
Improving Performance by Reducing Aborts in
Hardware Transactional Memory

Mohammad Ansari1⋆, Behram Khan2, Mikel Luján2, Christos Kotselidis2, Chris
Kirkham2, and Ian Watson2

1 Department of Computer Science, Umm Al-Qura University
2 School of Computer Science, University of Manchester

mmansari@uqu.edu.sa
{bkhan, mlujan, ckotselidis, ckirkham,

iwatson}@cs.manchester.ac.uk

Abstract. The optimistic nature of Transactional Memory (TM) systems can
lead to the concurrent execution of transactions that are later found to conflict.
Conflicts degrade scalability, and may lead to aborts that increase wasted work,
and degrade performance. A promising approach to reducing conflicts at run-
time is dynamically, and transparently, reordering the execution of transactions
upon discovery of conflicts. This approach has been explored in Software TMs
(STMs), but not in Hardware TMs (HTMs). Furthermore, STM implementations
of this approach cannot be ported to HTMs easily.
This paper investigates the feasibility of such reordering in HTMs, and presents
two designs that are scalable, independent of the on-chip interconnect,require
only minor modifications to each core, and add no execution overhead if no con-
flicts occur. The evaluation takes LogTM-SE as a base line and considersbench-
marks with different levels of contention (transactional conflicts). The results
show that the preferred design increases HTM performance by up to 17% when
contention is low, 57% when contention is high, and never degrades performance.
Finally, the designs are orthogonal to LogTM-SE; they require no modification
to cache structures, and continue to support transaction virtualization, open and
closed unbounded nesting, paging, thread suspension, and thread migration.

1 Introduction

Traditionally, locks have been used to provide synchronization between threads that
access shared data concurrently. Locks are known to be challenging to use, with well-
documented challenges such as deadlocks, race conditions,convoying, and debugging.
Transactional Memory (TM) [1] proposes a programming modelto simplify safe ac-
cess to shared data, which is achieved by providingimplicit synchronization; the pro-
grammer marks, as transactions, those blocks of code that access shared data, and TM
ensures correct synchronization when those blocks of code execute concurrently.

TM provides implicit synchronization by checking, at runtime, whether accesses by
concurrently executing transactions intersect, i.e., conflict. If a transaction completes
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executing and detects no conflict, it commits, but if a conflict is detected, one of the
conflicting transactions is usually aborted. TM implementations may detect conflicts
eagerly (upon access to a data element), or lazily (when the transactional code block
has been completely executed). TM implementations write toshared data, i.e., perform
version management, eagerly (write to shared data in place), or lazily (write to a buffer).
The former has a fast commit phase, but a slower abort phase asit requires the transac-
tion to undo all its updates to shared data, while the latter has a fast abort phase, but a
slower commit phase as it must copy updates from the buffer tothe shared data.

TM has been implemented in hardware (HTM) [2–7], software (STM) [8–13], or
a hybrid of the two (HyTM) [14–17]. The advantage of HTMs is a low overhead in
performing transactional conflict detection, but at the cost of limiting the total accesses
of each transaction to the size of the L1 or L2 cache. STMs remove this limitation,
but at the cost of increased conflict detection overhead. Research in TM has focused
on reducing the overhead of conflict detection, but also on understanding TM behavior
[18], and even on adapting to dynamic workload characteristics [19, 20]. This paper
focuses on HTMs.

As the number of cores on a chip multiprocessor (CMP) rises, efficiently exploiting
the cores to achieve high speedup becomes more challenging,even with TM. TM appli-
cations that scale ideally up to, say, 16 cores, may well find that they scale poorly when
executed on 128 cores due to more and more transactions conflicting and aborting. To
make matters worse, TM implementations have often tried to optimize the execution of
a committing transaction at the cost of penalizing aborts, for example, by using eager
version management.

Steal-on-Abort (SOA) [21] is our technique to improve the performance of TM
when noticeable contention (i.e., transactional conflicts) occurs. SOA targets a patho-
logical interaction between conflicting transactions called repeat conflicts. This occurs
when a specific transaction A conflicts with, and is aborted by, a specific transaction
B. Transaction A is restarted after its abort, but performs an access that causes it to
repeatits conflict with transaction B, and then transaction A aborts again. This scenario
may repeat a number of times. SOA proposes that transaction Anot be restarted, and
instead be stolen by transaction B, to prevent it from being re-executed until transac-
tion B commits. Once B commits, A is made available for execution. By not executing
transaction A again, a potential repeat conflict and abort isavoided, which could have
wasted cycles, power, and degraded application performance. Additionally, on SOA-
enabled STMs [21], the thread on which transaction A was running acquires a new,
third, transaction C, to execute. If transaction C commits,application performance may
improve.

However, implementations of SOA exist only in STMs [21]. Furthermore, they have
used dynamic data structures such as double-ended queues (deques) that make it diffi-
cult to perform a straightforward port of SOA to HTMs. As a result, the feasibility of
implementing SOA in HTMs remains unexplored.

This paper is the first to investigate implementing SOA in HTMs, and presents
two designs: SOA-HTM-PURE, and SOA-HTM-UTLZN. The former guarantees re-
peat conflicts are eliminated, but implements a restricted form of SOA compared to
STMs. The latter implementation is less restricted, but permits repeat conflicts in cer-



tain scenarios. Notably, both implementations require only simple modifications to each
core, are independent of the on-chip interconnect, and highly scalable. For evaluation,
the designs are implemented in LogTM-SE [7], and continue tooffer all the advantages
of LogTM-SE such as unmodified cache structures, and supportfor transaction virtu-
alization, open and closed unbounded nesting, paging, thread suspension, and thread
migration. Results show that the benefit of SOA seen in STMs extends to HTMs; im-
proving speedup up to 57%, reducing processor usage up to 26%, and reducing the
number of aborts up to 54%. In addition, the HTM designs of SOAalso improve perfor-
mance in low contention benchmarks, and, promisingly, improve speedup by increasing
margins as the number of cores rises.

The remainder of this paper is organized as follows. Section2 presents the designs
of SOA for HTM, and Section 3 discusses how they impact other structures. Section 4
evaluates the designs by implementing them in LogTM-SE, andexecuting a range of
benchmarks. Section 5 discusses related work, and Section 6concludes the paper.

2 Steal-on-Abort Hardware Implementation

SOA abstractly consists of the three following actions:

1. Upon abort, a transaction is stolen, and hidden, by its opponent.
2. Upon commit, a transaction makes available for executionany transactions it stole.
3. Optionally, another transaction is acquired and executed in place of the stolen one.

The first two actions are enough to support SOA: they prevent repeat conflicts be-
tween two transactions by preventing them from executing concurrently. The third ac-
tion attempts to increase speedup (if the new transaction commits).

However, these actions are non-trivial to support in hardware. For example, trans-
actions are often tightly-coupled to the threads on which they are executing, as threads
maintain the execution state of an application. It may be impossible for a core to steal
an opponent transaction without stealing the thread on which it is executing. Assum-
ing transactions can be stolen, storing them in hardware is another challenge as there
is no limit to the number of steals that may be performed by a transaction. Thus, it
may become necessary to overflow stolen transactions to memory, which could signifi-
cantly slow down an executing transaction, and increase interconnect bandwidth usage.
Nevertheless, promising results from SOA on STMs give incentive for exploring if an
efficient design for SOA on HTMs can be achieved.

This paper proposes two carefully constructed designs thataim to minimise perfor-
mance degradation, interconnect traffic, and modificationsto cores and cache structures.
The latter is particularly important for keeping the designs practically feasible. The first
proposal is called SOA-HTM-PURE, which supports only the first two actions men-
tioned above, and the second is called SOA-HTM-UTLZN, whichimplements all three
actions.

2.1 SOA-HTM-PURE

A single register, called SOAAMAP (SOA abort map), is added to each core, and has
one bit for each core in the CMP. If a core aborts another, it sets the relevant bit in



Fig. 1. Architecture for SOA on HTM. Only one additional register per-core needed, called
SOA AMAP.

Fig. 2.SOA example. Core 2 has a (data) cache miss, and makes a request to the interconnect that
is forwarded to Core 1. Core 1 responds with a NACK, and records the NACK in its SOA AMAP.
Core 2 receives the NACK, aborts, and suspends. Upon commit, Core1 notifies all cores recorded
in its SOA AMAP to resume.



SOA AMAP. Since aborting an opponent requires communicating over the intercon-
nect, setting a bit in the register adds negligible overhead. Cores that are aborted stall
indefinitely, and are restarted later by their opponents. For now we assume threads do
not migrate; we address this issue later.

Once a core commits, it checks if any bits are set in its SOAAMAP. If all the bits
are clear, the core commits as normal. In this way, SOA-HTM-PURE adds no overhead
when there is no contention. If one or more bits are set, the corresponding cores are
resumed by sending a message across the interconnect. The exact mechanism for send-
ing such a message is architecture specific. In Section 4.3, the messaging mechanism
is described for our implementation using LogTM-SE, and results in a single outgoing
message from a committing core, and a single multi-cast message from a directory. In
this way, commit overhead is kept low by only adding a single,non-broadcast, message.

SOA should reduce communication traffic if repeat conflicts exist as fewer data
requests will be received from cores that restart aborted transactions, and fewer abort
messages will be sent to them in reply. Furthermore, it may bepossible to power down
stalled cores to save energy.

The design can feasibly scale to 2048 cores, requiring only a2048 bit register per
core (existing HTM implementations, for example, have suggested implementing 2048
bit signatures per core [7]), easily exceeding the number ofcores expected on CMPs in
the near future.

2.2 SOA-HTM-UTLZN

SOA-HTM-UTLZN is an acronym for “SOA on HTM for utilization”, and extends
SOA-HTM-PURE to add the last action of SOA. SOA-HTM-UTLZN piggybacks on
hardware thread context support that is common in CMPs [22].Hardware context sup-
port allows a core to store several thread contexts in hardware registers, and swap ex-
ecution between them quickly, primarily to hide memory latency. SOA-HTM-UTLZN
extends SOA-HTM-PURE by swapping threads in hardware contexts if the currently
executing thread is stalled (due to executing a transactionthat has been aborted). For
now we assume thread contexts do not migrate; we address thisissue later.

SOA-HTM-UTLZN adds a single bit, called CTXTSOA, to each hardware thread
context, which is set if the transaction being executed by the thread is aborted. A core
does not switch to any context that has its CTXTSOA bit set. When a core sends a
resumption message to another core, the other core clears the CTXT SOA bit in all
its thread contexts. This reintroduces the chance of repeatconflicts as the resumption
message will have been sent for only one of the contexts on theother core, and waking
up all contexts prematurely allows them to repeat their conflict with their respective
opponents. However, the benefit of this approach is that it leaves the SOAAMAP reg-
ister unchanged; one bit per core, maintaining the scalability of the design. To support
resuming specific contexts SOAAMAP must map one bit per context, which requires
either the register to increase in size, or the the potentialscalability to be reduced.

It should be noted that using hardware contexts to increase utilization has its limits;
if all contexts on a core are stalled due to transactional conflicts, then that core can no
longer execute transactions until a resumption message is received. One option may be



to swap contexts with another core, but there are several design trade-offs involved with
such a mechanism, and we leave it for future work.

3 Impact of SOA

The previous sections described two proposals for implementing SOA in HTM. This
section explores the impact of those designs on processor architecture, transactional
execution, and the operating system.

3.1 Processor Architecture

Each core is extended with a single register called SOAAMAP. A simple messaging
protocol is also required to resume cores, requiring the interconnect to simply forward
the necessary messages to predefined destinations. A strength of the SOA designs pro-
posed is that no other change is required. No other hardware modifications are needed,
and in particular the pipeline, private caches, and shared caches of the core are left un-
changed. This significantly reduces the impact on design verification, making the SOA
proposals attractive for practical implementation.

3.2 Transactional Execution

SOA is only applicable to eager conflict detection, as lazy conflict detection only detects
conflicts with transactions that have committed, which rules out repeat conflicts. The
use of eager version management may increase the benefit of SOA, as it should reduce
the overhead of roll backs if it reduces the number of aborts.The benefit of SOA may
also increase if it is used in conjunction with signature-based conflict detection, as they
may lead to false-positives, which may increase the number of repeat conflicts.

A committing core incurs an overhead of sending messages to resume other cores
if any bits in its SOAAMAP are set. In our implementation, only a single message is
sent by a committing core. There is no increase in overhead onaborting cores. Nested
transactions, both open and closed, are orthogonal to SOA, and work in harmony with it.
For example, the Deque benchmark used in the evaluation executes nested transactions.

3.3 OS Context Migration

Earlier, the SOA designs were restricted to prevent threadsfrom leaving their cores,
because a stalled thread expects to receive a resumption message from the core of the
opponent thread, and the opponent core holds only enough information to send a re-
sumption message to the core that it aborted, not the stalledthread itself. This restric-
tion is simple to remove. First, a stalled thread that is removed from a core needs to
be marked as active, and not stalled. No change is needed in SOA HTM PURE, and
in SOA HTM UTLZN the CTXT SOA bit should be cleared for the thread context in
question.

However, removing this restriction reintroduces repeat conflicts, as the migrated
thread is no longer stalled waiting for its opponent, and could begin re-executing imme-
diately. Furthermore, cores may send resumption messages that are no longer needed,



possibly resuming threads that are not their opponents, which further increases the
chance of repeat conflicts. Nevertheless, earlier work withSOA on STMs suggested
SOA is highly effective even when the implementation reintroduced repeat conflicts,
and contention was already high [21]. Thus, not only is it possible to override the above
restriction, but past results have shown that it may be an acceptable decision.

3.4 OS Virtual Memory Paging

The SOA designs do not peek at memory addresses, and as such are compatible with
support for paging. Furthermore, the modifications required to implement the SOA de-
signs do not impact HTM-specific support for paging.

4 Evaluation

SOA-HTM-PURE and SOA-HTM-UTLZN are evaluated using full-system simulations
with a range of benchmarks, and results compared with a “Base” implementation that
has SOA disabled. The evaluation shows that the designs improve speedup, and re-
duce aborts, although performance of SOA-HTM-UTLZN is mixed; in some cases it
improves performance, while in others it degrades it.

4.1 Methodology

SOA-HTM-PURE and SOA-HTM-UTLZN are implemented in LogTM-SE built on
Simics 3.0.31 [23], and GEMS 2.1 [24] Ruby pipeline and memory timing model.
The simulated platform uses simple in-order SPARC ISA coresrunning an unmodi-
fied Solaris 9. Experiments are executed with 1, 4, 8, and 16 cores (and corresponding
benchmark threads). Each benchmark thread is bound to an individual processor, using
Solaris’pset bind(). As a result, OS thread migration and context switching are
implicitly disabled. The architecture of the evaluated CMPis described in Section 4.3.

SOA-HTM-UTLZN is executed with four hardware contexts per processor, and
consequently each benchmark is launched with four times as many threads. In order to
isolate the performance benefit of hardware context switching to SOA-HTM-UTLZN
alone, hardware context switching is only permitted when a thread stalls due to SOA,
i.e., cannot be used to hide memory latency.

4.2 Workloads

The microbenchmarks Deque and Btree, and the non-trivial benchmarks Kmeans and
Vacation (from the the STAMP benchmark suite [17]), are usedto evaluate SOA-HTM.
In deque, transactions attempt to push or pop a double-endedqueue. Transactions in
Btree insert, delete, or lookup items in a B-tree. Kmeans is aclustering algorithm, and
contention is controlled by the number of clusters to which objects are assigned. We
experiment with 1, 5, and 15 clusters, which lead to progressively lower contention. Fi-
nally, Vacation is a travel database simulating multiple customers concurrently booking
flights, hotels, and cars.



Benchmark Parameters

Btree tx:5000, inserts:20%
Deque tx:1024, bkoff:32
Kmeans C1 m:1, n:1, threshold:0.05,

input file:random-n2048-d16-c16.txt
Kmeans C5 m:5, n:5, threshold:0.05,

input file:random-n2048-d16-c16.txt
Kmeans C15m:15, n:15, threshold:0.05,

input file:random-n2048-d16-c16.txt
Vacation tx:1024, n:8, q:10, u:80, r:65536

Table 1.Benchmark parameters.

4.3 Evaluated CMP Configurations

SOA-HTM-PURE and SOA-HTM-UTLZN are implemented in the LogTM-SE HTM
that is provided with GEMS 2.1. LogTM-SE and the SOA are a complementary union.
LogTM-SE aims to keep cache structures unmodified as this improves the chances of
adoption. Similarly, the SOA designs require minimal changes for each core. LogTM-
SE attempts to achieve high scalability by using a non-broadcast commit phase, and
directory coherency. The SOA designs add no overhead to the commit phase if conflicts
do not occur, and is agnostic of the interconnect or coherency protocol. LogTM-SE uses
eager validation, which is a requirement for SOA.

LogTM-SE is configured to use eager version management, eager conflict detection,
and a conflict resolution policy of self-abort, with exponential backoff (increase backoff
on retry). Note that this choice should reduce the benefit of SOA-HTM, as choosing to
abort the opponent is likely to generate more repeat conflicts, and exponential backoff
also reduces repeat conflicts, but at the risk of backing off for too long and harming
performance. A 2048 bit H3 signature is used for conflict detection [25].

Feature Description

L1 cache 32KB 4-way split, 64-byte blocks,
1-cycle access.

L2 cache 8MB 8-way unified, 64 byte blocks,
34-cycle access.

Memory 16GB, 500 cycle off-chip access.
L2-Directory Full-bit vector sharer list; 6-cycle latency.
Interconnectgrid, 64-byte links, 3-cycle link latency.

Table 2.Simulation parameters for SOA-HTM.

Figure 3 presents a block diagram of the 16 core CMP architecture. Further config-
urations include 1, 4, and 8 core CMPs. In each case, the number of L2 banks is equal
to the number of cores. Cores are connected by a packet-switched interconnect in a grid
topology using 64-byte links and adaptive routing. On-chipmemory controllers connect



Fig. 3.Base Log-TM-SE CMP configuration.

to standard DRAM banks. A MESI directory protocol enforces inclusion at L2. Each
L2 tag contains a bit-vector of the L1 sharers and a pointer tothe exclusive copy, if it
exists. Table 2 summarizes system parameters that remain fixed for each configuration.

The SOA communication protocol is as follows. Upon commit, acore checks its
SOA AMAP register, and if any bit is non-zero, it sends a single CORE RESUME REQ
message to its local directory, containing the complete value of SOAAMAP. The direc-
tory sends a single multi-cast DIRRESUMEREQ message out to each core for which
the corresponding bit is set in the received SOAAMAP value. The design creates mini-
mal overhead; a core only needs to send a single message if anybit is set in SOAAMAP.
If transactions are committing in the common case, then there is little or no overhead
of SOA as NACKs will be rare, and CORERESUME REQ/DIR RESUMEREQ mes-
sages will also be rare, as they are only sent if there is a waiting core. Similarly, if com-
mits are common then there is little change in traffic for the directory. If aborts occur,
then the design will increase commit overhead, and stall cores, but should compensate
by leading to a net increase in performance.

On its own, this protocol is susceptible to deadlock; two transactions may signal
each other to abort, and consequently never restart. However, LogTM-SE itself is sus-
ceptible to such deadlocks, and thus includes a multi-stageabort mechanism that detects
and prevents deadlock cycles. Our extensions to LogTM-SE donot interfere with this
mechanism, and therefore only abort (and stall) transactions when doing so will not lead
to a deadlock. Consult the LogTM [6] and LogTM-SE [7] papers for further details.



4.4 Results

The evaluation explores the impact of SOA on three scenarios: low contention, high
contention with low repeat conflicts, high contention with high repeat conflicts. The first
scenario should trigger SOA rarely, and is used to illustrate the minimal impact of SOA
on performance when aborts are negligible. The second scenario should trigger SOA
often, but provide little performance improvement since there are few repeat conflicts,
and may even degrade performance due to SOA overhead. The third scenario should
trigger SOA often, and could result in larger performance improvements.
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Fig. 4. Speedup over single-threaded execution. Note different y-axis ranges.

Figures 4a-4f illustrate speedup. A cursory look reveals two important findings.
First, SOA-HTM-PURE gives similar or better performance than Base in all cases.



Second, SOA-HTM-UTLZN improves upon SOA-HTM-PURE in Kmeans C1, but in
most other cases it degrades performance compared to Base.

Btree and Kmeans C15 have low contention, aborting on average 10% and 20% of
transactions with 16 cores. In these benchmarks both Base and SOA-HTM-PURE scale
similarly, which is indicative of the low overhead of SOA when aborts are rare. SOA-
HTM-UTLZN degrades performance in both, and the degradation is more severe in
Kmeans C15, which also has a higher percentage of aborts. Profiling data reveals that
SOA-HTM-UTLZN is thrashing local caches by context switching. In Kmeans C15
with 16 cores, we find that the number of L1 data misses increases 10 to 15 fold over
Base and SOA-HTM-PURE.

Deque and Kmeans C5 are benchmarks with a large amount of contention, but few
transactional retries, and thus little scope for repeat conflicts. At 16 cores, Kmeans C5
aborts 65% of its transactions, but retries on average only 1.9 times. However, SOA-
HTM-PURE still improves performance by 16%. In deque an almost identical situation
arises at 16 cores; 78% contention, and 3.5 retries on average increases the scope for
repeat conflicts. The scalability of Deque is limited by transactions accessing either end
of the deque structure, making repeat conflicts highly likely, and this is confirmed by
the 16% performance improvement with SOA-HTM-PURE. For SOA-HTM-UTLZN
the cache misses due to context switching are 1.5 to 2 times higher than Base and SOA-
HTM-PURE at 16 cores, degrading performance by 18% over Basein Deque, and 50%
in Kmeans C5.

Vacation and Kmeans C1 are benchmarks with a large amount of contention, and a
high number of retries. In Vacation, this occurs at 8 and 16 cores, where 77% and 90% of
transactions abort, and the average number of retries is 3.2and 9.0, respectively. Modest
performance improvements of 6% and 21% are observed with SOA-HTM-PURE. In
Kmeans C1 there is little exploitable parallelism, as all transactions update a single
cluster. By 16 cores, Kmeans C1 aborts 96% of transactions, and its average number
of retries is 24.4. SOA-HTM-PURE results in a performance improvement of 44%,
while SOA-HTM-UTLZN, in one of the few cases where it improves performance,
does so by 57%. Kmeans’ larger performance improvement thanVacation at 16 cores,
despite having a lower number of retries, is indicative of repeat conflicts representing
a smaller number of retries in the latter. It is worth noting that contention is rising in
these benchmarks as the number of cores increases, and SOA-HTM-PURE provides
correspondingly larger performance improvements. Thus wewould expect even larger
performance improvements if the benchmarks were executed using a larger number of
cores.

SOA-HTM-UTLZN improved performance in a limited number of cases, and in all
those cases SOA-HTM-PURE improved performance similarly.However, SOA-HTM-
PURE results in better performance in many cases that SOA-HTM-UTLZN does not.
Thus, for brevity we limit further analysis to Base and SOA-HTM-PURE.

Table 3 illustrates the impact of SOA-HTM-PURE on the average number of trans-
actional retries. For the scalable benchmarks (Btree, Kmeans C15) there are marginal
differences in retries. Only Kmeans C15 at 16 cores is significant, and likely to be re-
sponsible for the performance improvement seen earlier. The remaining benchmarks
all see marked reductions in the number of retries, which increase with the number of



Benchmark Base SOA-HTM-PURE
4 cores 8 cores 16 cores4 cores 8 cores 16 cores

Btree 0 0 0.15 0 0 0.10
Kmeans C15 0 0.1 1.6 0 0.1 0.2
Deque 0 1.6 4.2 0 1.3 3.3
Kmeans C5 0.1 1.9 7.5 0.1 0.6 5.5
Vacation 0.4 3.2 9.0 0.2 1.5 4.1
Kmeans C1 2.0 19.5 24.4 0.7 14.0 16.6

Table 3.Average number of retries.

cores, suggesting again that SOA may provide even better results with larger numbers
of cores.

Table 4 shows the number of cycles saved by SOA-HTM-PURE, which is the dif-
ference between Base and SOA-HTM-PURE in the number of cycles spent stalling.
Recall that SOA-HTM-PURE stalls cores upon abort, and thosecycles spent stalling
are effectively saved. These saved cycles could be used for executing other applica-
tions, or SOA-HTM-PURE could be extended to sleep cores on abort, and resume upon
notification from the opponent core, thus saving energy. Thecycles are not wasted in
executing transactions that abort. The table shows that 8-26% of cycles can be saved in
the high contention experiments, while maintaining or improving speedup over Base. In
some cases SOA-HTM-PURE uses more cycles than Base (shown with negative num-
bers). Although the increase represents a small fraction ofthe total execution cycles,
small variations can occur since stall cycles also include stalling for cache misses.

Benchmark 4 cores 8 cores 16 cores

Btree -597 (-0.03) -922 (-0.09) -6,793 (-0.84)
Kmeans C15 -662 (-0.03) -3,863 (-0.3) -17,701 (-1.72)
Deque 800 (0.12) 49,191 (5.7) 99,876 (8.51)
Kmeans C5 16,265 (1.1) 13 (0) 166,329 (13.81)
Vacation -32,990 (-0.53) 455,190 (7.61) 1,766,740 (23.34)
Kmeans C1 -20,462 (-1.3) 388,982 (12.2) 1,061,083 (26.44)

Table 4. Average reduction in number of cycles used to execute the benchmarksusing SOA-
HTM-PURE. In parenthesis: as a percentage of Base total execution cycles.

5 Related Work

SOA was first implemented in an STM [26, 21] by adding two dynamically sized de-
ques to each thread: one that held ready-to-execute work, and one which held stolen
transactions. Transaction stealing was performed by abstracting transactions into job
objects that held sufficient metadata to enable any thread toexecute the transaction.
The implementation resulted in a pseudo thread pool framework for executing transac-
tions. This implementation permitted repeat conflicts, andperformance results revealed



it to be highly effective at reducing repeat conflicts, unlike SOA-HTM UTLZN, which
suffered due to increased cache misses. The difficulties in implementing SOA on HTM
using the STM-based solution inspired the work in this paper.

Little other work exists on automatically reducing the impact of contention, or at-
tempting to improve performance when contention occurs. Early work on contention
management [27, 28] developed intricate backoff and work-estimation metrics to try
and resolve conflicts. Recently, CAR-STM [29] implemented asimilar framework to
SOA [21] for a different STM. Additionally, CAR-STM allows users can define a rou-
tine to serialize transactions they expect to conflict, although such functionality is sim-
ilar to that presented by Baiet al. [30].

Our earlier work [31, 19] on dynamically adapting to available parallelism in an
STM application, by changing the number of threads permitted to execute transactions
(in a thread pool), reduced the number of aborts, and reducedwasted work. Yoo and Lee
[32] implemented a STM transaction scheduling framework that queues threads onto a
global queue if they greater than a user-specified thresholdof aborts over a history
window of transactions, which resulted in similar functionality to our adaptive work,
although our solution has the ability to be more responsive in certain cases. In contrast,
the STM transaction scheduling framework of Yoo and Lee is more amenable to an
HTM implementation.

6 Conclusions

This paper has presented the first proposals for SOA in HTM. The two proposed imple-
mentations are scalable, require minimal architectural modifications, and independent
of the on-chip interconnect. The two implementations were seamlessly integrated into
LogTM-SE [7], and were evaluated using a range of benchmarksand contention sce-
narios. The results showed SOA-HTM-PURE to be consistentlywell performing. Al-
though SOA-HTM-UTLZN outperforms SOA-HTM-PURE in two cases, in most other
cases it provides the worst performance. In scenarios wherethe benchmark was highly
scalable, SOA-HTM-PURE resulted in no observable performance degradation, and in
one case a performance improvement of 17%. When contention rose, performance be-
gan to improve more consistently, ranging from 16% to 44% with 16 cores, suggesting
that SOA-HTM-PURE may benefit applications with even low contention. Performance
improvements increased with the number of cores, strongly suggesting that larger im-
provements may be observed with larger numbers of cores. Finally, SOA-HTM-PURE
reduced the average number of retries (i.e., aborts) by 54%,and saving up to 26% of
the execution cycles.
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