
A First Insight into
Object-Aware Hardware Transactional Memory

Behram Khan, Matthew Horsnell, Ian Rogers, Mikel Luján, Andrew Dinn & Ian Watson
Advanced Processor Technologies Group

The University of Manchester, United Kingdom

ABSTRACT
The contribution of this paper is the first Hardware Trans-
actional Memory (HTM) where the object structure is rec-
ognized and harnessed. Our approach is similar to hardware
support of paged virtual memory using a virtually addressed
cache and a TLB, and is based on a cache hierarchy that al-
lows the addressing of objects by unique object identifiers.
The object-aware HTM allows cache overflows of uncommit-
ted data. It also enables a novel commit and conflict detec-
tion mechanism. In this preliminary evaluation, the Lee-TM
application exhibits overflows that in most previous HTMs
would have had to be handled by software, impacting on
performance. The simulation provides an insight into the
scalability characteristics of the proposed HTM, which uses
object and field granularity, lazy versioning and lazy con-
flict detection. For example, with 32 cores the broadcast of
write sets is at under 5% of the bus bandwidth, showing the
potential of object-aware HTM systems.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures

General Terms
Design, Performance

Keywords
Object-oriented programming, Transactional Memory

1. INTRODUCTION
The majority of new applications are developed using Ob-

ject-Oriented (OO) languages, with more than 60% relying
on managed runtime systems. At the same time, state-of-
the-art computer architectures are integrating more cores
on a single chip. In foreseeable generations this will reach
up to hundreds of cores in many-core architectures. The
challenge is to provide a parallel programming model that is
accessible for software developers, and enables the develop-
ment of computer architectures that scale in the many-core
era. To address this challenge we are interested in Trans-
actional Memory (TM) [3] as a programming model, rather
than simply as a replacement for locks. The difference is
that a truly transactional program may manipulate large

Copyright is held by the author/owner(s).
SPAA’08, June 14–16, 2008, Munich, Germany.
ACM 978-1-59593-973-9/08/06.

Figure 1: Hardware support for object addressing.

amounts of transactional data, have transactions which run
for long periods and create significant amounts of conflict.
These characteristics can invalidate assumptions made by
previous HTMs [3]: (a) rare overflows of hardware resources
dedicated to store uncommitted transactional data, e.g. [2],
or (b) aborts are infrequent, e.g. [4]. Therefore we inves-
tigate whether an object-aware HTM can overcome these
limitations and also reduce the demands on the network-on-
chip (information about changes to fields within an object
can potentially be communicated in a more concise form).
This paper presents the first object-aware HTM and consti-
tutes our first step on studying the HTM for a bus-based
system. note that it does not preclude execution of non-OO
TM languages. Further information about our work on TM
can be found in [1].

The motivation of previous schemes with direct hardware
support for OO languages was mainly to ease the problems
of memory management [6, 7]. Objects can be addressed
via an Object IDentifier (OID) and field offset. The OID is
translated using an Object Translation Table (OTT), a map
of OIDs to memory addresses. This indirect object repre-
sentation, although used in early implementations of OO
languages, has generally been abandoned to avoid the ineffi-
ciency of an extra load per memory access. This inefficiency
can be reduced by the provision of an object cache. The ad-
dresses issued by the core and the tags stored in the cache
are viewed as an OID and field offset (although the cache tag



Figure 2: Object-aware HTM.

may contain a subset of the offset if multiple fields are stored
per cache line). Cache hits on OIDs can clearly access the
field data directly. However, on a cache miss, it is necessary
to access memory via the OTT. This latter inefficiency can
largely be removed by the provision of a Translation Buffer
that caches recently used OID to memory address mappings
(see Figure 1).

2. AN OBJECT-AWARE HARDWARE
TRANSACTIONAL MEMORY SYSTEM

There are two major functions required to implement TM.
The first is the ability to handle both committed and uncom-
mitted data while a transaction is executing, memory ver-
sioning. The second is the detection of interference among
transactions, conflict detection. A third function required
for lazy versioning TM system is commiting that data gen-
erated by a transaction, transaction commit. To simplify
the descriptions of these three functions in our object-aware
HTM, we will assume an ‘all transactions all of the time’
mode of operation as in [2].
Transactional Object Versioning — The support for in-
direction can be adapted to provide additional support for
transactional objects. The basic mechanism involves keep-
ing a reference, in the local translation, both to the currently
committed version of the object and to a temporary version
where transactional state can be buffered. An outline of this
scheme is shown in Figure 2. Assume the object cache and
the Transaction Translation Buffer (TTB) are empty at the
start of a transaction. The TTB lines also keep the read set
(MRd) and write set (MWr) of the copy. These can simply
be single bits per field of the object. Reads of object fields
occur via the normal translation to the committed object,
copies are placed in the cache and the reads noted in the
read set map. If a write occurs to the field of an object not
yet written, an area of memory is allocated (Object A*) into
which modifications of the original object (Object A) can be
written. The address of this copy space is returned and is
written into the TTB as the copy pointer (Ptr A*). On the
first write a cache entry is made, any future reads and writes
to that field will obtain the current local object cache value.
An entry is also made in the write set.

Figure 3: Simulated object-aware HTM.

If, during the execution of a transaction, it is necessary
to displace a modified object field from the cache, that field
is written to the object copy (Object A*). If there is now
a subsequent read from that field, the decision whether to
read the original object or the copy can be made from an
observation of MWr. By this simple mechanism, we are able
to provide a lazy versioning mechanism and direct hardware
support for ‘virtualization’ of version information.

Observe that to commit an object, three steps are re-
quired: (1) any fields in the write set of the transaction
must be written from the cache to the object copy (Object
A*); (2) any un-modified fields should be copied into the ob-
ject copy (Object A*) from the committed object (Object
A); and (3) the pointer in the memory based OTT (Ptr A)
must be replaced by the pointer to the copy (Ptr A*).

Figure 3 shows the basic structure of a multi-core system
with a single Level 2 (L2) cache and memory unit which will
be used in the evaluation. The object-aware cores are con-
nected to a conventionally addressed L2 cache via a bus, and
through that to memory. In an extended scheme this can be
replaced by a more general on-chip network, as we do not
assume support for bus based cache coherence. Associated
with the memory is a translation unit (T-Unit) which pro-
vides a number of functions associated with the translation
of object addresses, object cloning and committing. At its
simplest when a core starts a transaction, it will flush its
caches so that dirty objects are not present.
Transaction Commit — In the absence of conflicts, a
transaction first flushes any modified lines from its object
cache into the allocated copy space. The commit has not
completed yet and other transactions can continue making
progress. Once the modified data has been flushed from the
cache, a request is made to lock the T-Unit. While the T-
Unit remains locked a committing transaction copies any un-
modified fields from the current committed objects into the
transaction’s copy objects, and then overwrites the pointers
in the OTT. During this procedure the T-Unit broadcasts
the OID and the write set of any modified objects. Although
a locked T-Unit cannot be accessed by other cores, requests
to the L2 cache or memory are satisfied for those cores using
locally cached translations.
Conflict Detection — To detect overlaps between the
write and read sets of transactions (i.e. conflicts) we have
chosen lazy detection. This is more compatible with our aim
to support a highly extensible communication structure.



Feature Description

Object size 128B.
L1 object cache 32KB, private, 4-way assoc., 32B line, 1-cycle access.
TTB 24KB, private, 4-way assoc., 12B lines, 1-cycle access.
Network 256-bit bus, split-transactions, pipelined, no coherence.
L2 cache 4MB, shared, 32-way assoc., 32B line, 16-cycle access.
TU 4MB, shared, 32-way assoc., 12B lines, 16-cycle access.
Memory 100-cycle off-chip access.

Application
read set/Tx write set/Tx Inst/Tx Overflow
Mean CoV Mean CoV Mean CoV Txs Lines

Lee-TM-t 117.5 2.9 78.8 3.1 373810.6 4.1 287 407255
Lee-TM-ter 15.8 1.4 78.8 3.1 373813.9 4.1 291 407683

Table 1: Simulation parameters & Lee-TM profile.

When a transaction is ready to commit, it will write its
changes to its copy object and then attempt to lock the T-
Unit so that any unmodified fields can be copied from the
currently committed objects and the pointers to the trans-
action’s copy of objects can be installed in the OTT. At
this point it will broadcast messages containing OIDs and
the write set of all changed objects. Observing cores (i.e.
cores executing a transaction that have received the broad-
cast message) must compare the read set of its OIDs in its
local TTB with the write set of any matching OIDs in the
broadcast message. Any overlap will cause an abort and
restart in the observing core.

The broadcast messages need only contain the OID and
the write set mask of the objects to be committed and thus
the bandwidth required should be far less than a scheme
which broadcasts all addresses which have been written to.
In our current implementation, the broadcast takes place to
all cores and bandwidth is therefore wasted if they do not
require the information. An alternative under investigation
is to attach a directory to the translation unit to keep track
of object sharing.

3. EVALUATION
As with the first versions of other HTM systems [4, 2],

this initial implementation of the object-aware HTM disal-
lows transaction suspension, migration or context switches.
To evaluate our object-aware HTM system a prototype plat-
form has been developed, comprising an event-driven simula-
tor with an IPC of 1 for all but memory operations (transac-
tional performance is essentially memory bound), and an as-
sociated static Java compiler and runtime system. Latency,
bandwidth and contention for shared resources is modelled
at a cycle-level for all caches, network and memory models
within the simulator. Timing assumptions and architectural
configurations are listed in Table 1. The compiler generates
Java bytecode that is then translated into machine code.
It is linked alongside the runtime system code. The run-
time system has been extended to support the allocation
of transactional object copies, which in the current system
are allocated in a reserved region of the heap space. We
exercise the proposed computer architecture using a trans-
actional version of Lee’s routing algorithm [5]; Lee-TM-t
(transactional) and Lee-TM-ter (early release).

Table 1 also presents transaction profile statistics for the
application used. We include both the arithmetic mean and
Coefficient of Variance (CoV) for read sets, write sets and
instructions per transaction. There is a significant varia-
tion in the length of transactions and hence the size of the
working sets (measured as number of objects). Lee-TM-t

Figure 4: Bus traffic (a) and execution time (b).

and Lee-TM-ter create large working sets that overflow the
32KB L1 object cache.

A breakdown of the total execution time and bus traf-
fic are shown in Figure 4 with the number of cores dou-
bling from 1 up to 32. The execution time is composed
of idle cycles (due to work imbalance), commit cycles (the
commit overhead), violation cycles (time spent executing
within aborted transactions) and finally busy cycles (the use-
ful committed work). Higher busy ratios are better.

Lee-TM-t shows a significant number of aborted transac-
tions, accounting for 25 to 73% of the total execution time
for 2 and 32 cores respectively. As reported in [5], Lee-TM-
ter exploits application knowledge using early release, which
reduces the conflicts and average read set to 15.8 objects,
and increases the speedup at 32 cores from 12.6 to 20.9.

The general trend is that the amount of idle time on the
bus decreases as more cores are added. The majority of traf-
fic growth is associated with four request types: L1 request,
TTB request, Object allocation and L1 Flush. L1 request and
L1 Flush can be distributed in a more extensible system to
avoid them becoming a bottleneck. TTB request and Object
allocation traffic is an artifact of our current implementa-
tion, as any requests to the T-Unit while locked, triggers
continual retries until the T-Unit is unlocked. The retries
can be easily eliminated by a back-off or queueing policy.

The remaining traffic generated in the system is associ-
ated with broadcasting of OIDs and write sets. The OID
broadcast traffic on the bus, which includes broadcast of the
OID and the write set map, is the minimum amount of infor-
mation that needs to be broadcast to other processing cores
to make them aware of potential conflicts. OID broadcast
accounts for less than 5% of the traffic even at 32 cores.

4. REFERENCES
[1] http://www.cs.manchester.ac.uk/apt/projects/TM/.

[2] L. Hammond et al. Transactional Memory Coherence
and Consistency. In Proc. of ISCA, 2004.

[3] Jim Larus and Ravi Rajwar. Transactional Memory.
Morgan & Claypool Publishers, 2007.

[4] K.E. Moore et al. LogTM: Log-based transactional
memory. In Proc. of HPCA, 2006.

[5] I. Watson et al. A Study of a Transactional Parallel
Routing Algorithm. In Proc. of PACT, 2007.

[6] I.W. Williams. Object-Based Memory Architecture.
PhD thesis, University of Manchester, 1989.

[7] G. Wright et al. An Object-aware Memory
Architecture. Science of Computer Programming,
62(2):145–163, 2006.


