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Abstract. Transactional applications may exhibit fluctuating amounts
of contention during execution. Excessive numbers of threads executing
transactions can produce phases with a high transaction abort ratio.
while few threads executing transactions will under-perform in phases
with low contention. This paper presents the first application of adaptive

concurrency control to TM in order to dynamically adjust the number
of threads executing transactions concurrently. Four adaptive schemes
are implemented in DSTM2, a software TM implementation, and eval-
uated against a TM application with complex and realistic behavior.
Adaptive concurrency control complements existing contention manage-
ment policies that capture which transaction should be aborted when
two transactions conflict.

1 Introduction

The future of processor technology has been confirmed as multicore [1]. Main-
stream processor manufacturers have all changed their product line-up to multi-
core. Multicore processors set a new precedent for software developers: software
will need to be multithreaded to take advantage of future processor technology
[2] . Furthermore, given that the number of cores is only likely to increase, the
parallelism in the software should be abundant to ensure it improves performance
on successive generations of multicore processors.

Transactional memory (TM) [3] is a parallel programming abstraction that
promises to simplify parallel programming by offering implicit synchronization.
Programmers using TM label as transactions those portions of code that ac-
cess shared data, and the underlying TM implementation maintains atomicity,
consistency, and isolation. The TM implementation monitors the execution of
transactions and commits those that do not have access conflicts. For any two
transactions that have access conflicts, the TM implementation will abort one,
and let the other continue executing. Selecting the transaction to abort is deter-
mined by a contention management policy [4–6].

Performance of TM implementations has been the subject of intense investi-
gation in recent years. This paper studies techniques that complement contention
management policies to improve performance and resource utilization that can
be easily applied to TM implementations: adaptive concurrency control.



2

N
um

be
r 

of
 A

bo
rt

s

Time

N
um

be
r 

of
 A

bo
rt

s

Time

Constant Exponential

N
um

be
r 

of
 A

bo
rt

s

Time

N
um

be
r 

of
 A

bo
rt

s

Time

Decay Periodic

Fig. 1. Example patterns of contention fluctuation over the execution time of an ap-
plication.

Figure 1 shows example patterns of fluctuating contention (number of aborts)
that transactional applications may exhibit during execution. Running applica-
tions with such dynamic contention using a fixed number of threads can hurt
performance and be resource inefficient. Excessive numbers of threads during
phases with high contention hurt performance by increasing the number of con-
flicts, which in turn wastes resources through aborted transactions. Similarly, a
limited number of threads will under-perform in phases with low contention.

Existing TM research has not investigated dynamic contention levels for per-
formance or resource usage improvements. Adaptive concurrency control, which
dynamically adjusts the number of threads executing concurrently, aims to take
advantage of fluctuating contention to improve performance and resource uti-
lization.

This paper presents the first application of adaptive concurrency control to
TM. Four schemes are implemented in DSTM2 [7], a software TM implementa-
tion, and evaluated against a recently published TM application [8] with complex
and realistic behavior that exhibits fluctuating contention during execution. Us-
ing 8 threads, an average performance improvement of 38% and resource usage
improvement of 53% is achieved.

The rest of this paper is organized as follows. Section 2 introduces the four
adaptive concurrency control schemes. Section 3 introduces the experimental
platform and the application used to evaluate the schemes including a brief
description of the considered contention policies. Sections 4 and 5 present the
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results of using adaptive concurrency control on the application in terms of
performance and resource utilization, respectively. Section 6 discusses related
work, and Section 7 concludes the paper.

2 Adaptive Concurrency Control

Feedback-based control has a long history of application in a diverse range of
fields, inside and outside computing, to maintain some variable within a bounded
range. This paper targets Transaction Commit Ratio (TCR), the percentage of
committed transactions in the total number of transactions executed, as that
variable for transactional memory. Using TCR to control the number of threads
is motivated by the fact that TCR falls during phases with high contention,
which indicates the number of threads can be reduced, and vice versa.

Adaptive concurrency control removes the need for a user to specify the num-
ber of threads with which an application should be executed. This number is typi-
cally discovered through trial and error, is specific to a certain software/hardware
combination, may require reassessment every time the application is changed,
and may still be suboptimal if the amount of contention in the application fluctu-
ates during execution. Adaptive concurrency control simply adjusts the number
of threads to what is best suited for the application based on its TCR.

Finally, long transactions are a known difficulty for TM as they can be con-
stantly aborted by shorter transactions, leading to starvation. Adaptive concur-
rency control based on TCR can address this problem, when there are enough
long transactions executing concurrently to significantly reduce the TCR. This
will cause the number of threads to keep decreasing (possibly down to one thread)
until the TCR rises again, i.e. when the long transactions are committing.

Adaptive concurrency control has two parameters: the target TCR range,
and the sample interval over which the TCR is sampled in order to make a
concurrency control decision. Below, four adaptive concurrency control schemes
are described which vary in the strength of their response to the change in TCR.
Whilst the schemes are prototypes, they are loosely similar to multivariable PID
controllers [9] used in control theory.

2.1 SimpleAdjust

SimpleAdjust is the simplest scheme that increments the number of executing
threads by one if the TCR is above the upper TCR threshold. Similarly, the
number is reduced by one if the TCR is below the lower threshold. When the
TCR is within the target range, no change is made.

2.2 ExponentialInterval

ExponentialInterval extends SimpleAdjust with the aim of improving response
time to TCR changes. If a change to the number of threads is made then the
sample interval is halved, i.e. the next change, if necessary, will be made sooner.
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Conversely, the sample interval is doubled if no change has been made to the
number of threads. As before, the number of executing threads is only increased
or decreased by one.

2.3 ExponentialAdjust

ExponentialAdjust is another extension to SimpleAdjust that aims to improve
the response to a change in TCR. ExponentialAdjust keeps the sample interval
fixed, and calculates the adjustment to the number of executing threads based
on the difference of the sample TCR and the target TCR range. The further
the sampled TCR is from the target TCR range, the greater the adjustment.
The formula initially chooses to add one thread, and then doubles this value
for every 10% the TCR is outside the target TCR range. For example, using a
target TCR range of 30–60% and a sampled TCR of 80%, ExponentialAdjust
would add four threads.

2.4 ExponentialCombined

ExponentialInterval and ExponentialAdjust are two orthogonal approaches to
improving the responsiveness to the change in TCR. ExponentialCombined com-
bines the sample interval adjustment of ExponentialInterval, and the variable
thread adjustment of ExponentialAdjust, resulting in the most responsive adap-
tive concurrency control scheme.

3 Experimental Platform

This section begins by describing the Software TM (STM) implementation used,
and the modifications that enable the adaptive schemes to work. A brief overview
of the application used is given, followed by implementation details of the adap-
tive schemes. Finally, the hardware platform and the experimental configurations
used to gather results are presented.

3.1 STM implementation

The STM used for experimental analysis of the adaptive schemes is the Java-
based DSTM2 [7]. Although several STM implementations have been published
[10, 11], DSTM2 was chosen for its ease of use, popularity, and diverse set of
contention managers — analyzing the adaptive schemes against several con-
tention managers allows greater scrutiny. The contention managers are Backoff,
Aggressive, Eruption, Greedy, Karma, Kindergarten, Priority, and Polka. They
are described briefly in Section 3.2, for further details refer to [4–6].

A lightweight data sampling mechanism was implemented for DSTM2 to
gather data needed by the adaptive schemes to make their decisions. Threads
in DSTM2 collect simple statistics locally, and the data sampling mechanism
collects this data from the executing threads into a central location. Over several
test runs there was no noticeable loss in performance as a result of performing
the data sampling.
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3.2 Contention Managers

In DSTM2, a contention manager is invoked by a transaction when it finds
itself in conflict with another transaction or set of transactions. The contention
manager decides which transaction(s) should be aborted based on its policy.
There are eight contention managers (policies) implemented in DSTM2. Brief
descriptions of each contention manager follow.
Backoff gives the enemy transaction exponentially increasing amounts of time
to commit, for a fixed number of iterations, before aborting it.
Aggressive always aborts a conflicting enemy transaction.
Karma gives dynamic priorities to transactions based on the number of ob-
jects they have opened for reading, and aborts enemy transactions with lower
priorities.
Eruption, like Karma, assigns dynamic priorities to transactions based on the
number of transactional objects they have opened for reading. Conflicting trans-
actions with lower priorities add their priority to their opponent to increase the
opponent’s priority, and allow the opponent to abort its enemies, and ‘erupt’
through to commit stage.
Greedy aborts the younger of the conflicting transactions, unless the older one
is suspended or waiting, in which case the older one is aborted.
Kindergarten works by making transactions abort themselves when they meet
a conflicting transaction for the first time, but then aborting the enemy trans-
action if it is encountered in a conflict a second time.
Priority is a static priority-based manager, where the priority of a transaction
is its start time, that aborts lower priority transactions during conflicts.
Polka combines Karma and Backoff by giving the enemy transaction exponen-
tially increasing amounts of time to commit, for a number of iterations equal to
the difference in the transactions’ priorities, before aborting the enemy transac-
tion.

3.3 Application: Transactional Routing

This application is a recently published complex TM application [8] based on
Lee’s routing algorithm [12], one of the first complex applications designed to
stress TM systems. Routing is used to automatically map printed circuit boards
(PCBs) in electronic design. Routing is performed in two phases: an expansion
phase that searches outwards from the source point to the destination point on
the PCB grid, and a backtrack phase that marks the route onto the PCB by
going backwards from the destination to the source. Routing is attempted in
parallel, where the laying of each route is a transaction. This provides a mix of
long and short transactions.

The routes are read from a file that contains source and destination points
for each route as pairs of x and y coordinates, and then sorted in ascending
length order into a work queue used by the transactional threads. The circuit
routed by the adaptive schemes is shown in Figure 2. This is a realistic circuit
that contains 1506 routes and has been used in routing algorithm research.
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Fig. 2. Circuit routed by the TM application.

3.4 Adaptive System Configuration

DSTM2 maintains a thread pool, and when an adaptive technique decides to
decrease the number of existing threads it flags threads to pause rather than
terminating them. The threads poll the flag on each commit or abort of a trans-
action and, if set, exit their run loop safely. The adaptive schemes are never
made aware of the number of physical processors available.

As mentioned before the adaptive schemes need two parameters: sample in-
terval and target TCR range. Through experimentation these were set to a
sample interval of 20 seconds, lower TCR threshold of 30% and upper threshold
60%.

ExponentialInterval and ExponentialCombined dynamically change the sam-
ple interval, but this is bounded to a minimum of 4 seconds to prevent over-
sensitivity, and maximum of 60 seconds to prevent unresponsiveness.

3.5 Hardware Platform & Benchmark Configurations

The experimental platform used is an 8-way machine with four dual-core 2.4GHz
Opteron processors, 16GB RAM, running openSuSE 10.1, and all experiments
were run on 64-bit Sun Java6 build 1.6.0-b105 with the flags -Xms1024m -
Xmx4096m.

The benefit of the four adaptive schemes described earlier is evaluated against
non-adaptive — hereafter referred to as NonAdaptive — runs, where each run
consists of: adaptive scheme, contention manager, and initial number of threads:
1, 2, 4, or 8. Each run is repeated three times, and the best time is used.
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4 Performance Results

Table 1 shows the speedup of the adaptive schemes. The first observation is that,
on average, the adaptive schemes offer improvements in the range 11–18%. At 8
threads only one contention manager, Priority, suffers a performance loss with all
adaptive schemes, while the average performance improvement is at least 34%.
Furthermore, half of the contention managers experience significant performance
improvements; over 30% using Eruption, Greedy, and Karma, and astounding 2-
to 3-fold speedups using Backoff. This suggests that at this level of parallelism,
there are some phases of execution where the contention is high enough that
the adaptive schemes have a visible effect on performance. With fewer threads,
although such phases of high contention may have occurred, they were not sig-
nificant enough to cause a performance degradation using NonAdaptive, and in
turn show a performance improvement using adaptive schemes.

The large performance benefit of adaptive schemes with the Backoff con-
tention manager at 8 threads is also due to another problem that the adaptive
schemes help to mitigate: long transactions. As mentioned previously the appli-
cation sorts the routes in ascending length order, and as a result all the longest
routes get executed concurrently near the end of the application’s run. Long
routes are far more likely to conflict than short routes, and Backoff’s policy is
to give the opposing transaction some time to complete before aborting it. This
allows a situation to occur where two routes are long enough that their execu-
tion time leads them to aborting one another. The adaptive schemes responded
to the fall in TCR at that stage, and resulted in much better performance for
Backoff.

Aggressive, Kindergarten and Priority, at 8 threads, have the best raw per-
formance results for NonAdaptive, showing that these contention managers are
suffering the least from contention issues. Adaptive schemes improve the perfor-
mance of two of these (Aggressive and Kindergarten) by 1–10%, showing that
the adaptive schemes are not only useful when contention is significantly high.
Note that Aggressive and Kindergarten are improved by 6% when combined
with SimpleAdjust.

Another observation is that the adaptive schemes are interchangeable in
terms of average performance, with none offering significant advantages (14–
18%). The bottom row in Table 1 shows the speedup values of each technique
averaged over all its runs, and confirms that there is very little difference in
performance between the schemes. This is likely due to the application not ex-
hibiting large and frequent fluctuations in transactional contention, and thus not
allowing the schemes with faster responses to offer better performance.

The graphs also show that the performance of the adaptive schemes varies
depending on the number of threads with which the application is initialized,
though the schemes are still more stable than the NonAdaptive runs. Thus,
the adaptive schemes still require further tuning before the need to specify the
number of threads can be completely removed.
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SimpleAdjust ExponentialInterval ExponentialAdjust ExponentialCombined CM

Contention Manager 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 Average

Aggressive 0.94 1.24 0.94 1.06 0.92 1.13 1.00 1.07 1.01 1.25 1.07 1.10 1.08 1.18 1.03 1.04 1.07

Backoff 0.82 0.74 1.63 2.47 0.84 0.87 1.39 2.73 0.76 0.90 1.41 3.00 0.89 0.91 1.41 2.47 1.45

Eruption 0.72 1.14 1.12 1.42 0.82 1.13 1.03 1.39 0.81 1.21 0.95 1.49 0.83 1.21 0.93 1.52 1.11

Greedy 1.20 1.08 1.00 1.34 0.99 0.98 1.00 1.26 1.14 1.04 1.00 1.36 1.08 0.99 0.94 1.33 1.11

Karma 1.12 1.04 1.05 1.31 1.02 1.21 1.05 1.30 1.18 1.13 1.04 1.41 1.05 1.13 1.03 1.41 1.16

Kindergarten 1.12 1.18 0.99 1.06 1.13 1.07 0.91 1.02 1.30 1.22 0.99 1.05 1.35 1.14 0.99 1.01 1.10

Polka 0.96 1.23 0.97 1.08 1.01 1.03 0.94 1.09 1.07 1.09 1.08 1.24 1.04 1.02 0.92 1.14 1.06

Priority 1.32 1.09 1.05 0.98 1.13 0.95 1.04 0.98 1.21 1.08 1.04 1.00 1.23 1.05 1.04 0.98 1.07

Thread Average 1.02 1.09 1.09 1.34 0.98 1.05 1.05 1.36 1.06 1.11 1.07 1.46 1.07 1.08 1.04 1.36

Scheme Average 1.14 1.11 1.18 1.14

Table 1. Speedup over NonAdaptive for each adaptive scheme and each contention manager.
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5 Resource Utilization Results

The previous section presented the performance results of the adaptive schemes,
and showed that there was little difference in performance among them, and
thus, for brevity, this section only discusses the resource utilization of one of
the schemes, SimpleAdjust. The results also show that benefits were appearing
significantly at 8 threads. Thus, again for brevity, only the resource usage data
of the 8 thread runs is presented. Figure 3 shows the resource utilization of
SimpleAdjust compared to NonAdaptive for each contention manager. The data
shown is the number of threads executing concurrently at intervals during the
execution of the application.

All the graphs show an exponential decay, which is consistent with the ap-
plication’s operation: it lays routes in ascending length order so as the execution
progresses, the amount of contention is expected to increase, reducing the TCR.
The results show a clear improvement in resource usage, with an average reduc-
tion of 53% (see Table 2) and reductions in the range 41–82%. As mentioned in
the previous section, the performance has improved in all cases except for the
Priority contention manager.

Contention Manager Improvement (%) Contention Manager Improvement (%)

Aggressive 46 Backoff 82
Eruption 59 Greedy 57
Karma 53 Kindergarten 44
Polka 41 Priority 41

Table 2. Resource utilization improvement using SimpleAdjust compared to Non-
Adaptive using 8 threads. Average improvement: 53%

6 Related Work

This is the first paper considering adaptive concurrency control for TM, but
Marathe et al. [13] have investigated adapting other TM components. They
designed and evaluated a STM implementation, called ASTM, that adapts be-
tween eager and lazy data acquisition, and adapts between direct and indirect
object referencing. Their results showed that ASTM yields throughput that is
comparable with the best STM implementations across a range of benchmarks,
whereas previously certain STMs would be markedly better at executing cer-
tain benchmarks. Their techniques are orthogonal to ours, and could be easily
combined to produce a more sophisticated adaptive STM implementation. Both
their adaptive techniques and our adaptive techniques are general-purpose and
not application or implementation specific.
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Fig. 3. Resource usage during execution for SimpleAdjust, with each contention man-
ager.
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7 Conclusions

This paper has presented the first application of adaptive concurrency control in
TM with the aim of improving resource utilization and performance by reduc-
ing contention. Four adaptive schemes were implemented for DSTM2 [7] that
adjust the number of threads executing concurrently in response to a change in
the transaction commit ratio (TCR) with various response strengths. They are
compatible with, and complement, existing contention management policies.

Evaluation against a complex and realistic TM application showed significant
resource usage and modest performance improvements. At 8 threads, in the
average case adaptive concurrency control led to a performance improvement of
38% and resource usage improvement of 53%, and in the worst case performance
dropped 2% and resource usage improved 41%.

The adaptive schemes can be easily applied to other STM implementations
to take advantage of their benefits as they do not take advantage of any low-level
software- or hardware-specific optimizations.
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