active, and not stalled. No change is neededAntSlM_PURE, and
in SOAHTM_UTLZN the CTXT_SOA bit should be cleared for the thread context in
question.

However, removing this restriction reintroduces repeatflads, as the migrated
thread is no longer stalled waiting for its opponent, anddbegin re-executing imme-
diately. Furthermore, cores may send resumption messhgeare no longer needed,

is



possibly resuming threads that are not their opponentsghwhirther increases the
chance of repeat conflicts. Nevertheless, earlier work BfiA on STMs suggested
SOA is highly effective even when the implementation reidtrced repeat conflicts,
and contention was already high [21]. Thus, not only is igilale to override the above
restriction, but past results have shown that it may be aepable decision.

3.4 OS Virtual Memory Paging

The SOA designs do not peek at memory addresses, and as suotngpatible with
support for paging. Furthermore, the modifications regliceimplement the SOA de-
signs do not impact HTM-specific support for paging.

4 Evaluation

SOA-HTM-PURE and SOA-HTM-UTLZN are evaluated using fulisteem simulations
with a range of benchmarks, and results compared with a “Bag#gementation that
has SOA disabled. The evaluation shows that the designimmpeedup, and re-
duce aborts, although performance of SOA-HTM-UTLZN is ndixan some cases it
improves performance, while in others it degrades it.

4.1 Methodology

SOA-HTM-PURE and SOA-HTM-UTLZN are implemented in LogTMESbuilt on
Simics 3.0.31 [23], and GEMS 2.1 [24] Ruby pipeline and mgmiiming model.
The simulated platform uses simple in-order SPARC ISA couesiing an unmodi-
fied Solaris 9. Experiments are executed with 1, 4, 8, and i€sq@and corresponding
benchmark threads). Each benchmark thread is bound to edimal processor, using
Solaris’ pset _bi nd() . As a result, OS thread migration and context switching are
implicitly disabled. The architecture of the evaluated ClgBescribed in Section 4.3.

SOA-HTM-UTLZN is executed with four hardware contexts peogessor, and
consequently each benchmark is launched with four timesaawy treads. In order to
isolate the performance benefit of hardware context switchd SOA-HTM-UTLZN
alone, hardware context switching is only permitted whehraad stalls due to SOA,
i.e., cannot be used to hide memory latency.

4.2 Workloads

The microbenchmarks Deque and Btree, and the non-triviathraarks Kmeans and
Vacation (from the the STAMP benchmark suite [17]), are usezValuate SOA-HTM.
In deque, transactions attempt to push or pop a double-emaiege. Transactions in
Btree insert, delete, or lookup items in a B-tree. Kmeansdistering algorithm, and
contention is controlled by the number of clusters to whibfeots are assigned. We
experiment with 1, 5, and 15 clusters, which lead to progrelslower contention. Fi-
nally, Vacation is a travel database simulating multiplstomers concurrently booking
flights, hotels, and cars.



Benchmark [Parameters

Btree tx:5000, inserts:20%

Deque tx:1024, bkoff:32

Kmeans C1|m:1, n:1, threshold:0.05,
inputfile:random-n2048-d16-c16.txt
Kmeans C5/m:5, n:5, threshold:0.05,
inputfile:random-n2048-d16-c16.txt
Kmeans C15n:15, n:15, threshold:0.05,

input file:random-n2048-d16-c16.txt
Vacation tx:1024, n:8, q:10, u:80, r:65536

Table 1.Benchmark parameters.

4.3 Evaluated CMP Configurations

SOA-HTM-PURE and SOA-HTM-UTLZN are implemented in the LAgISE HTM
that is provided with GEMS 2.1. LogTM-SE and the SOA are a demgntary union.
LogTM-SE aims to keep cache structures unmodified as thisowes the chances of
adoption. Similarly, the SOA designs require minimal chemfpr each core. LogTM-
SE attempts to achieve high scalability by using a non-twastdcommit phase, and
directory coherency. The SOA designs add no overhead tawthendt phase if conflicts
do not occur, and is agnostic of the interconnect or cohgreratocol. LogTM-SE uses
eager validation, which is a requirement for SOA.

LogTM-SE is configured to use eager version management; eagfict detection,
and a conflict resolution policy of self-abort, with expotiahbackoff (increase backoff
on retry). Note that this choice should reduce the benefi@A$TM, as choosing to
abort the opponent is likely to generate more repeat cosifiictd exponential backoff
also reduces repeat conflicts, but at the risk of backingaftdo long and harming
performance. A 2048 bit KHsignature is used for conflict detection [25].

Feature  |Description

L1 cache |32KB 4-way split, 64-byte blocks,
1-cycle access.

L2 cache |8MB 8-way unified, 64 byte blocks,
34-cycle access.

Memory 16GB, 500 cycle off-chip access.
L2-Directory|Full-bit vector sharer list; 6-cycle latency.
Interconnectgrid, 64-byte links, 3-cycle link latency.

Table 2. Simulation parameters for SOA-HTM.

Figure 3 presents a block diagram of the 16 core CMP architecEurther config-
urations include 1, 4, and 8 core CMPs. In each case, the nushb@ banks is equal
to the number of cores. Cores are connected by a packet&ditoterconnect in a grid
topology using 64-byte links and adaptive routing. On-chgmory controllers connect
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Fig. 3.Base Log-TM-SE CMP configuration.

to standard DRAM banks. A MESI directory protocol enforceslusion at L2. Each
L2 tag contains a bit-vector of the L1 sharers and a point¢necexclusive copy, if it
exists. Table 2 summarizes system parameters that remaihféik each configuration.

The SOA communication protocol is as follows. Upon commitoae checks its
SOA_AMAP register, and if any bitis non-zero, it sends a singlEREERESUME REQ
message to its local directory, containing the completeesaf SOAAMAP. The direc-
tory sends a single multi-cast DIRESUME REQ message out to each core for which
the corresponding bit is set in the received SBMNAP value. The design creates mini-
mal overhead; a core only needs to send a single messagéditisgetin SOAAMAP.

If transactions are committing in the common case, theretkglittle or no overhead
of SOA as NACKs will be rare, and COREESUME REQ/DIR RESUME.REQ mes-
sages will also be rare, as they are only sent if there is angaibre. Similarly, if com-
mits are common then there is little change in traffic for tireatory. If aborts occur,
then the design will increase commit overhead, and staissdout should compensate
by leading to a net increase in performance.

On its own, this protocol is susceptible to deadlock; twamsections may signal
each other to abort, and consequently never restart. HowevgTM-SE itself is sus-
ceptible to such deadlocks, and thus includes a multi-stage mechanism that detects
and prevents deadlock cycles. Our extensions to LogTM-Skodldnterfere with this
mechanism, and therefore only abort (and stall) transastiden doing so will not lead
to a deadlock. Consult the LogTM [6] and LogTM-SE [7] papensflirther detalils.



4.4 Results

The evaluation explores the impact of SOA on three scendowscontention, high
contention with low repeat conflicts, high contention withthrepeat conflicts. The first
scenario should trigger SOA rarely, and is used to illustthé minimal impact of SOA
on performance when aborts are negligible. The second soesteuld trigger SOA
often, but provide little performance improvement sincer¢hare few repeat conflicts,
and may even degrade performance due to SOA overhead. THesti@nario should
trigger SOA often, and could result in larger performancpriosrements.

10.0 5.0 T

- 4 L I Base i
8.0 4.0 ] SOA-HTM-Pure
B SOA-HTM-UTLZN

6.0 b 3.0 b

Speedup
Speedup

4.0- B 20r B

201 b 101 II II b
0.0

0.0 4 8 16 4 8 16
Threads Threads
(a) Btree (b) Deque
5.0 10.0
4.0F 1 8.0F
o (=N
3 30t 12 6of
b ]
& 20 1 & a0
101 1 2.0t
00 4 8 16 00 4 8 16
Threads Threads
(c) Vacation (d) Kmeans C15

5.0
i 4.0k 4

3.0 q

B 2.0 B
1 10 g
0.0

Speedup
Speedup

0.0

4 8 16 4 8 16
Threads Threads
(e) Kmeans C5 (f) Kmeans C1

Fig. 4. Speedup over single-threaded execution. Note different y-axigsang

Figures 4a-4f illustrate speedup. A cursory look reveals tmportant findings.
First, SOA-HTM-PURE gives similar or better performancartiBase in all cases.



Second, SOA-HTM-UTLZN improves upon SOA-HTM-PURE in KmedBl, but in
most other cases it degrades performance compared to Base.

Btree and Kmeans C15 have low contention, aborting on aeet@gp and 20% of
transactions with 16 cores. In these benchmarks both Bas8@A-HTM-PURE scale
similarly, which is indicative of the low overhead of SOA whaborts are rare. SOA-
HTM-UTLZN degrades performance in both, and the degradagomore severe in
Kmeans C15, which also has a higher percentage of abortiliRyalata reveals that
SOA-HTM-UTLZN is thrashing local caches by context switti In Kmeans C15
with 16 cores, we find that the number of L1 data misses inese&6 to 15 fold over
Base and SOA-HTM-PURE.

Deque and Kmeans C5 are benchmarks with a large amount afrdat, but few
transactional retries, and thus little scope for repeatlictm At 16 cores, Kmeans C5
aborts 65% of its transactions, but retries on average oSlyithes. However, SOA-
HTM-PURE still improves performance by 16%. In deque an anmbentical situation
arises at 16 cores; 78% contention, and 3.5 retries on avénageases the scope for
repeat conflicts. The scalability of Deque is limited by sactions accessing either end
of the deque structure, making repeat conflicts highly yikehd this is confirmed by
the 16% performance improvement with SOA-HTM-PURE. For SI@AM-UTLZN
the cache misses due to context switching are 1.5 to 2 tinggehthan Base and SOA-
HTM-PURE at 16 cores, degrading performance by 18% over BeBeque, and 50%
in Kmeans C5.

Vacation and Kmeans C1 are benchmarks with a large amouwintéistion, and a
high number of retries. In Vacation, this occurs at 8 and X6gavhere 77% and 90% of
transactions abort, and the average number of retries &n8l.2.0, respectively. Modest
performance improvements of 6% and 21% are observed with-BDM-PURE. In
Kmeans C1 there is little exploitable parallelism, as ahtactions update a single
cluster. By 16 cores, Kmeans C1 aborts 96% of transactionbjta average number
of retries is 24.4. SOA-HTM-PURE results in a performanc@rovement of 44%,
while SOA-HTM-UTLZN, in one of the few cases where it imprevperformance,
does so by 57%. Kmeans’ larger performance improvement\haation at 16 cores,
despite having a lower number of retries, is indicative @fei@ conflicts representing
a smaller number of retries in the latter. It is worth notihgttcontention is rising in
these benchmarks as the number of cores increases, and SMAPKHRE provides
correspondingly larger performance improvements. Thusvaidd expect even larger
performance improvements if the benchmarks were execusied a larger number of
cores.

SOA-HTM-UTLZN improved performance in a limited number @fses, and in all
those cases SOA-HTM-PURE improved performance similétbwever, SOA-HTM-
PURE results in better performance in many cases that SOM-HTLZN does not.
Thus, for brevity we limit further analysis to Base and SOANMIPURE.

Table 3 illustrates the impact of SOA-HTM-PURE on the averagmber of trans-
actional retries. For the scalable benchmarks (Btree, Ks€45) there are marginal
differences in retries. Only Kmeans C15 at 16 cores is siganti and likely to be re-
sponsible for the performance improvement seen earlieg. rfEmaining benchmarks
all see marked reductions in the number of retries, whickeege with the number of



Benchmark

Base

SOA-HTM-PURE

[[4 cores 8 cores 16 corgé cores 8 cores 16 cores

Btree 0 0 0.15 0 0 0.10
Kmeans C18§ 0 0.1 1.6 0 0.1 0.2
Deque 0 1.6 4.2 0 1.3 3.3
Kmeans C5 0.1 1.9 7.5 0.1 0.6 55
Vacation 0.4 3.2 9.0 0.2 1.5 4.1
Kmeans C1 20 195 24.4 0.7 14.0 16.6

Table 3. Average number of retries.

cores, suggesting again that SOA may provide even betteltsagith larger numbers
of cores.

Table 4 shows the number of cycles saved by SOA-HTM-PUREchvis the dif-
ference between Base and SOA-HTM-PURE in the number of syspent stalling.
Recall that SOA-HTM-PURE stalls cores upon abort, and thoystes spent stalling
are effectively saved. These saved cycles could be usedkéautng other applica-
tions, or SOA-HTM-PURE could be extended to sleep cores ontaénd resume upon
notification from the opponent core, thus saving energy. Gytates are not wasted in
executing transactions that abort. The table shows th&€8-& cycles can be saved in
the high contention experiments, while maintaining or ioyimg speedup over Base. In
some cases SOA-HTM-PURE uses more cycles than Base (shdtvnegative num-
bers). Although the increase represents a small fractidgheototal execution cycles,
small variations can occur since stall cycles also includhirsg for cache misses.

Benchmark 4 cores 8 cores 16 cores
Btree -597 (-0.03)  -922 (-0.09) -6,793 (-0.84)
Kmeans C18 -662 (-0.03) -3,863(-0.3) -17,701(-1.72)
Deque 800 (0.12) 49,191 (5.7) 99,876 (8.51)
Kmeans C5|| 16,265 (1.1) 13 (0) 166,329 (13.81)
Vacation  ||-32,990 (-0.53) 455,190 (7.61) 1,766,740 (23.34)
Kmeans C1|| -20,462 (-1.3) 388,982 (12.2) 1,061,083 (26.44)

Table 4. Average reduction in number of cycles used to execute the benchmsirig SOA-
HTM-PURE. In parenthesis: as a percentage of Base total executitescy

5 Related Work

SOA was first implemented in an STM [26, 21] by adding two dyitadly sized de-
ques to each thread: one that held ready-to-execute wodkpa@ which held stolen
transactions. Transaction stealing was performed by adigtg transactions into job
objects that held sufficient metadata to enable any threaxdoute the transaction.
The implementation resulted in a pseudo thread pool framefeo executing transac-
tions. This implementation permitted repeat conflicts, pedormance results revealed



it to be highly effective at reducing repeat conflicts, ualkOA-HTM UTLZN, which
suffered due to increased cache misses. The difficultieapfeimenting SOA on HTM
using the STM-based solution inspired the work in this paper

Little other work exists on automatically reducing the iropaf contention, or at-
tempting to improve performance when contention occurslyBeork on contention
management [27, 28] developed intricate backoff and wetkv&tion metrics to try
and resolve conflicts. Recently, CAR-STM [29] implementesirailar framework to
SOA [21] for a different STM. Additionally, CAR-STM allowssers can define a rou-
tine to serialize transactions they expect to conflict,alth such functionality is sim-
ilar to that presented by Bat al.[30].

Our earlier work [31, 19] on dynamically adapting to avaiéaparallelism in an
STM application, by changing the number of threads perohitbeexecute transactions
(inathread pool), reduced the number of aborts, and reduasttd work. Yoo and Lee
[32] implemented a STM transaction scheduling framewosk tjueues threads onto a
global queue if they greater than a user-specified threstioltborts over a history
window of transactions, which resulted in similar functdity to our adaptive work,
although our solution has the ability to be more responsiveitain cases. In contrast,
the STM transaction scheduling framework of Yoo and Lee isemmmenable to an
HTM implementation.

6 Conclusions

This paper has presented the first proposals for SOA in HTM.tilMo proposed imple-
mentations are scalable, require minimal architecturalifications, and independent
of the on-chip interconnect. The two implementations wedessly integrated into
LogTM-SE [7], and were evaluated using a range of benchmamkiscontention sce-
narios. The results showed SOA-HTM-PURE to be consistamglly performing. Al-
though SOA-HTM-UTLZN outperforms SOA-HTM-PURE in two casén most other
cases it provides the worst performance. In scenarios whereenchmark was highly
scalable, SOA-HTM-PURE resulted in no observable perfocealegradation, and in
one case a performance improvement of 17%. When contentsen performance be-
gan to improve more consistently, ranging from 16% to 44%h /& cores, suggesting
that SOA-HTM-PURE may benefit applications with even lowtemrtion. Performance
improvements increased with the number of cores, strongigeasting that larger im-
provements may be observed with larger numbers of coreallfiSOA-HTM-PURE
reduced the average number of retries (i.e., aborts) by B4thsaving up to 26% of
the execution cycles.
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