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Abstract—Affordable transparent clustering solutions
to scale non-HPC applications on commodity clusters
(such as Terracotta) are emerging for Java Virtual
Machines (JVMs). Working in this direction, we propose
the Anaconda framework as a research platform to
investigate the role Transactional Memory (TM) can play
in this domain. Anaconda is a software transactional
memory framework that supports clustering of multiple
off-the-shelf JVMs on commodity clusters.

The main focus of Anaconda is to investigate the
implementation of Java synchronization primitives on
clusters by relying on Transactional Memory. The tra-
ditional lock based Java primitives are replaced by
memory transactions and the framework is responsible
for ensuring transactional coherence.

The contribution of this paper is to investigate which
kind of TM coherency protocol can be used in this
domain and compare the Anaconda framework against
the state-of-the-art Terracotta clustering technology. Fur-
thermore, Anaconda tracks TM conflicts at object gran-
ularity and provides distributed object replication and
caching mechanisms. It supports existing TM coherence
protocols while adding a novel decentralized protocol.

The performance evaluation compares Anaconda
against three existing TM protocols. Two of these are cen-
tralized, while the other is decentralized. In addition, we
compare Anaconda against lock-based (coarse, medium
grain) implementations of the benchmarks running on
Terracotta. Anaconda’s performance varies amongst
benchmarks, outperforming by 40 to 70% existing TM
protocols. Compared to Terracotta, Anaconda exhibits
from 19x speedup to 10x slowdown depending on the
benchmark’s characteristics.

Keywords-Distributed Software Transactional
Memory; Java Virtual Machine Clustering; Multithread-
ing; Parallel Computing

I. INTRODUCTION

Developing concurrent lock-based applications is
known to be challenging, which often leads to prob-
lems such as deadlocks, data races, and convoying.
These problems can be difficult to debug and thus de-
veloping and maintaining such concurrent applications
can be time consuming.

Transactional Memory (TM) [1] has gathered mo-
mentum as an alternative model to lock-based parallel
programming. Borrowing from database transactions,
TM requires developers to label blocks of code that
access shared data as transactions. In exchange, TM
guarantees that a transactional block will execute
atomically, and in isolation from other transactions,
leaving the program state consistent. There are two
major functions required to implement transactions
on top of a multi-threaded multi-core system. The
first is the ability to handle both committed and
uncommitted data while a transaction is executing
(memory versioning). The second is the detection of
interference between transactions (conflict detection)
and the control of which threads are allowed to commit
their state and which threads need to be aborted and
restarted (contention management). This is based on
an observation of the intersection between the read
and write sets of concurrent transactions. Research in
TM has developed several TM systems divided into
Software TM (STMs), Hardware (HTMs) and Hybrid
Software/Hardware (HyTMs) [1] in order to under-
stand TM behavior and reduce the overhead of TM
runtime checking. The majority of these TM systems,
however, focus on shared-memory parallel architec-
tures resulting in limited work in the cluster domain
[2], [3]. Deploying TM on clusters is attractive in
clustering Java Virtual Machines (JVMs) scenarios, as



exemplified by Terracotta [4]. The execution behavior
of TM on clusters differs significantly from that on
multi-core processors, particularly due to the expensive
inter-node communication messages that may need to
be exchanged. This increases the challenge in devel-
oping a high performance TM system for clusters: not
only must the intra-node TM overheads be minimized,
similar to existing shared-memory TM systems, but
also the inter-node TM coherence protocol must be
designed to ensure it does not degrade scalability.
Compared with traditional distributed shared memory,
TM has in its favor a less demanding consistency se-
mantics by only requiring it at commit points. TM has
been investigated as both a programming abstraction,
normally relying on the atomic construct, and as a
means of implementing lock elision [5].

Our recent publication has described the Distributed
Software Transactional Memory (DiSTM) [3], a flex-
ible research platform addressing STM for clusters.
DiSTM is designed and built to easily prototype
different TM components and TM coherence proto-
cols. Its evaluation compared two centralized and one
decentralized TM coherence protocols. The analysis
suggested that the centralized protocols performed bet-
ter under high contention, as they reduced network
congestion, while the decentralized protocol resulted in
better performance under low contention as it avoided
the bottlenecks of the centralized model. Nonetheless,
the decentralized protocol was only marginally better
under low contention. All the TM coherence protocols
operated on object-granularity with eager local conflict
resolution and lazy remote conflict resolution.

In this paper we introduce and evaluate Anaconda,
a clustering JVM solution which integrates a novel
decentralized TM coherence protocol. Both DiSTM
and Anaconda are built on top of off-the-shelf JVMs
and track TM conflicts at object granularity. However,
only Anaconda provides distributed object replication
and caching mechanisms.

The objective of the Anaconda TM coherence pro-
tocol is to minimize network traffic by employing a
lazy local, lazy remote conflict detection, and lazy
object versioning. As a contention manager policy with
Anaconda we have selected “older transaction commits
first” with a distributed unsynchronized means of gen-
erating unique timestamps. The distributed structures
employed by Anaconda are the Transactional Object
Buffer (TOB), which maintains per transaction meta-

data, and the Transactional Object Cache (TOC) which
maintains per node locally shared meta-data. The meta-
data stored at the TOC describe the ownership of
objects as well as which nodes have copies of a given
object. The TOC can be viewed as a directory that
indicates where the different copies are for an object,
while the TOB represents a transaction’s readset and
writeset. Finally, the Anaconda TM protocol follows
an update-upon-commit approach (i.e. all the cached
versions of an object are updated upon commit).

The performance evaluation compares Anaconda
with those three TM protocols evaluated in DiSTM. In
addition, we compare Anaconda against coarse grain
locking and medium grain locking implementations of
benchmarks running on Terracotta. Anaconda’s perfor-
mance varies amongst benchmarks, outperforming by
40 to 70% DiSTM’s protocols. Compared to Terracotta,
Anaconda exhibits from 19x speedup to 10x slowdown
depending on the benchmark’s characteristics.

The structure of this paper is as follows. Section
II describes related work in the area of TM for dis-
tributed systems. Section III describes the architecture
of Anaconda, including object replication and caching
mechanisms. Section IV describes the Anaconda de-
centralized coherence protocol. Section V presents the
experimental platform used. Section VI presents the
evaluation of Anaconda, and Section VII concludes the
paper.

II. RELATED WORK

Limited research has been carried out in executing
TM on distributed systems. Existing work includes
Distributed MultiVersioning (DMV) [6], Cluster-STM
[2], and DiSTM [3]. DMV executes transactions on
top of a Distributed Shared Memory (DSM) system
[7] through modifications to its software-based shared
memory layer. The DSM provides a shared memory
view to all the processors in the cluster. Cluster-STM
is a prototype implementation with limited support for
transactional execution. The limitation arises from only
being able to execute one transactional thread per node
of the cluster. Therefore, it cannot take full advantage
of nodes that are, e.g., dual or quad-core systems.
DiSTM differs from DMV as it does not rely on a DSM
layer to achieve coherence. DiSTM improves upon
Cluster-STM as it resolves conflicts between a trans-
action and any other transactions executing locally or
remotely, i.e. both local and remote validation. DiSTM



provides transactional semantics at object granularity,
whereas DMV provides page granularity and Cluster-
STM provides word granularity. DiSTM is modular
and flexible for experimentation purposes.

In addition to TM research literature, new parallel
programming languages are emerging to enable effi-
cient parallel programming on clusters. The Partitioned
Global Address Space (PGAS) languages such as UPC
[8], Titanium [9], X10 [10], Chapel [11] and Fortress
[12] allow parallel programming while providing a
global address space. Some of the PGAS languages
(such as X10, Fortress and Chapel) include TM-like
atomic constructs without currently containing any
underlying distributed TM system. The implementation
of these constructs is undefined and is subject to future
research.

Transactions are being investigated in distributed
environments with Sinfonia [13]. Sinfonia uses mini-
transactions as a replacement for message-passing
in cluster file servers. Java Virtual Machines have
spawned distributed solutions such as Terracotta [4]
for enterprise applications, but these rely on locks for
synchronization amongst threads. Anaconda provides
an alternative distributed JVM platform based on trans-
actional execution.

Finally, in the domain of distributed JVMs there
have been some prototype implementations such as
cJVM [14], dJVM [15] and Jessica [16], [17]. The
first two are in early prototype stage whereas Jessica
mainly focuses on thread migration techniques leaving
the synchronization mechanisms unexplored.

III. ANACONDA ARCHITECTURE

Anaconda implements STM on clusters using one
JVM per-node. Each node is a multi-core chip, running
an off-the-shelf JVM, executing multiple threads. Ana-
conda ensures accesses to shared objects are performed
safely by performing runtime checks at the intra-node
and the inter-node level. An execution thread may
access shared objects that may be located locally or
on a remote node. Anaconda consists of three key
components: the transactional runtime, the inter-node
communication and the object caching and replication.
They are described in detail below.

A. Transactional Runtime

Each node of the system has its own instance of a
TM runtime that employs a TM coherence protocol to

validate, commit or abort local or remote transactions.
The Anaconda protocol has a unified mechanism for
local and remote coherence while using object cache
and replication structures (Section IV-A).

Transactional granularity is maintained at the object
level. Transactional classes are declared as @atomic
annotated Java interfaces. The user has to declare
only the getter and setter methods of the transactional
objects. The @atomic interfaces are bytecode-rewritten
upon bootstrap in order to enable transactional func-
tionality; similar to [18]. Furthermore, the preferred
TM coherence protocol is defined as a plug-in and is
being bytecode-engineered during this stage. A side
effect is that Anaconda offers strong isolation as the
bytecode rewritten objects will throw a Java NullPoint-
erException upon a thread’s attempt to access them
outside the scope of a transaction.

B. Remote Communication

The communication amongst the nodes is achieved
by the use of the ProActive [19] framework (high level
API wrapper of RMI). The remote requests are invoked
on the active objects. The active objects have their own
thread of execution, can be distributed, and constitute
the basic building blocks of the ProActive framework.
Each node in the Anaconda framework has a number
of active objects serving various requests. Those re-
quests have been decoupled and logically assembled in
different active objects in order to avoid bottlenecks.
Generally, active objects serve one request at a time
and hence congestion may occur. The decoupling of
the remote requests in the Anaconda framework re-
sulted in the creation of three active objects per node.
Furthermore, a remote method invocation can either be
synchronous or asynchronous. Depending on the pro-
tocol stage, Anaconda can utilize either synchronous or
asynchronous requests to achieve higher performance.

C. Object Caching and Replication

Each transactional object in the cluster has a unique
identification number (OID). The generation of OIDs
is hidden underneath the collection classes provided
by Anaconda. In addition, each object has a parent
node identification number (NID) which is the node
that first created that object. The OID is encapsulated
as a field in every transactional object. This is done au-
tomatically to all objects declared as transactional (by
@atomic). Transactional objects are simple serializable



POJOs (Plain Old Java Objects) that can be replicated
and cached. Finally, each executed transaction has a
global unique identifier TID which is the concatenation
of a timestamp (assigned at the beginning of the trans-
action), the ID of the transaction’s executing thread
(threadID), and the NID. As described later, the TID is
used for conflict resolution and by concatenating these
three fields each transaction’s TID is guaranteed to be
unique.

Each node maintains a set of helper data structures
when the Anaconda coherence protocol is employed:
the Transactional Object Cache (TOC) and the Trans-
actional Object Buffer (TOB). Each node maintains
a single TOC that is shared by all threads executing
on that node. The TOC provides caching functionality
of remotely fetched transactional objects. Furthermore,
it maintains book-keeping information of executing
transactions. Figure 1 illustrates a TOC. The first field
is the OID that maps to a particular entry. The second
entry is the NID of the home node of the object
assigned the OID. Unless the NID of an entry in the
TOC is equal to that node, they are cached copies of
objects residing on other nodes. Maintaining the NID
of the objects can assist in identifying the home owners
of every object cached. The Cache field maintains a
list of all the nodes that have requested and retrieved
a copy of an object (and consequently stored it in
their caches). This information is used to assist conflict
resolution (Section IV-A). The Lock TID field is a lock
associated with each entry and it is acquired during
transactions’ commit stage. Finally, the Local TID field
is a list of all the local transactions currently accessing
this object.

The second data structure, the TOB, is maintained
per transaction but is visible amongst transactions (Fig-
ure 2). After accessing an object for a write operation, a
cloned copy of the object residing in the TOC is created
and stored in the TOB. Thereafter read operations will
be redirected to the cloned object version. The TOB
actually serves the role of maintaining transactions’
book-keeping information.

D. Distributed Atomic Collection Classes

Anaconda provides various collection classes for
distribution. Currently, the classes provided are dis-
tributed arrays, distributed single objects and dis-
tributed hashmaps. The distributed arrays can be either
declared to be cached as a whole to all nodes or

OID NID Local TIDsCache Lock TID

A,pA 1 15,16 9 54,35

...

Figure 1. Transactional Object Cache (TOC) structure

TOC
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Object A
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Figure 2. Transactional Object Buffer (TOB) structure

to be partitioned amongst them. The partitioning can
be achieved in various configurable ways such as
horizontal, vertical or blocked.

IV. ANACONDA TM COHERENCE PROTOCOL

This section describes the commit and abort proce-
dures of the protocol in action by illustrating the TM
interactions. The protocol uses a lazy versioning of
modified objects and lazy local/remote validation. The
lazy remote validation follows a pessimistic approach
in which, if a transaction has detected a possible
conflict, it will abort rather than wait for confirmation
that the other conflicting transactions have successfully
committed.

The Anaconda protocol has a three phase commit
stage. As a transaction progresses through the phases
it becomes more certain that there are no conflicts.
During the first phase, the transaction interacts with
the local TOC to ensure exclusive access to each object
in its writeset. In the second phase, the objects in the
writeset are multicast to those nodes that have cached
copies of them. The idea is not to update yet, but
to validate against the remote TOC. In the third final
phase, the transaction cannot be aborted by any other
transaction and can commit the new values stored in
its local TOB.

A. Commit Process

Phase 1: Lock acquisition During this phase a
transaction is required to acquire the locks for each



object in its writeset. The writeset of each transaction
is processed and the objects contained in it are grouped
according to their home nodes. Batch requests are sent
to each node starting from the local node. This is done
in order to save remote requests upon failed local lock
acquisition. The response from the remote TOCs to
each request contains a list of the nodes having a
cached copy of any object in the writeset. Note that
this phase is liable to run into deadlock if implemented
naively, as the gathering of all object locks is no longer
an atomic operation. A discussion of the rules used to
overcome this issue is included in Section IV-C.

Phase 2: Validation phase Having successfully
completed Phase 1, a transaction has the list of nodes
which contain remotely cached versions of the objects
that are part of its writeset. Thus, the modified objects
(i.e., the OIDs as well as the new values) are multicast
to the nodes of the list. Upon arrival in a remote
node, a validation phase then takes place aborting any
remote conflicting transactions. The validation phase
concerns only the transactions pointed to by the Local
TID field part of a remote affected TOC. When a
conflict is detected, the TIDs are compared in order
to decide which transaction should be aborted using
the “older-commit-first” policy (i.e., the transaction
with the larger TID is aborted). In order to enhance
performance of the validation phase, bloom filters are
utilized to encode the read-set of the transactions. In
this way, we try to minimize the validation phase time
as it is a blocking request against the transaction that
performs this phase as well as the transactions queued
waiting their turn to validate against this node. If the
validating transaction is aborted it revokes any locks
(if it had acquired any) and removes its TID from any
entry in the TOC.

Phase 3: Update Objects Having successfully com-
pleted Phase 2, the transaction cannot be aborted by
any other transactions and therefore can safely proceed
in swapping or updating the old objects with the
new ones. This can be done safely as the committing
transaction still holds the locks of the objects being
updated not allowing any other transactions to fetch
and cache, neither read from nor write to them. Any
such request will result in a negative acknowledgment
by the TOC. The requesting transaction will continue
to retry until it gets aborted or until the committing
transaction releases the lock. Upon an object update
the TOC is responsible for updating all the cached

copies of this object. This can be done in different ways
(invalidate vs. update protocol). In the invalidate pro-
tocol, the transactions have to discover by themselves
any potentially stale object and consequently abort
themselves, while in the update protocol the system
eagerly patches all the cached values and eagerly
aborts any conflicting transactions. In Anaconda we
currently employ the eager-patching approach but we
also plan to incorporate the invalidation protocol for
comparative evaluation. Consequently, the new patches
are being sent to the nodes that hold cached copies of
the objects. In those nodes receiving the patches, the
local executing transactions that are accessing those
objects are validated against the incoming writeset.
Any local conflicting transactions are aborted. Finally,
the updating transaction revokes all locks and if this
phase takes place at the node where the transaction
belongs, the TID of the transaction is removed from
any entries in the TOC.

B. Simple Commit Example

Figure 3 demonstrates a simple commit example of
two transactions, T1 and T2 executing on Nodes 1 and
2 respectively. For clarity, in the example we assume
that Nodes 1 and 2 are the home nodes of objects
A and B respectively. In this example T1 commits
successfully while T2 is aborted and subsequently
restarted. In Step 1, T1 attempts to read object A
with OID(A). As OID(A) is not present in T1’s TOB,
T1 checks if OID(A) exists in the current node by
inquiring at TOC 1. After the successful inquiry at
TOC 1, T1 stores a reference of OID(A) in its readset
(marking the Bloom filter). Furthermore, T1 adds itself
to OID(A) Local TIDs entry in the TOC. The same
procedure takes place upon T2’s effort to load object B.
If the objects were not residing in the nodes, a remote
request for fetching the object would be sent across the
cluster.

In Step 2, T1 speculatively writes to object A by
creating a private cloned copy pA’ of object A and
storing its reference in T1’s TOB. At the same time,
T2 reads object A by fetching it from Node 1. This
request will add Node 1 to object’s A Cached field in
TOC 1. In this way the home node of any object is
aware of any remote nodes that have fetched a copy of
a particular object. This information will be used later
to maintain TM coherence between the various cached
copies of objects residing on different nodes.
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Figure 3. Simple Commit Example

In Step 3, T1 starts its three stage commit phase
while T2 continues execution. During phase 1, T1
requests the lock for object A. Although a translation
of OID(A) exists in both TOCs, the lock acquisition
will take place only at the home node of OID(A). In
this way, T1 gets the lock by adding itself to the Lock
TID field for TOC 1. Any potential lock request to
this particular lock will cause the contention manager
to be invoked and one of the two transactions will
be aborted. TOC 1 will respond to T1’s request for
OID(A) lock by sending back the list of the nodes that
have a cached copy of OID(A). Hence, the return node
list for T1 will contain Node 2 as it has a cached copy

of object A. Upon successful acquisition of all locks,
T1 proceeds to Phase 2. Phase 2 entails the multicast
of T1’s writeset to the node list received from Phase 1.
A validation step will abort either any conflicting local
transactions or T1. In this example T2 is aborted by
T1 and acknowledges the verification. Upon receiving
positive replies from phase 2, T1 proceeds in phase
3 by CompareAndSwapping (CASing) its status from
ACTIVE to UPDATING. If the update of the flag is
successful, no other transaction can abort T1 and it
moves to the final phase. In Phase 3, T1 sends an
update-objects request to the same nodes to which it
multicast in Phase 2 (note that the objects themselves
were already sent in Phase 2). When Node 2 receives
the requests it replaces the old objects with the new
ones and performs a validation check only to the
transactions contained in the Local TID field of its
OID(x) mapping contained in the updating dataset. In
the meantime, the aborted transaction T2 releases any
locks acquired, if any. Finally, both transactions revoke
their TIDs for the corresponding Local TID fields of
their TOCs.

C. Contention Cases

There are phases within the protocol where con-
tention can occur. This section describes them and
explains how the contention is resolved.

Lock Acquisition Contention phase The first
phase where contention can occur is during commit
phase 1. During this phase transactions are required
to gather all locks sufficient to cover all modified
objects and the locks are gathered in the order in
which they appear in the TOB. It is possible that
multiple transactions requiring multiple locks can enter
a scenario similar to the deadlock achieved in the
dining philosophers problem. A typical scenario might
be: T1 holds lock for object A, needs lock for object B.
T2 holds lock for object B, needs lock for object A. In
such a scenario when T1 requests the lock for object B,
the TOC containing that lock forwards a message to the
owner (T2) informing it that the lock must be revoked,
because T1 has a higher priority. T2 will release the
lock and abort.

Multicast Contention During commit phase 3 it
is possible that a transaction will multicast its intent
to modify an object contained in another transaction’s
readset. If this causes a violation, i.e. it is not a false
conflict, a contention manager will be invoked in order



to resolve the conflict. Anaconda allows the plug-in
of different contention managers. After the contention
manager invocation, only one transaction will continue
in committing while the other will be aborted.

TOC trimming Upon successful lock acquisition of
a transaction in the commit stage, the number of nodes
to which the writeset of the committing transaction is
multicast is determined by the number of nodes that
have a cached version of the objects. The TOC has the
responsibility to multicast the committing transaction’s
writeset to the corresponding nodes and the extra
validation step will reveal any conflicts. Furthermore,
the TOCs can grow large, slowing down any operations
on them. The aforementioned two problems can be
easily tackled by periodically trimming the TOC, i.e.
removing records that have not been accessed lately.

V. EXPERIMENTAL PLATFORM

A. Hardware

The hardware platform used for experiments is a
cluster of 4 nodes. Each node has 4 dual core AMD
Opteron processors at 2.4GHz. We run a maximum
of 8 threads per node (excluding the threads of the
“active objects”). For the centralized experiments one
extra master node is used. The network interconnect is
Gigabit ethernet. Each experiment creates from 1 to 8
threads per node (i.e. always utilizes all four nodes),
and thus experiments use from 4 threads (1 thread per
node) to a maximum of 32 threads (8 threads per node).
All the nodes run OpenSuse 10.1, Sun Java 6 build
1.6.0-b105 with maximum heap size set to 8GB and
Terracotta 2.7.3.

B. Benchmarks

We have selected three different benchmarks which
exercise different parts of a TM system. Table I
presents general characteristics of these benchmarks.

LeeTM offers long transactions and low contention.
KMeans is placed at the other end of the spectrum
with very short transactions and high levels of conflicts
(aborts). GlifeTM also provides short transactions but
with low levels of conflicts instead. More specifically:

LeeTM [20], [21] implements the classic Lee’s algo-
rithm for laying routes on a circuit board. Each trans-
action attempts to lay a route on the board. Conflicts
occur when two transactions try to write the same cell
in the circuit board. A real circuit of 1506 routes is used
in the evaluation. LeeTM algorithm is also included

in the STAMP benchmark suite [22] as Labyrinth,
although using random configurations. Furthermore,
the configuration of LeeTM used, employs the early-
release [23] optimization that reduces the contention
[24].

KMeans [22] is a clustering algorithm where a num-
ber of objects with numerous attributes are partitioned
into a number of clusters. Conflicts occur when two
transactions attempt to insert objects into the same
cluster. Varying the number of clusters affects the
amount of contention. Two configurations of KMeans
are used (KmeansHigh, KMeansLow). KMeansHigh
attempts to cluster the objects into 20 clusters resulting
in high contention. By contrast, KMeansLow attempts
to cluster the objects into 40 clusters resulting in lower
contention. Both configurations cluster 10000 objects
of 12 attributes.

GLifeTM [25] is a cellular automaton which applies
the rules of Conway’s Game of Life. Conflicts occur
when two transactions try to modify concurrently the
same cell of the grid. Parameters used: columns:100,
rows:100, generations:10.

C. Protocols

The protocols used for the comparative evaluation
of Anaconda are the TCC, Serialization Lease and
Multiple Leases protocols of DiSTM as well as coarse
and/or medium grain lock based implementations of
the benchmarks running on the state-of-the-art cluster-
ing software Terracotta:

TCC performs eager local and lazy remote valida-
tion of transactions that attempt to commit. Each com-
mitting transaction, broadcasts its read/write sets only
once, during an arbitration phase before committing.
All other transactions executed concurrently compare
their read/write sets with those of the committing
transaction and if a conflict is detected, one of the
conflicting transactions aborts in order for the other
to commit safely (Contention Manager invocation).

Serialization Lease The logic behind that protocol
is the use of a lease in order to serialize the trans-
actions’ commits over the network. In this way, the
expensive broadcasting of transactions’ read/write sets
for validation purposes can be avoided. The lease ac-
quisition takes place after a successful local validation
of a transaction. In turn, the lease release takes place
after the transaction, that owns the lease, commits.



Configuration Name Application Configuration
LeeTM Lee with early release early release:true, input file:mainboard,

600x600x2 circuit with 1506 transactions
KMeansHigh KMeans with high contention min clusters:20, max clusters:20,

threshold:0.05, input file:random10000 12
KMeansLow KMeans with low contention min clusters:40, max clusters:40, threshold:0.05,

threshold:0.05, input file:random10000 12
GLifeTM Game of Life grid size:100x100, generations:10

Table I
BENCHMARKS’ PARAMETERS

After that, it is the system’s responsibility to assign
the lease to the next waiting transaction.

Multiple Leases In contrast to the serialization-lease
scheme, in the multiple-leases scheme multiple leases
can be assigned to committing transactions. To ensure
correctness, an extra validation step is performed upon
acquiring the leases.

Lock-based LeeTM and GLifeTM have both coarse
and medium grain locking implementations while
KMeans has only a coarse grain locking implemen-
tation. In the coarse-grain locking configuration, all
shared data structures are guarded by distributed locks.
In the medium-grain locking implementations (LeeTM
and GLifeTM), the shared data structures (distributed
arrays) have been partitioned in blocks guarded by
distinct locks. In addition, measures to avoid deadlocks
and to ensure correctness have been taken.

The evaluation of GLifeTM includes only the Ana-
conda and the lock-based implementations. We omitted
direct comparison with DiSTM due to the fact that the
internals of the benchmark are different influencing the
results to a great extent.

Figure 4 presents the graphs with the execution times
of LeeTM, KMeans and GLifeTM over the Anaconda,
TCC, Serialization Lease, Multiple Leases and the
Terracotta lock-based implementations. The reported
execution times of the experiments are the averages of
10 runs.

VI. EVALUATION

Concerning LeeTM, Anaconda outperforms all pro-
tocols. More specifically, it is: 19x faster than Terra-
cotta coarse-grain locking, 10x faster than Terracotta
medium-grain locking, and 40% to 70% faster than
the TCC, Serialization Lease and Multiple Leases
protocols. Transactions in LeeTM, as Table III shows
for Anaconda, spent the majority of their time in
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Figure 4. Benchmark’s execution times

computations (63 to 75%). This suggests that LeeTM
can benefit from distributed execution as it spends
small percentages of time in remote requests. Ana-
conda scales similarly to the rest of the TM coherence



protocols, suggesting that it has significantly lower
transactional overhead. TCC, a decentralized protocol,
gives similar performance to the lease-based protocols,
which are centralized. The locking implementations
ported to Terracotta perform poorly due to two rea-
sons: a) serialized execution, as each attempt to lay a
route (by reading/writing from/to grid cells) results in
either acquiring a lock for the whole grid or acquiring
locks over grid partitions, and b) the overhead of the
Terracotta distribution mechanisms. The transactions of
LeeTM are fairly large [24] and therefore every access
to a grid cell results in memory coherence actions taken
by the Terracotta infrastructure. On the other hand, in
the Anaconda protocol due to lazy validation and the
smaller sizes of the transactions (early-release) these
costs are minimized, resulting in better performance.

In KMeans, Anaconda along with TCC are sig-
nificantly slower than the lock-based and the leases
protocols (5x to 10x). In high contention scenarios
the centralized protocols outperform the decentralized
ones. No matter the configuration used in KMeans
(KMeansHigh, KMeansLow), the number of aborts
still remains significantly high as shown in Table VIII.
This is due to a single atomic counter (globalDelta)
of KMeans which performs checks over the specified
threshold. This object is shared among all threads
executing on the cluster. In combination with the fact
that KMeans’ transactions are really small as shown
in Table VII, transactions spend the majority of their
time in remote requests, Table II. This, in turn, adds
traffic over the network slowing down the execution.

Number of Threads
4 8 12 16 20 24 28 32

Avg % Execution 3 3 2 2 4 3 3 2
Avg % Lock Acquisitions 21 22 23 24 26 27 26 26
Avg % Validation Phase 40 40 42 43 45 46 47 46
Avg % Updating Objects 36 35 33 33 25 24 24 26

Table II
KMEANSLOW EXECUTION TIME PERCENTAGES

BREAKDOWN INTO TRANSACTION STAGES

Anaconda on average performs worse than the TCC
protocol while the lock-based Terracotta port is faster
(2x) than the lease-based protocols. The small size
of KMean’s transactions do not have a great impact
on Terracotta. In GLifeTM, Anaconda gains approxi-
mately 70% in execution time over 32 threads while
it is 5x slower than the lock-based Terracotta pro-

grams. This is due to having both a small number
of aborts (Table V) and small transactions (Table IV).
Terracotta does not scale while increasing threads, but
the approximately constant execution time is faster
than Anaconda. The transactional overhead of Ana-
conda over small transactions is comparatively higher
than Terracotta. As shown in Table III, LeeTM is a
computationally intensive benchmark with execution
percentages varying from 63 to 75%. As the number
of threads increases the percentage of time spent for
remote requests increases due to network traffic. Table
VI shows the average time spent per transaction (Tx
Total Time). This amount of time is approximately
spent in: a) computation time of the transaction (Tx
Execution Time), and b) time spent during the commit
stage (remote messages). While adding more threads,
the transaction’s total times are increasing in both
ways. The execution time increases due to increased
CPU utilization while the commit time increases due
to increased network traffic.

Number of Threads
4 8 12 16 20 24 28 32

Avg % Execution 75 74 72 71 70 68 66 63
Avg % Lock Acquisitions 12 13 13 14 14 14 15 15
Avg % Validation Phase 7 7 8 8 9 10 10 11
Avg % Updating Objects 6 6 7 7 7 8 9 11

Table III
LEETM EXECUTION TIME PERCENTAGES BREAKDOWN

INTO TRANSACTION STAGES

Tables II and VII show the percentages and actual
time spent in KMeansLow transactions at the Ana-
conda protocol. Transactions spend the majority of
their time in remote requests (over 96%) because of the
small size of transactions (0.5-3.6ms). In combination
with the shared counter (globalDelta), the number of
aborts increases dramatically while increasing the num-
ber of threads (from 91K to 712k over an average of
46K commits). This results in the poor performance of
the decentralized protocols compared to the centralized
ones as well as the lock based implementations. Ta-
bles IV shows the times spent in GLifeTM transactions
at the Anaconda protocol. Transactions are very small
(4.8-8.8ms.) and spend the majority of their time in
remote requests, similar to KMeansLow. In contrast to
KMeansLow, the number of aborts is small varying
from 790 to 4953 over a constant amount of 10K
commits.



Number of Threads
4 8 12 16 20 24 28 32

Number of Commits 100000 100000 100000 100000 100000 100000 100000 100000
Number of Aborts 790 1966 3007 3592 3565 4078 4363 4953

Table V
ANACONDA GLIFETM NUMBER OF COMMITS AND ABORTS.

Number of Threads
4 8 12 16 20 24 28 32

Avg. Tx Total Time 349.4 396.2 465.17 506.9 560.2 582.5 721.7 768.2
Avg. Tx Execution Time 294.4 315.3 341.2 374.4 368.4 378.7 409.7 428.4
Avg. Tx Commit Time 52.7 78.3 119.9 124.2 187.3 195.5 296.7 330.8

Table VI
ANACONDA LEETM TRANSACTIONS’ EXECUTION TIMES (MS).

Number of Threads
4 8 12 16 20 24 28 32

Number of Commits 53376 46704 40032 33360 46704 40032 45587 43675
Number of Aborts 91434 183432 256588 299466 556121 590376 630089 712987

Table VIII
ANACONDA KMEANSLOW NUMBER OF COMMITS AND ABORTS.

Number of Threads
4 8 12 16 20 24 28 32

Avg. Tx Total Time 4.8 6.4 7.6 8.2 8.2 8.3 8.5 8.8
Avg. Tx Execution Time 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4
Avg. Tx Commit Time 4.7 6.3 7.4 8 7.9 8 8.1 8.4

Table IV
ANACONDA GLIFETM TRANSACTIONS’ EXECUTION

TIMES (MS).

Number of Threads
4 8 12 16 20 24 28 32

Avg. Tx Total Time 13.7 19.5 24.9 31.3 38 44.2 49.3 53.4
Avg. Tx Exec Time 0.5 0.9 1.3 1.8 2.4 2.7 3 3.6
Avg. Tx Com Time 13.2 18.6 23.6 29.5 35.6 41.5 46 49.8

Table VII
ANACONDA KMEANSLOW TRANSACTIONS’ EXECUTION

TIMES (MS).

Overall, Anaconda improves performance over exist-
ing decentralized distributed TM coherence protocols
on low contention workloads. Concerning high con-
tention workloads, the centralized protocols perform
better than the decentralized ones as they first impose
lower transactional overhead and second they minimize
the number of aborts by serializing the transactions.
Concerning the lock-based distributed Terracotta pro-

grams, they perform poorly when long transactions are
present. On the contrary, they outperform all protocols
when short transactions are present in low contention
scenarios.

VII. CONCLUSION

In this paper we have presented and evaluated Ana-
conda, a JVM clustering solution which integrates a
novel decentralized TM coherence protocol. Anaconda
is a software TM system designed and built to easily
prototype different TM components and coherence
protocols on clusters. It is built on top of off-the-shelf
JVMs and tracks TM conflicts at object granularity. Fi-
nally, Anaconda provides distributed object replication
and caching mechanisms.

The objective of this new TM coherence protocol
is to minimize network traffic by employing a lazy
local and lazy remote conflict detection and lazy ob-
ject versioning. As a contention manager policy with
Anaconda we have selected “older transaction commits
first” with a distributed means of generating unique
timestamps.

The performance evaluation has compared Ana-
conda with three TM protocols evaluated in DiSTM.
Two of these are centralized, while the other is de-
centralized. In addition, we have compared Anaconda



against a coarse grain and a medium grain locking im-
plementation of the benchmarks running on Terracotta.

The results indicate that Anaconda’s performance
depends on the application’s contention as well as
the transactions’ sizes. In LeeTM, Anaconda is the
winner outperforming by 40 to 70% the previous TM
protocols. Furthermore, it exhibits up to 19x speedup
over Terracotta coarse and medium grain locking im-
plementations. On the other hand, in both KMeans and
GLifeTM Anaconda is being outperformed by the rest
of the protocols. KMeans, due to high contention, fa-
vors centralized protocols and therefore the lease-based
protocols outperform the decentralized Anaconda and
TCC protocols. Furthermore, due to high contention,
even the coarse grain locking implementation outper-
forms the lease-based protocols by removing the trans-
actional overheads. In GLifeTM, although Anaconda
scales and improves performance up to 70%, again it is
outperformed by the medium and coarse grain locking
implementations (executing with Terracotta). The small
size of the transactions, despite the low contention,
exposes the transactional overheads compared to locks.
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