
DiSTM: A Software Transactional Memory Framework for Clusters

Christos Kotselidis, Mohammad Ansari, Kim Jarvis
Mikel Luján, Chris Kirkham, and Ian Watson

School of Computer Science
The University of Manchester, UK

{kotselidis, ansari, jarvis, mikel, chris, watson}@cs.manchester.ac.uk

Abstract

While Transactional Memory (TM) research on shared-
memory chip multiprocessors has been flourishing over the
last years, limited research has been conducted in the clus-
ter domain. In this paper, we introduce a research platform
for exploiting software TM on clusters. The Distributed
Software Transactional Memory (DiSTM) system has been
designed for easy prototyping of TM coherence protocols
and it does not rely on a software or hardware implemen-
tation of distributed shared memory. Three TM coherence
protocols have been implemented and evaluated with estab-
lished TM benchmarks. The decentralized Transactional
Coherence and Consistency protocol has been compared
against two centralized protocols that utilize leases. Results
indicate that depending on network congestion and amount
of contention different protocols perform better.

1. Introduction

The advent of Chip MultiProcessors (CMPs) provides
great incentives for the development of easy-to-use parallel
programming models. In this direction, and borrowing
from the success in databases, Transactional Memory (TM)
[18] is gathering momentum. Until now, synchronization
in parallel applications has been achieved by the use of
mutually exclusive locks and barriers. The drawbacks
of using such mechanisms are the limited scalability
(coarse-grain locking), and the cost of program complexity
(fine-grain locking). TM promises to address these prob-
lems by replacing these synchronization mechanisms with
atomic regions executed transactionally. These transactions
are speculatively executed in parallel with the read and
write operations generating associated read and write sets
which are managed by a runtime layer. At some stage of
the transaction’s lifecycle a validation phase reveals any
conflicts (non-empty intersections with the read and write
sets) with other concurrently executing transactions. At

that stage, a contention management policy is invoked to
determine which transactions are aborted or delayed.

The research community has developed numerous TM
systems divided into Software (STMs) [19, 14], Hardware
(HTMs) [13, 3] and Hybrid Software/Hardware (HyTMs)
[9] in order to understand TM behavior. The majority
of these TM systems, however, focus on shared-memory
parallel architectures leaving unexplored the domain of
clusters. The execution behavior of TM on clusters differs
significantly from that on shared-memory CMPs due to the
expensive communication messages exchanged amongst
the nodes.

The Distributed Software Transactional Memory
(DiSTM) system is built on top of the state-of-the-art
DSTM2 [14] transactional engine and the ProActive
framework [5]. In DiSTM, each node can execute multiple
transactions according to the number of threads currently
running on that node of the cluster. The number of threads
is user-defined allowing the installation of the system on
single-processor node clusters as well as on multi-processor
node clusters. DiSTM also allows the plug-in of different
contention managers for local and remote validation.

Our previous work [17] introduced the first version of
DiSTM and some initial evaluation results on TM execution
on clusters. We enhance the first version of DiSTM by
implementing and evaluating three different TM coherence
protocols. The decentralized Transactional Coherence and
Consistency (TCC) [13] protocol is compared with two
centralized TM coherence protocols based on the concept
of leases [12]. The first lease protocol allows only one
transaction at a time to commit, and make its changes
globally visible, therefore serializing the transactions over
the network. The second lease protocol allows multiple
transactions at a time to acquire the lease and therefore
multiple transactions to commit concurrently.

These TM coherence protocols are evaluated on a 40
processor cluster with three benchmarks from the STAMP
suite [9], Lee-TM (a complex TM application which
implements Lee’s routing algorithm for circuit boards)

[20, 4], and GLife-TM (a transactional version of Conway’s
Game of Life [6]).

The remainder of the paper is organized as follows:
Section 2 introduces background and related work, and
Section 3 describes the core components of DiSTM. Sec-
tion 4 describes the implemented TM coherence protocols.
Section 5 describes the platform as well as the benchmarks
used in the evaluation. Section 6 presents the evaluation
results, while Section 7 summarizes the paper.

2. Related Work

TM research has focused on shared-memory CMPs.
The only related published work that tackles distributed
TM execution are Distributed MultiVersioning (DMV) [19]
and Cluster-STM [7]. In DMV, transactional execution is
achieved by modifying the underlying software Distributed
Shared Memory system (DSM) [16]. The role of the DSM
is to provide a shared memory view among the nodes of
the cluster. Cluster-STM is a prototype implementation in
which one thread is being executed on each processor. Our
framework, the Distributed Software Transactional Mem-
ory (DiSTM) system, differs significantly from DMV as it
does not rely on a DSM mechanism to achieve memory co-
herence. Furthermore, the problems of local and remote
conflicts are tackled in DiSTM as each node of the clus-
ter is a CMP allowing the execution of multiple concurrent
threads. DiSTM also employs transactional semantics at
object granularity instead of page granularity as DMV or
word granularity as Cluster-STM while being more modu-
lar and flexible for experimentation purposes.

Besides the research conducted on the area of TM, new
parallel programming languages are being developed to en-
able efficient parallel programming on clusters. The so-
called Partitioned Global Address Space (PGAS) languages
such as UPC [11], Titanium [21] and the emerging ones
X10 [10] and Fortress [2] allow parallel programming while
providing a global address space. Some of the PGAS lan-
guages include the atomic construct without currently con-
taining any underlying distributed TM system. The transac-
tional implementation of these constructs is not yet defined
as it is still a subject of research.

Transactions have already started being investigated on
distributed environments with Sinfonia [1]. Sinfonia uti-
lize “minitransactions” which replace message-passing pro-
tocols on applications such as cluster file servers. In the
domain of Java Virtual Machines (JVMs), distributed so-
lutions for enterprise applications already exist (e.g. Terra-
cota [8]), but still rely on locks for synchronization among
threads. DiSTM can assist in this domain by providing a
research platform for investigating transactional execution

on distributed JVMs.
The work presented in this paper enables experimenta-

tion and investigation of the transactional semantics of these
structures.

3. Distributed Software Transactional Memory

DiSTM is written entirely in Java and it builds on two
core components: an underlying transactional execution en-
gine and a remote communication system. As a transac-
tional engine we have extended DSTM2 [14]. The remote
communication is based on the ProActive framework [5]
which is a high level API for Java RMI. The following sub-
sections describe how these components are integrated.

3.1. DSTM2 Transactional Engine

DSTM2 [14] is a Java STM which supports transactional
execution for dynamically-sized data structures on shared-
memory architectures. All transactions are executed specu-
latively. When a transaction attempts to modify an object,
instead of directly modifying the actual object, a cloned ver-
sion of the object is used and kept private until it is safe
for the transaction to commit. The commit phase follows
a validation phase where any conflicts (write-after-write or
read-after-write) are detected and resolved. Upon conflict
detection, a contention manager is consulted to resolve the
conflict by aborting or delaying one or more of the con-
flicting transactions. After the validation phase finishes, the
“winning” transaction can safely commit, making public
its changes (replacing shared objects with their respective
modified cloned objects). DSTM2 employs an obstruction-
free synchronization policy [15] which guarantees forward
progress as any halted threads do not prevent active threads
from making progress. However, the obstruction-free syn-
chronization policy does not prevent active threads from
causing livelocks.

We selected DSTM2 because it offers a wide array of
contention managers. Furthermore, it allows the user to
plug-in custom contention managers making it an ideal plat-
form for experimentation purposes. Further information can
be found in [14].

3.1.1 Extensions to DSTM2

Distributed functionality was added to DSTM2 with mini-
mal changes to its architecture. The two main modifications
regard the way transactions commit and the way objects are
identified amongst the nodes of the cluster.

Initially in DSTM2, the commit stage included two
phases: the validation() and the commit() phases.
Upon validation, potential conflicts are discovered and if

none, the transactions attempt to commit by Compare-
AndSwaping (CASing) their status flags from ACTIVE to
COMMIT. To that scheme an extra step has been added.
The role of this extra step is to guarantee transactional co-
herence on the cluster. The actions taking place at this step
depend on which TM coherence protocol is chosen. For
example, if the TCC protocol is used, then at this step the
transaction’s read/write sets are broadcast to the nodes of
the cluster in order to be validated against the concurrently
running remote transactions. On the contrary, if a lease
scheme is employed, the transaction attempts to acquire a
lease before it commits.

No matter which protocol is used, after finishing this
step, the transaction is aware of whether it is safe for it to
commit or not, based on the returned value.

Each node of the cluster maintains a cached version of
the transactional dataset. Transactions running on each
node read/write from/to the cached dataset. DiSTM is
responsible for keeping the various cached datasets con-
sistent. For brevity, details of how objects are identified
amongst the nodes are omitted, but can be found in [17].

3.2. Remote Communication

The remote communication layer is written in Java and
relies on the ProActive framework [5]. The key concept of
the ProActive framework is active objects. Each active ob-
ject has its own thread of execution and can be distributed
over the network. Based on this primitive, each node has a
number of active objects serving various requests. Depend-
ing on the TM coherence protocol, various active objects
are created on the master and the worker nodes. However,
the number of active objects that constitute the skeleton of
DiSTM are constant. Upon bootstrap, a JVM is created on
every node, including the master node. DiSTM begins exe-
cution on the main thread (instance of the MAIN active ob-
ject) on the master node by creating the necessary structures
on the remaining nodes. The JVM on each worker node
has an instance of the DiSTMClient class (main thread)
which coordinates the execution on the node. In addition, it
is responsible for updating the worker node’s datasets upon
a transaction’s commit, maintaining consistency among the
various copies of the datasets residing on the cluster. The
remaining active objects of DiSTM differ for each protocol,
and are presented along with their implementations (next
section).

4. Distributed TM Coherence Protocols

This section describes the distributed TM coherence pro-
tocols implemented in DiSTM. The first subsection dis-
cusses an equivalent to the decentralized TCC protocol [13],

while the second subsection describes two novel centralized
protocols that utilize leases [12].

Master Node

Global
 Data

 Global
Structures

Worker Node A

Cached
Data

Transactions

Execution Engine

Worker Node B

Cached
Data

Transactions

Execution Engine

Master Node

Global
 Data

 Global
Structures

Worker Node A

Cached
Data

Transactions

Execution Engine

Worker Node B

Cached
Data

Transactions

Execution Engine

Master Node

Global
 Data

 Global
Structures

Worker Node A

Cached
Data

Transactions

Execution Engine

Worker Node B

Cached
Data

Transactions

Execution Engine

a)

b)

c)

remoteValidate() (1)true/false(2)

update
global data (3)

update
cached data (4)

acquire
(1)

true(2)
update
release (3)

update
assign (4)

acquire
validate(1)

true/false(2)
update
release (3)

reacquire
(4)

Figure 1. Distributed TM coherence proto-
cols: a) TCC, b) Serialization lease, c) Mul-
tiple leases.

4.1 TCC

TCC performs lazy validation of transactions that at-
tempt to commit. Each transaction that wishes to commit,
broadcasts its read/write sets only once, during an arbitra-
tion phase before committing. All other transactions exe-
cuted concurrently compare their read/write sets with those
of the committing transaction and if a conflict is detected,
one of the conflicting transactions aborts in order for the
other to commit safely. TCC, initially designed for cache-
coherent architectures, has been adopted as a decentralized
TM coherence protocol for DiSTM. In order to maintain
an ordering of the transactions on the cluster, a “ticketing”
mechanism has been employed. Each transaction before
broadcasting its read/write sets, in order to be validated
against transactions running on remote nodes, acquires a
“ticket” (global serialization number) from the master node.
The role of the “ticket” is to assist the contention man-
ager upon a conflict detection between transactions run-
ning on different nodes. The contention management policy

adopted is the oldest-commit-first policy (oldest in terms of
remote validation time – which transaction attempts to re-
motely validate its read/write sets first). Upon remote val-
idation, see Fig. 1a) Step 1, a transaction’s read and write
sets (incoming transaction) are compared against the read
and write sets of the transactions executed on a remote node
(local transactions) resulting in three possible scenarios:

1. There is no conflict — No transaction is aborted and
the remoteValidate()method returns true, so the
caller can commit safely.

2. There is a conflict with a “younger” local transac-
tion — In that case, a conflict is detected against a
transaction which has a greater “ticket” number than
the incoming transaction. That means that the local
transaction has acquired the ticket after the transaction
it is validated against (incoming transaction). The
local transaction is considered to be “younger” and
therefore has to be aborted. Instead of aborting the
local transaction immediately, its id is stored in a
temporary queue. Each transaction with a greater
“ticket” (than the incoming transaction) will be stored
in the queue. The decision of whether to abort the
transactions in the queue takes place when the incom-
ing transaction has been validated against all local
transactions. When the validation of the incoming
transaction has finished and there has been no conflict
with a local transaction with a smaller “ticket” number
(older) the transactions stored in the queue are aborted.
This is due to serial validation. Each transaction’s
read/write sets are validated serially against the
read/write sets of other transactions. Furthermore, all
transactions which attempt to be validated against the
transactions running on another node are queuing up
and each one performs the remoteValidate()
function serially. Therefore, there may be a case where
the first transaction to be validated against is younger
while the second one is older. If we were to abort
the first transaction immediately then the incoming
transaction could be aborted by the second (older)
transaction and, hence, we would have unnecessarily
aborted the first one.
If the incoming transaction conflicts only with
“younger” locally executed transactions, the
remoteValidate() method returns true so
the caller can proceed in committing its transaction.

3. There is a conflict with an “older” transaction —
In that case, a conflict is detected against a transaction
which has a smaller “ticket” number than the incom-
ing transaction, i.e. the local transaction is older and
should abort the incoming younger transaction. Conse-
quently, the remoteValidate() function returns

false and the queue holding the conflicting younger lo-
cal transactions (if there are any) is released.

The commit phase follows the validation phase. A transac-
tion that has passed the validation phase successfully must
make its changes visible both locally (at the node it is run-
ning) and globally (to the rest of the nodes of the cluster),
Fig. 1a) Step 3. TM coherence is assured by a master-
centric, eager approach. After a transaction has made its
changes visible locally, it updates the global dataset kept at
the master node. In turn, the master node eagerly updates
all the cached datasets on the rest of the nodes of the clus-
ter Fig. 1a) Step 4. Upon updating the cached datasets, a
validation phase occurs which invalidates the transactions
that have read “dirty” values of the cached dataset. Any
transactions discovered during the invalidation phase, are
re-executed after the node gets a consistent view of the data.

4.2 Lease-based TM Coherence Protocols

When utilizing leases on the network, two additional ac-
tive objects are created on the master node. The active ob-
jects are assigned the roles of acquiring and releasing the
leases. Depending on which of the following schemes is
utilized, the lease handlers behave differently.

4.2.1 Serialization Lease

The role of the lease is to serialize the transactions’ com-
mits over the network and therefore to avoid the expensive
broadcasting of transactions’ read/write sets for validation
purposes. Each transaction that passes the local validation
phase, attempts to acquire the lease from the master node
Fig. 1b) Step 1. If no other transaction has acquired the
lease, the incoming transaction acquires the lease. Any
other transaction that tries to acquire the lease, after the
transaction from worker node A has acquired it, will block
and wait its turn to commit after adding itself to a queue
kept at the master node. The role of the queue is to maintain
the order of the transactions waiting to acquire the lease.
When the transaction (lease owner) of worker node A com-
mits, it updates the global data at the master node and then
releases the lease Fig. 1b) Step 2. Before the lease is re-
leased, the cached datasets of the worker nodes are updated
with the new values of the committed transaction. A val-
idation phase while fetching the new data aborts any con-
flicting local transactions. After the lease is released, the
master node retrieves the next transaction from the queue
and attempts to assign the lease to it Fig. 1b) Step 4. If the
transaction has not been aborted (in the process of updat-
ing its cached dataset), it acquires the lease and proceeds
in committing. On the contrary, if the transaction has been
aborted, the master node attempts to assign the lease to the
next transaction retrieved from the queue.

The advantage of the serialization lease is the minimiza-
tion of the broadcasting messages exchanged in TCC. The
disadvantages are that transactions block waiting to be as-
signed the lease, that there may be attempts to assign the
lease to aborted transactions and the bottlenecks created
upon acquiring and releasing the lease at the master node.

4.2.2 Multiple Leases

In this scheme, multiple leases are assigned for transactions
that attempt to commit. After a transaction passes the lo-
cal validation phase, it attempts to acquire a lease from the
master node, Fig. 1c) Step 1. Unlike the previous lease
scheme where only one lease was assigned at a time, in
this scheme multiple leases are available for transactions.
When a transaction attempts to acquire a lease, a validation
phase is performed at the master node. Each transaction that
attempts to acquire a lease is validated against each transac-
tion (stored in the pool) that currently owns a lease. If there
is no conflict, the transaction acquires a lease and proceeds
in committing after adding itself to the pool of transactions
that hold a lease. If a conflict is discovered, the transac-
tion aborts and restarts. Upon successful commit, Fig. 1c)
Step 3, the transaction updates the global data at the master
node and in turn the master node updates the cached data
at the worker nodes. The transactions that unsuccessfully
attempted to acquire a lease (and have been aborted) will
be re-executed and consequently try to acquire a lease dur-
ing their commit stage. There is no limit in the number of
leases that can be assigned on the cluster. As long as no
conflicts are detected at the master node leases can be as-
signed. However, controlling the number of leases could
be a way to control the network traffic on the cluster. The
advantages of this scheme is that multiple transactions can
commit concurrently. The disadvantages are the fact that an
extra validation step has been added to the master node as
well as the bottlenecks created upon acquiring and releasing
the leases.

5. Experimental Platform

5.1. Hardware

The hardware platform used in our experiments is a clus-
ter with 40 cores residing on five nodes: the master node and
four others while the network interconnection is a Gigabit
ethernet. The master node has 2 dual-core AMD Opteron
CPUs at 2.4GHz with 8GB of RAM. All the remaining
worker nodes are 4 dual core AMD Opterons at 2.4GHz
with 16GB of RAM each. Each worker node has 8 cores and
thus a maximum of 8 threads (excluding the threads of the
“active objects”) are spawned (to keep thread-switching to a
minimum). By using the cluster’s four nodes we create from

1 to 8 threads per run utilizing in total from 4 (one thread per
node) to 32 (8 threads per node) execution threads. All the
nodes run OpenSuse 10.1 and Sun Java 6 build 1.6.0-b105
with maximum heap size set to 8GB.

5.2. Benchmarks

Complex benchmarks for TM systems have only
recently emerged in the literature. In order to evaluate
our system, the benchmarks of the STAMP benchmark
suite ver 0.9.5 [9] as well as Lee’s transactional routing
algorithm [20, 4] have been ported to our system while
GLife-TM has been implemented from scratch. In total
five benchmarks have been used to evaluate our system:
Lee-TM, GLife-TM, KMeans, Vacation and Genome.

Lee-TM implements the classic algorithm for laying
routes on a circuit board. Each transaction attempts to lay a
route on the board. Conflicts occur when two transactions
try to write the same cell in the circuit board. A real
configuration of 1506 routes is used in the evaluation.
Parameters used: input file:mainboard.
KMeans is a clustering algorithm where a number of
objects with numerous attributes are partitioned into a
number of clusters. Conflicts occur when two trans-
actions attempt to insert objects into the same cluster.
Varying the number of clusters affects the amount of
contention. Parameters used: clusters:40, threshold:0.05,
input file:random10000 12.
Vacation is a simulator of an enterprise server. It is
similar to the SpecJBB benchmark. Several threads
acting as clients try to book, view, and edit their records
while performing actions, such as renting cars, booking
flights or hotel rooms. Parameters used: relations:40,
percent of relations queries:80, queries per transaction:1,
number of transactions:2430.
Genome performs gene sequencing from randomly
generated segments. Conflicts occur when different trans-
actions try to use the same segment during the segment
matching phase. Parameters used: gene length:1834,
segment length:24, num segments:19430.
GLife-TM is a cellular automaton which applies the
rules of Conway’s Game of Life. Conflicts occur when
two transactions try to modify concurrently the same cell
of the grid. Parameters used: columns:600, rows:600,
generations:10.

Concerning the transactional engine, we used the Pri-
ority contention manager (older always commit) and the
obstruction freedom synchronization policy (for local
transaction execution).

Figure 2. Benchmarks’ execution times comparing the three TM coherence protocols.

6. Evaluation

This section contains the results of evaluating the TM
coherence protocols with the described benchmarks. The
results shown are the averages of ten iterations. Figure 2
illustrates the execution time over an increasing number of
threads with respect to executing with one thread per node.
For example, the four-threads point in the x-axis shows the
execution time using one thread per cluster node. Similarly,
the 16-threads points presents the execution time using 4
threads per cluster node.

Concerning Lee-TM, all three protocols exhibit simi-
lar behavior as more threads are added. For TCC, there
is a peak at 20 threads (maximum speed-up 35%) beyond
which, performance degrades. This is due to the fact that
the performance benefit of executing with more threads is
outweighed by the cost of validating remotely more transac-
tions on the cluster. When the serialization lease is utilized,
all commits are serialized on the network. While at the be-
ginning a slight speed-up is observed, after a certain point
(24 threads), performance starts degrading. This is due to
more transactions being invalidated when the worker nodes
update their cached datasets. With multiple leases a con-
stant speed-up is observed (maximum 38% at 32 threads).
The performance gained by committing more transactions
in parallel seems to overcome the cost of the additional val-
idation step added at the master node.

Concerning KMeans, we can observe that no speed-up

is gained in any configuration. The cause of the deteri-
oration in the performance of KMeans is the high abort
rate among transactions resulting in limited parallelism (ob-
jects are attempted to be clustered in 40 partition resulting
from 45% (4 threads) to 5500% (32 threads) abort rate).
Compared with Lee-TM, transactions in KMeans are 480
times smaller in execution time and therefore spend the
majority of their time trying either validating themselves
against remote transactions (TCC) or acquiring leases (lease
schemes). The time spent at these stages are orders of mag-
nitude larger than pure execution time resulting in local
transactions being invalidated at a high rate. When the TCC
protocol is employed, we can see that the network traffic has
a severe impact on performance. On the other hand, if the
serialization lease is utilized, all transactions are serialized
on the network and each one waits its turn to commit. This
results in an approximately steady performance no matter
the number of threads used. A slight deterioration is ob-
served when we add threads because more transactions are
being invalidated when the cached data are updated. This
causes the bottleneck (while trying to acquire a lease) on
the master node to become greater and have an impact on
performance. When multiple leases are used, the validation
phase at the master node invalidates transactions at a high
rate allowing only a small number of transactions to com-
mit in parallel. Hence, the execution time is identical in all
configurations.

When leases are utilized in Vacation, great performance

improvement (compared to TCC) is observed. Vacation ex-
hibits, a stable transaction abort rate (below 30% at worst
case) and thus the remote validation requests in TCC out-
weighed the performance benefit of parallel execution. On
the contrary, when the serialization lease is used perfor-
mance remains stable, with a slight increase in execution
time. Multiple leases outperform the serialization lease and
show an execution time pattern similar to TCC (but with ap-
proximately two times lower execution time).

GLife-TM exhibits fluctuating execution time when
TCC is used. This is a benchmark specific issue concerning
scheduling. In GLife-TM each thread is assigned the calcu-
lation of the next generation of a partition of the cell grid.
Conflicts occur when a thread reads cell values from a par-
tition which another thread has modified (read/write con-
flict). Therefore, the transactions abort rate is highly con-
nected with the location of the conflicting partitions. The
deterioration in performance is accompanied by high abort
rate (from 2380% at 4 threads to 28825% at 24 threads)
because neighboring partitions have been scheduled on the
same node. On the contrary, when leases are used the ex-
ecution time is significantly lower than TCC because the
high invalidation rate is avoided by the transactions’ serial-
ization.

Genome is the only benchmark where TCC outperforms
in all cases the serialization lease and also has identical ex-
ecution time with multiple leases. This is due to the fact
that Genome has a very low transaction abort rate (less than
1%), and therefore transactions can commit in parallel at a
high rate.

The two main conclusions that can be drawn are the lim-
ited scalability for the given benchmarks and the fact that
TCC is usually outperformed by the lease-based protocols.
The only exceptions are Lee-TM and Genome where TCC
performs better than or similarly to both lease schemes. Fur-
thermore Lee-TM shows the most significant performance
improvement by 35% (TCC) and 38% (Multiple Leases).
To gain a better understanding we split down the execu-
tion time of transactions in Fig. 3. The time spent at each
step of a transaction’s lifetime has been measured, using the
Java timing utilities, and averaged in order to separate the
amount of execution time spent for local actions (local vali-
dation and commit) from that of remote operations (remote
validation/lock acquisition or release and commit). Finally,
the section of the bars labeled as “computation” represents
the execution time of a transaction spent in real computa-
tion. As depicted in Figure 3, Lee-TM is the only computa-
tionally intensive benchmark spending from 62% to 74%
of its time performing computations. Thus, the transac-
tions are spread in the time spectrum and the remote val-
idation does not have a great impact on performance. By
contrast, all other benchmarks perform light computations
resulting in spending the majority of their time in remote

Local Validation
Local Commit
Computation
Remote Validation
Remote Commit

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

3228242016128432282420161284322824201612843228242016128432282420161284

Pe
rc

en
ta

ge
 o

f
to

ta
l e

xe
cu

tio
n

tim
e

Benchmarks

TCC

Lee−TM KMeans Vacation GLife−TM Genome

Local Validation
Local Commit
Computation
Lease Acquisition
Remote Commit

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

3228242016128432282420161284322824201612843228242016128432282420161284

Pe
rc

en
ta

ge
 o

f
to

ta
l e

xe
cu

tio
n

tim
e

Benchmarks

Serialization Lease

Lee−TM KMeans Vacation GLife−TM Genome

Local Validation
Local Commit
Computation
Lease Acquisition
Remote Commit

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

3228242016128432282420161284322824201612843228242016128432282420161284

Pe
rc

en
ta

ge
 o

f
to

ta
l e

xe
cu

tio
n

tim
e

Benchmarks

Multiple Leases

Lee−TM KMeans Vacation GLife−TM Genome

Figure 3. Breakdown by transaction stage of
the execution times.

requests. Comparing the serialization lease graph with the
multiple lease graph we can observe that the remote com-
mit and lock acquisition percentages are almost switched
for the non-computationally intensive benchmarks. This is
due to the bottleneck created upon commit at the multiple
lease scheme. This bottleneck does not exist in the serial-
ization lease scheme as only one transaction at a time can
commit. However, in the serialization scheme, transactions
spend the majority of their time trying to acquire a lease.

To conclude, the results indicate that the selection of a
TM coherence protocol is determined by two factors. The
first factor is the transaction abort rate (in Genome, TCC
outperforms the serialization lease) while the second fac-
tor is how computationally intensive the application, with
respect to the remote operations of the TM coherence pro-
tocols, is (in Lee-TM TCC sometimes outperforms or per-
forms similarly to the lease schemes).

7. Summary

TM research for shared-memory CMPs has flourished
in recent years. Clusters, being a core part of high perfor-
mance computing, remain open for evaluation with TM. To
this end, the flexible research platform DiSTM has been
designed and implemented.

This paper has evaluated three distributed TM coher-
ence protocols on DiSTM with complex TM benchmarks

existing in the literature. The results underline the im-
portant role remote communication plays in transactions’
validation and commit phases. Furthermore, depending on
the contention of the application, different TM coherence
protocols perform better. When contention is high, and
transactions are serialized on the network, it is more
effective to use a centralized protocol, such as a lease
scheme, in order to avoid network congestion. On the
other hand, when transactions spend most of their time on
computations and little in communication, a decentralized
memory coherence protocol seems to perform better as
we avoid the bottlenecks caused by lease acquisition and
release.

References

[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for building
scalable distributed systems. In SOSP ’07: Proceedings of
21st ACM SIGOPS Symposium on Operating Systems Prin-
ciples, 2007.

[2] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen,
S. Ryu, G. Steele, and S. Tobin-Hochstadt. The Fortress
language specification version 1.0. Technical report, SUN
Microsystems. 2008.

[3] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiser-
son, and S. Lie. Unbounded transactional memory. In HPCA
’05: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, 2005.

[4] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham,
and I. Watson. Lee-TM: A non-trivial benchmark for trans-
actional memory. In ICA3PP ’08: Proceedings of the 7th
International Conference on Algorithms and Architectures
for Parallel Processing, 2008.

[5] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet,
M. Morel, and R. Quilici. Programming, deploying, com-
posing, for the grid. Springer-Verlag, 2006.

[6] E. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways
for your mathematical plays. Academic Press, New York,
1982.

[7] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Soft-
ware transactional memory for large scale clusters. In
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, 2008.

[8] J. Bonér and E. Kuleshov. Clustering the Java virtual ma-
chine using aspect-oriented programming. In AOSD ’07:
Proceedings of the 6th International Conference on Aspect-
Oriented Software Development, 2007.

[9] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
effective hybrid transactional memory system with strong
isolation guarantees. In ISCA ’07: Proceedings of the 34th
Annual International Symposium on Computer Architecture,
2007.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An
object-oriented approach to non-uniform cluster computing.
In OOPSLA ’05: Proceedings of the 20th Annual ACM SIG-
PLAN Conference on Object Oriented Programming, Sys-
tems, Languages, and Applications, 2005.

[11] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick.
UPC: Distributed Shared-Memory Programming. Wiley-
Interscience, 2005.

[12] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In SOSP
’89: Proceedings of the 12th ACM Symposium on Operating
Systems Principles, 1989.

[13] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional memory co-
herence and consistency. In ISCA ’04: Proceedings of the
31st Annual International Symposium on Computer Archi-
tecture, 2004.

[14] M. Herlihy, V. Luchangco, and M. Moir. A flexible frame-
work for implementing software transactional memory. In
OOPSLA ’06: Proceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, 2006.

[15] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer. Software transactional memory for dynamic-
sized data structures. In PODC ’03: Proceedings of the 22nd
Annual Symposium on Principles of Distributed Computing,
2003.

[16] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel.
Treadmarks: Distributed shared memory on standard work-
stations and operating systems. In Proceedings of the Winter
1994 USENIX Conference.

[17] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. Kirkham,
and I. Watson. Investigating software transactional memory
on clusters. In Proceedings of the 10th International Work-
shop on Java and Components for Parallelism, Distribution
and Concurrency, 2008.

[18] J. R. Larus and R. Rajwar. Transactional Memory. Morgan
& Claypool, 2006.

[19] K. Manassiev, M. Mihailescu, and C. Amza. Exploiting dis-
tributed version concurrency in a transactional memory clus-
ter. In PPoPP ’06: Proceedings of the 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, 2006.

[20] I. Watson, C. Kirkham, and M. Luján. A study of a transac-
tional parallel routing algorithm. In PACT ’07: Proceedings
of the 16th International Conference on Parallel Architec-
ture and Compilation Techniques, 2007.

[21] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Li-
blit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, and A. Aiken. Titanium: a high-performance java
dialect. Concurrency: Practice and Experience, 1998.

