

– 1 –

1. Summary

This is a joint proposal by leaders in asynchronous synthe-
sis and test methodologies at the Universities of Manchester,
Newcastle and Edinburgh. This project will lay the theoretical
and engineering foundations for novel algorithms to be incor-
porated in tools for the automatic synthesis of self-timed data-
paths.

2. Background

2.1 Industrial Context

Parameter variations for evolving CMOS processes go
from 25% on geometry and 10% on threshold voltage for
250nm, up to 45% and 15% for 70nm respectively [16]. Vari-
ability in non-conventional processes such as strained Si is
expected to be even greater. In general, variability forces
industry to rely on statistical timing analysis and speed bin-
ning of chips. A hard problem resulting from variability is tim-
ing closure. Typically the following overheads are added
within standard synchronous (globally clocked) design flows:
45% for worst-average case, 25% for signal integrity, 30% for
variability, 10% for clock skew compensation and 20% for
non-balanced stages. Moreover, measuring variability is unre-
liable because ring oscillators on the same die can exhibit up
to 15% delay variation. In practice, many designs can work at
least twice as fast as the sign-off speed.

The convergence of architectural, logical and physical
design [23] requires huge computational effort from the EDA
tools, which must optimise designs (on power, speed and area)
under the effect of parametric faults and variation in order to
achieve timing closure. Lack of precise data from emerging
processes, prevents designers from rapidly adjusting their
designs to exploit these new fabrication processes robustly.

Self-timed logic design methodologies, ignored until
recently, are now increasingly seen by industry [17] as inevi-
table complements to globally clocked systems. If well sup-
ported by CAD tools, such methodologies are seen as a way
of rapidly prototyping existing designs and IPs on new proc-
esses. Companies such as ARM, Boeing, Epson, FTL Sys-
tems, Intel, Infineon, MBDA, Philips and Sun are either
making products containing asynchronous technology or have
active research groups in the area. Start-up companies exploit-
ing self-timed technology include Fulcrum Microsystems,
Handshake Solutions, Theseus Logic, Silistix and Situs Logic.

2.2 Current research Activity

Much recent research has focused on the synthesis of self-
timed control circuits where methods and tools such as Petrify
[7], Minimalist [12] etc. have matured into versatile synthesis
environments capable of producing circuits often out-per-
forming manual designs of similar complexity. Unfortunately,
these tools are not suitable for datapath synthesis.

Balsa [10] and Tangram [1] synthesise complete systems
from behavioural specifications. However, the syntax-directed
nature of the compilation means that the resulting circuits are

somewhat inefficient and are not suited to high performance.
BESST [18] uses Petri-net based control, but synthesises data-
paths converted from synchronous synthesis tools and cannot
be directly applied to pipeline structures.

Martin’s work at Caltech on process decomposition using
CHP, a CSP subset for hardware specification, to target high
performance dynamic pipeline structures has influenced sev-
eral groups. The CAST System [26] synthesises behavioural
descriptions into dynamic Quasi-Delay-Insensitive pipelines.
A similar approach is also adopted by Fulcrum Microsystems.
CAST targets non-standard cells, which require either hand-
drawn layout or a cell compiler and are not compatible with
standard cell libraries. The TAST System [9] also synthesises
CHP specifications into QDI circuits, however, unlike CAST
the flow targets standard cells and manual functional decom-
position is required.

A less radical approach,

desynchronisation

[13, 3, 19]

,

employs

synchronous design compilers to convert synthesised
designs into self-timed implementations. Desynchronisation
techniques suffer because of the extra complexity required to
make synchronous datapaths self-timed. The structure of the
desynchronised datapaths is determined by conventional syn-
thesis tools; architectural techniques that can exploit the prop-
erties of self-timed designs and reduce the overheads, such as
early-evaluation, relative-timing or ultra-fine-grained pipelin-
ing, have limited applicability.

3. Description of the Proposed Research

3.1 Project Objectives

This work builds on over 10 year’s research undertaken by
the applicants into asynchronous system synthesis (Balsa)
[10], Petri-net based synthesis (Petrify, BESST) [7,18], test
approaches for asynchronous circuits [11] and preliminary
work into delay-insensitive combinatorial logic synthesis
[21]. However, rather than incremental advances on previous
work, we will deliver new theory, algorithms and case studies.

The focus of the proposed research will be the automated
generation of self-timed datapath structures such as pipelines
and low-latency combinational blocks targeted at standard cell
libraries. The framework will allow differing design styles
within a single flow. A designer will be able choose from a
range of implementations – from those that are completely
insensitive to delays within components to those which are
aggressively-timed using relative timing constraints based on
actual layout parameters. Design-for-test techniques and rela-
tive timing constraints will be fully exploited by incorporating
them into the datapath architecture. New algorithms will be
developed for self-timed datapath decomposition and imple-
mentation. The system will be more flexible (allowing logic
synthesis in both multivalued and binary domains) and more
automated than those based on Martin’s work and will be
more sympathetic to the exploitation of asynchronous archi-
tectures than approaches based on desynchronisation. The
measurable objectives of the work are:

1:

Algorithms for timing-aware synthesis of self-timed de-

SElf-timed DATapath synthEsis (SEDATE)

Case for Support: Proposed Research

– 2 –

signs

.

2:

A methodology for testable self-timed datapaths

.

3:

A synthesis flow for self-timed data paths

.

4:

A fabricated chip to evaluate the developed techniques.

3.2 Background

3.2.1. Timing Regimes

The execution of self-timed circuits is initiated by the
arrival of their operands, thus they are tolerant to variations in
propagation delay: operations wait until all data arrives. The
data-driven nature of self-timed circuitry adapts well to large
differences in arrival times of signals and several architectural
techniques for constructing self-timed datapaths such as

bit-
level pipelining

 [15] or

anti-tokens

 [2] exploit and even prop-
agate such differences.

Different self-timed design methodologies are character-
ised by the assumptions that are made about delays within cir-
cuit components. The

unbounded-delay model

(UDM)
assumes unbounded (but finite) propagation delays in circuit
components. The most robust of all self-timed methodologies
is the

delay-insensitive

 (DI) approach, where all circuit com-
ponents (including wires) adhere to the UDM. In general, this
is not practical so DI components are used for communication
between circuits employing weaker delay constraints.

Quasi-
Delay-Insensitive

 and

Speed-Independent

 models assume
unbounded-delays within gates but bounds on the propagation
delays of wires. In deep-sub-micron technologies, bounds on
wire propagation delay are not viable over large areas of sili-
con and so speed-independent and QDI methodologies are
usually limited to small circuit areas connected by DI commu-
nications. UDM circuits require that the environment of a cir-
cuit can determine that all internal transitions have taken place
– a process known as

indication.

A hierarchy of timing models
may be discerned – in descending order of safety (and com-
plexity):

strong-indication (SI) circuits

require all signal transitions
to be indicated explicitly, giving limited scope for optimisa-
tions as each gate output must indicate transitions on all of its
inputs. Recent work at MU [21] has developed synthesis tech-
niques for this model.

weak-indication (WI) circuits

allow transitions to be
acknowledged implicitly

.

Each transition indicates only a sub-
set of its input transitions and a set of transitions collectively
indicates all of its input transitions. Weak-Indication allows
variations in the logical complexity of Combinational-Logic
(CL) blocks to be exploited using techniques such as

early-
evaluation

, where certain “fast” outputs indicate the minimum
possible set of transitions to reduce their latency and “slower”
outputs indicate the remaining outputs. General synthesis
algorithms for this model have not yet been developed
although theoretical models based on Petri nets are already
available at NU [25].

relative-timed (RT) circuits

[20] exploit known ordering
constraints between signals to reduce the size and latency of
CL blocks. By applying ordering constraints between signals,
the complexity of circuits is reduced by limiting the number
of possible signal orderings that need to be considered in an
implementation. The ordering relations do not put absolute
bounds on the delay of signal transitions and so, crucially, cir-
cuits employing relative-timing still adhere to the UDM.

Many existing systems employ simple models[8], such as unit
gate-delays, to generate ordering constraints. In current
CMOS technologies such models are unreliable; post-layout
verification is required to ensure that all constraints are met.

monotonic circuits

[6] are hazard free circuits that assume
the delay of each CL block is less than the cycle time of the
circuit within its environment. Methods for the synthesis of
dual-rail monotonic circuits have been developed: the work
proposed here will allow arbitrary encoded CL circuits to be
synthesised.

3.2.2. Encoding

In order to implement self-timed datapaths, validity infor-
mation must be encoded within the data. Unordered codes
[24], where no code word is contained within any other, allow
the receiver of data to determine the arrival of valid data unam-
biguously. There are many unordered codes, however most
existing approaches adopt simple codes, such as dual-rail or 1-
of-4 codes, allowing easy mapping between conventional
binary functions. It has been shown [22] that conventional
state-encoding techniques may be employed to generate unor-
dered codes; such techniques have not been employed within
synthesis flows due to the lack of effective tools for synthesis
of self-timed combinational logic.

4. Work Plan and Methodology

A complete synthesis flow for self-timed datapath circuits
will be created that removes the need for conventional CAD
synthesis tools and allows datapath architectures to be created
that can exploit the properties of self-timed circuits. Many of
the architectural techniques used for self-timed pipelines are
applicable to all self-timed methodologies. The proposed syn-
thesis flow will encompass existing self-timed methodologies
allowing them to be applied across a single design. An evolu-
tionary approach to self-timed synthesis can then be adopted,
where designs are initially synthesised using robust delay-
models such as QDI. Once the circuit is synthesised, analysis
may be undertaken to determine areas (such as critical paths)
where timing constraints may be applied to increase the over-
all performance of the circuit

To achieve the project objectives, the research is split into
five work-packages, each of which has several sub-tasks.

WP 1: Datapath Decomposition

In this work-package, techniques for specifying the high
level data structure of the datapath will be developed. The ini-
tial phase of the synthesis procedure will decompose the
behavioural description into a set of smaller inter-operating
processes. The behaviour of the datapath and the relationship
between the processes will be modelled by Petri-nets where
places between events represent data-buses and tokens data-
values. Because functional decomposition abstracts binary-
values to tokens and events to value changes, it can be applied
regardless of the self-timed design methodology. At the same
time, Petri-net models with OR causality [25] will allow us to
capture early-evaluation techniques at a relatively high level
of abstraction.

Once the circuit is decomposed, each block can be ana-
lysed. With a wide variety of logic synthesis methods availa-
ble, the choice between them can be made on the basis of this
structural analysis – for example, early-evaluation blocks may

– 3 –

be used to generate relative-timing information to simplify
circuits, but in critical areas where the cycle-time is short,
more robust methodologies may be required.

To ensure that pipeline stages are balanced, it is possible
[15] to analyse the circuit at a high level to insert or remove
latches or to move logic through latches (slack matching). A
tool will be produced to automate this task.

The output of this stage will be a synthesised communica-
tion architecture using a range of pipeline templates and a set
of combinational logic block

macros

, to be encoded and syn-
thesised by software designed and implemented in WP 2.

Task 1.1: Functional Decomposition

Aim:

to develop techniques for decomposing RTL descrip-
tions into a set of communicating processes.

Method:

the datapath will be modelled using petri-nets allow-
ing the causal relationship between processes to be explored.

Deliverable:

algorithms for datapath modelling and decom-
position (D.1.1).

Risks:

Medium

 – efficient decompositions and modelling of
process parameters may be more complex than anticipated.

Task 1.2: Architecture Generation

Aim:

to perform high-level structural analysis of pipeline
structures and to assign appropriate self-timed protocols to
individual processes. Processes will be decomposed further
into synthesisable macros and communication architectures.

Method:

to use performance analysis to determine critical
parts of the circuit to choose self-timed methodologies for
processes.

Deliverables:

software to control the synthesis process based
on performance analysis (D1.2.1).

Risks:

High –

requires a deep understanding of the complex
behaviour of datapath architectures and self-timed methodol-
ogies. Input to this task is split across several sites.

Task 1.3: Structural Synthesis

Aim:

to synthesise the communication architecture between
combinational logic processes.

Method:

a range of pipeline templates, including anti-token
and NCL-X style architectures will be employed. Techniques
such slack-matching will be used to increase performance.

Deliverables:

a synthesis tool for pipeline templates includ-
ing automation of slack-matching techniques (D1.3.1).

Risks:

Low

– pipeline templates contain little data-dependent
complexity. Slack-matching techniques are well documented,
no public asynchronous tools have been released to evaluate
their effectiveness, but tools do exist for clocked systems.

WP 2: Datapath Synthesis

This work-package builds on preliminary work at Man-
chester [21] into delay-insensitive datapath compilation. In
order to take advantage of different DI-codes, processes are
initially specified using multi-valued variables and then
decomposed into synthesisable macros which must be
encoded. The most common methods of state encoding per-
form multi-valued symbolic minimisation on state-functions
to increase the efficiency of the encoding technique. It is there-
fore preferable to incorporate some form of multi-valued syn-

thesis within the design-flow. As multi-valued synthesis takes
place before encoding and so does not deal with individual
binary bits, the constraints required to ensure full indication
are much less severe than for conventional binary synthesis,
thus existing multi-valued synthesis systems such as MV-SIS
[4] may be used with little or no modification. The encoding
techniques however have to be modified to produce DI-codes.

A range of different combinational-logic synthesis tools
are required by the system in order to implement different self-
timed methodologies. There are very few combinational logic
synthesis systems for self-timed methodologies and so this is
an important area of new research. For each methodology
there are several different techniques that may be employed to
optimise circuits, such as layout aware synthesis, timing
driven synthesis and synthesis for test, which are of particular
importance in the self-timed domain due to the complexities
of testing and verifying timing constraints.

Task 2.1: Multi-Value Logic Synthesis

Aim:

to encode macros in a DI-code using modified synchro-
nous multi-level logic synthesis and state-encoding algo-
rithms.

Method:

existing multi-value logic synthesis (MVSIS [4])
will be used where possible; new state-encoding techniques,
based on existing state encoding technology developed.

Deliverable:

State encoding software for DI codes (D2.1.1).

Risks:

Medium

 – datapath architectures may be too complex
to apply efficient custom encodings. If modifications to multi-
level synthesis are required, much time will be needed to
become familiar with the algorithms employed.

Task 2.2: Binary Logic Synthesis

Aim:

to synthesise encoded macros in a variety of different
self-timed methodologies, with varying properties, such as
synthesis for testability.

Method:

existing algorithms will be modified to suit self-
timed methodologies as in [21]. Algorithms to determine test
coverage, or layout models to provide better heuristics for syn-
thesis procedure will be developed.

Deliverable

stand-alone software tools for synthesis of self-
timed circuits – WI synthesis (D2.2.1), relative-timing based
synthesis (D2.2.2) and monotonic synthesis (2.2.3). SI synthe-
sis has already been completed [21].

Risks:

High

 – synthesis algorithms may be complex or ineffi-
cient particularly when implementing synthesis for testability
techniques, or synthesis with relative-timing constraints

Task 2.3: Technology Mapping

Aim:

to map technology-independent circuits into defined
cell libraries, for various different self-timed methodologies.

Method:

modify existing algorithms to suit self-timed meth-
odologies.

Deliverables:

stand-alone technology mapping tools – SI
mapping (D2.3.1), WI mapping (D2.3.2), relative-timing
based mapping (D2.3.3) and monotonic mapping (2.3.4)
(Ph.D. topic).

Risks:

Medium

 – Should the Ph.D. not progress, logic synthe-
sis is technology independent allowing less efficient gate-
mapping to be used.

– 4 –

WP 3: Datapath Analysis

This work package relates the physical aspects of VLSI
design to the synthesis procedure. In deep sub micron technol-
ogies, interconnect delay has a great impact on system per-
formance and interconnect performance estimation models
(IPEM) [5] based on actual layout parameters must be inte-
grated into the highest level of synthesis. In the self-timed
datapath synthesis flow, IPEMs will be used within the archi-
tecture generation phase not only to increase the performance
of datapaths but also to create relative-timing constraints and
determine the appropriate self-timed methodology for each
CL block.

Once designs are synthesised, post-layout verification must
be undertaken to analyse the performance and behaviour of
the circuits. Timing constraints generated by the synthesis
procedure must be verified. A mixture of static and dynamic
timing analysis techniques will be employed; dynamic analy-
sis, being complex and time consuming, will be used only in
critical areas. Performance analysis is particularly important,
because most designers are unfamiliar with self-timed meth-
odologies. Feed-back from the behaviour of synthesised cir-
cuits is essential for educating such designers so that they may
create circuit specifications that may be best exploited by self-
timed implementations.

Task 3.1: In-synthesis Analysis

Aim:

to develop tools to influence the synthesis procedure by
analysing the physical attributes of candidate design choices.

Method:

create performance estimation models based on
technology parameters to generate accurate delays for archi-
tecture generation and binary synthesis procedures

Deliverables:

performance estimation models (D3.1.1).

Risks:

High – performance estimation models are widely
used although they are complex; analysing them for self-timed
synthesis techniques is difficult and has not been attempted.

Task 3.2: Post-Synthesis Analysis

Aim:

to develop tools to allow timing constraints generated
by the synthesis procedure to be verified. To generate tools to
analyse the performance of self-timed systems to provide
feedback to designers.

Method:

use static and dynamic analysis techniques for per-
formance and timing using layout information generated from
existing CAD tools and simulation engines.

Deliverables:

software for verification of relative-timing con-
straints for self-timed systems (D3.1.1). Performance analysis
– a Ph.D. topic – functional decomposition models (D3.1.2),
pipelines models (D3.1.3), and analysis results (D3.1.4).

Risks:

Medium/High – verification of generated timing con-
straints is essential to ensure correct operation of circuits
employing relative-timing. Accurate timing analysis is com-
plex, particularly in deep sub micron technologies. The Ph.D.
topic, performance analysis, is a difficult research area, but
failure (unless total) would not be fatal to the project.

WP 4: Design for Test

Efthymiou [11] shows that sequential devices such as C-
elements, often used in self-timed design, can be fully tested
by applying sets of test patterns without requiring each ele-
ment to be connected to a scan chain. By implementing a suit-

able design-for-test architecture throughout the datapath, and
by implementing testing-driven logic synthesis, it may be pos-
sible to achieve full test coverage. The macros within the
architecture will provide sufficient granularity for test pattern
generation.

Work on test coverage and automatic test pattern genera-
tion for self-timed combinational logic is already being under-
taken by Efthymiou under the EPSRC first grant scheme. The
work undertaken in this proposal will not only extend these
ideas and provide a suitable framework in which they may be
evaluated, but also approach the problem from a top-down
perspective. DfT permeates all levels of the design flow and
the work will feed into Task 1.2, Task 2.2 and Task 2.3.

Task 4.1: Structural DfT

Aim:

to incorporate design for testability techniques into
architecture generation and structural synthesis procedures.

Method:

Create a DfT architecture: break feedback loops,
insert scan latches into pipeline registers, decompose large
pipeline stages to increase testability

Deliverables:

DfT additions to WP 1 software (D4.1.1).

Risks:

Low

 – Structural DfT methods for synchronous cir-
cuits already exist. Some of these are applicable to asynchro-
nous circuits, but no general method nor any publicly
available tools exist for asynchronous circuits.

Task 4.2: Synthesis for Testability

Aim:

to develop synthesis and technology mapping software
using test coverage to select between possible alternatives.

Method:

implement scan paths within CL blocks, using a
range of metrics, such as area, performance etc, to minimise
the overheads of full testability. Apply a range of scan tech-
nologies to different self-timed methodologies.

Deliverables:

DfT additions to software packages of WP 2 for
binary logic synthesis (D4.2.1) and technology-mapping
(D4.2.2).

Risks:

High

 – self-timed synthesis techniques are complex
and the number of possible outcomes is severely constrained,
the use of synthesis for testability techniques may not give
much improvement over post synthesis techniques.

Task 4.3: Post Synthesis Testability and Test Pattern
Generation

Aim:

to analyse synthesised circuits in order to generate full
test coverage and test-vectors.

Method:

calculate test-coverage of combinational logic
blocks and insert scan-latches where necessary to achieve full
test coverage. Use conventional ATPG tools to generate full
test patterns for synthesised circuits.

Deliverables:

software to calculate test coverage of combina-
tional logic blocks and create test patterns for synthesised cir-
cuits (D4.3.1)

Risks:

Low

 – groundwork for this task is underway.

WP 5: Test Cases

The research work planned will deliver stand-alone tools.
However, for comparison with existing techniques, these tools
will be integrated into existing synthesis tools developed by
the investigators. The synthesis flow will be evaluated on sev-

– 5 –

eral examples and a test chip fabricated. Candidates are:

Conventional microprocessors

will allow the effectiveness
of self-timed architectures for pipelined systems to be evalu-
ated. An ALU is an ideal test case for evaluating early-evalu-
ation and relative-timing.

DES & AES encryption algorithms.

Strongly-indicating
DI methodologies may increase security of systems but the
performance of such systems is generally poor. Synthesising
encryption blocks within a unifying self-timed framework
would allow security-critical strongly-indicating components
to be implemented with full testability, but also would allow
the design to be partitioned so that non-security critical blocks
could be implemented in more efficient methodologies.

GALS

(Globally Asynchronous Locally Synchronous) Archi-
tectures. The requirements of GALS interconnects are very
different from other self-timed systems: combinational logic
requirements are relatively small and techniques such as
early-evaluation are not readily applicable. Timing optimisa-
tions may also be more complex due to the low cycle-time of
interconnect stages, thus either a robust self-timed methodol-
ogy must be employed or timing assumptions must be rigor-
ously verified.

Neural network processors

are ideal tests for self-timed sys-
tems due to their inherent concurrency and non-standard
(threshold logic) combinational logic functions. Research into
self-timed hardware implementation of neural-networks has
shown m-of-n delay-insensitive codes to be effective.

Task 5.1: Tool Integration

Aim:

to integrate the research results into Balsa and Petrify.

Method:

suitable APIs will be provided in stand-alone tools.

Deliverables:

enhanced Balsa and Petrify systems (D5.1.1)

Risks:

Low

 – we have intimate knowledge of both systems.

Task 5.2: Evaluation of Case Studies

Aim:

to choose suitable demonstrators and evaluate the
effectiveness of the research.

Method:

existing asynchronous implementations will be
examined to choose those with interesting properties as dis-
cussed above.

Deliverables:

demonstrator chip (D5.2.1)

Risks:

Medium

 – a number of self-timed examples already
exist, e.g. Balsa descriptions of ARM v5 and MIPS. Chip
manufacture is risky, but the groups are all experienced in suc-
cessful chip fabrication. Simulation is a fall-back position.

5. Project Management

5.1 Risk Management

The risks involved in each task have been considered.
Many of the tasks outlined in the proposal represent funda-
mental research into synthesis of self-timed circuits; they will
be useful as stand-alone tools to other researchers and industry
alike. Even if the initial ambitious goal of a complete system
is not fully realised within the project, the aims of novel
research in self-timed datapath synthesis will still be achieved.

5.2 Project Co-ordination

The principal investigators know each other well and have

collaborated previously. The interdependencies between the
task have been considered carefully and tasks allocated to
minimise risks. A supervisory board of PIs and industrial col-
laborators (FTL/Silistix/Cadence/Intel) will be established
and will meet quarterly with regular extended evaluation vis-
its. Use will be made of video conferencing technology for
weekly progress checks.

6. Relevance to Beneficiaries & Timeliness

The research will benefit companies involved in the design
and manufacture of microelectronic systems based on high-
end semiconductor technologies, in particular deep-submi-
cron CMOS, strained Si, SOI etc. It will be particularly bene-
ficial to companies transferring between IC processes facing
challenges of high parametric variability (e.g. temperature,
supply voltage, and on-die and die-to-die process variability),
and problems with timing closure (due to uncertainty in tim-
ing data, incompletely characterised cell libraries etc), yet
which require re-design and multiple re-spins. The semicon-
ductor industry is highly competitive: to remain ahead of the
field, companies must continually improve their products
requiring an increased re-use of IP at the RTL and logic level
which must be suitable for quick re-targeting to the new proc-
esses, combining increased reliability and high performance
with reduced size, cost and power consumption.

The development of better algorithms and tools for asyn-
chronous circuit design would thus be of great benefit to the
microelectronics industry in the future, and would help create
confidence amongst the CAD tool and test equipment ven-
dors, who still consider asynchronous design an exotic option
with little demand from practitioners. Continuing research in
asynchronous synthesis and testing will play an important role
in the training of tomorrow’s chip designers through its impact
on future undergraduate and postgraduate training. By contin-
uing to interact with such companies as Philips, Sun, Intel,
IBM and Atmel we aim to achieve a rapid transfer of the
knowledge gained within the project into industry. Silistix and
FTL would be immediate beneficiaries of the research.

7. Dissemination and Exploitation

The results generated by the project will be disseminated
via publication of academic papers in appropriate interna-
tional journals and international conferences. We will also
endeavour to disseminate the knowledge through industrial
channels, in particular through our existing contacts with sev-
eral UK and European based companies involved in the design
of IP cores, SoC and EDA tools for greater variability and
DfM. It is envisaged that the success of the project will lead
to further research, and industrial collaboration, and enhance-
ment to undergraduate and postgraduate curricula in the area
of electronic design and test. Tools developed will be made
available under an open-source licence to encourage early
adoption. Exploitable results arising from the programme of
work will be dealt with through the Universities’ Offices of
Technology Transfer and Industrial Liaison. Informal collab-
orations on asynchronous circuit synthesis and testing exist
with FTL Systems, Silistix, academic colleagues from Cam-
bridge, Politecnico di Torino, UPC Barcelona, DTU Den-
mark, TIMA-INPG, Grenoble. These and other links are
expected to result in the publication of the next editions of
technical reports on the status of asynchronous design in

– 6 –

industry and tools in academia and industry [26], as well a
textbook on asynchronous circuit synthesis in which the pro-
posers will play the key role. We wish to organise a school on
asynchronous design following the success of the ACiD-WG
2005 Winter School in Cambridge [26]. It is proposed that
these collaborations be continued and strengthened under this
research programme, and in the areas of information exchange
and research results dissemination. Throughout the duration
of the project we aim to liaise with various related research
groups and projects in the UK and abroad.

8. Resources

9. References

[1] C.H. van Berkel, J. Kessels, M. Roncken, R. Saeijs, F. Schalij,
“The VLSI-Programming Language Tangram and its Transla-
tion into Hanshake Circuits”,

Proc

EDAC91

, 1991
[2] C.F. Brej, ”Early Output Logic using Anti-Tokens”,

Proc.
IWLS

03, 2003
[3] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin,

C. Sotiriou, “Handshake protocols for de-synchronization”,

Proc ASYNC04

 ,2004
[4] D. Chai, J.-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko, R. Bray-

ton, “MVSIS 2.0 User Manual”,

Tech. Report

, Dept EE & CS,
University of California at Berkeley, 2003

[5] J. Cong, An Interconnect-Centric Design Flow for Nanometer

Technologies", Proceedings of the IEEE, vol. 89, No. 4, pp
505-528, April 2001

[6] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou.
“Coping with the Variability of Combinational Logic Delays”.
Proc. ICCD04 , pp. 505-508, Oct 2004.

[7] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A.
Yakovlev. “Petrify: a tool for manipulating concurrent specifi-
cations and synthesis of asynchronous controllers”, IEICE
Trans on Information and Systems, Vol. E80-D, No. 3, 1997.

[8] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
A. Taubin, and A. Yakovlev, “Lazy transition systems: applica-
tion to timing optimization of asynchronous circuits” Proc.
ICCAD98 1998.

[9] A.V. Dinh Duc, J.B. Rigaud, A. Rezzag, A. Sirianni, J. Fragoso,
L. Fesquet, M. Renaudin. “TAST CAD Tools”, Proc. of the 2nd
Asynchronous Circuit Design Workshop, 2002.

[10] D. Edwards, A. Bardsley, “Balsa: An Asynchronous Hardware
Synthesis Language”, The Computer Journal, vol 45, no 1, pp
12-18, 2002.

[11] A Efthymiou, J. Bainbridge, D. Edwards, “Adding Testability
to an Asynchronous Interconnect for GALS SoC” Proc. IEEE
Asian Test Symposium, 2004.

[12] R. M. Fuhrer, S. M. Nowick, "MINIMALIST: An Environment
for the Synthesis and Verification of Burst-Mode Asynchronous
Machines” Proc. 7th International Workshop on Logic and Syn-
thesis (IWLS), 1998.

[13] A. Kondratyev, K. Lwin, “Design of Asynchronous Circuits
Using Synchronous CAD Tools”, IEEE Design and Test of
Computers, Vol. 19, No. 4, 2002.

[14] A. J. Martin. “The Limitations to Delay-Insensitivity in Asyn-
chronous Circuits”, 6th MIT Conference on Advanced Research
in VLSI Processes, 1990.

[15] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R.
Southworth, U. Cummings, T. K. Lee, “The Design of an Asyn-
chronous MIPS R3000 Microprocessor”, Proc. ARVLSI, 1997.

[16] S. R. Nassif, "Modeling and Forecasting of Manufacturing Var-
iations", Proc ASP-DAC01, 2001.

[17] Semiconductor Industry Association "International Technology
Roadmap for Semiconductors, 2004 Update", http://
www.itrs.net/Common/2004Update/2004Update.htm, 2004.

[18] D. Shang, F.Burns, A.Koelmans, A.Yakovlev, F. Xia. “Asyn-
chronous system synthesis based on direct mapping using
VHDL and Petri nets”, IEE Proceedings, Computers and Dig-
ital Techniques, Vol. 151, No.3, May 2004, pp. 209-220.

[19] A.Smirnov, A. Taubin, M. Su and M. Karpovsky. “An Auto-
mated Fine-Grain Pipelining Using Domino Style Asynchro-
nous Library”, Proc. ACSD'05, 2005.

[20] K. Stevens, R. Ginosar, S. Rotem, “Relative Timing”, IEEE
Transactions on VLSI Systems, Vol 11 , No. 1, 2003.

[21] W. B. Toms “Synthesis of Quasi-Delay-Insensitive Datapath
Circuits”. PhD. thesis. Dept. of Computer Science, Manchester
University, 2004.

[22] V.I. Varshavsky, ed. “Self-Timed Control of Concurrent Proc-
esses: The Design of Aperiodic Logical Circuits in Computers
and Discrete Systems”, Kluwer Academic Publishers,1990.

[23] Ted Vucurevich, “Future EDA Challanges”, Keynote address,
IEE EDA Tools Forum, 2004.

[24] T. Verhoeff. “Delay Insensitive Codes - an Overview.” Distrib-
uted Computing Vol. 3, 1988.

[25] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno and
M. Pietkiewicz-Koutny. “On the Models for Asynchronous Cir-
cuit Behaviour with OR Causality”. Formal Methods in Sys-
tems Design (Kluwer), Vol. 9, No. 3, Nov. 1996, pp. 189-234

[26] http://www.scism.sbu.ac.uk/ccsv/ACiD-WG/

Work-package/Task/Deliverable Gantt Chart

Task Dependency Relationships (within design flow)

D 1.2.1

D 3.2.3

D 4.2.1

D 1.1.1

D 3.2.2 D 3.2.4

D 5.2.1

D 5.1.1

D 4.2.2

D 3.1.1

D 1.3.1

D 2.2.3

D 2.3.4D 2.3.3D 2.3.1 D 2.3.2

D 3.2.1

D 2.2.2

D 4.3.1

D 2.2.1

D 2.1.1

D 4.1.1

1.2 Architecture Generation

1.1 Functional Decomposition

WP 1: Datapath Decompostion

Newcastle

0 months 6 months 12 months 18 months 24 months 30 months 36 months

1.3 Structural Synthesis

Manchester

Manchester

WP 2: Datapath Synthesis

2.1 Multi−Value Logic Synthesis

Manchester2.2 Binary Logic Synthesis

Manchester

WP 3: Datapath Analysis

3.1 In−synthesis Analysis

3.2 Post−synthesis Analysis Newcastle

Manchester

Edinburgh

Edinburgh

5.1 Tool Integration

Edinburgh

MU, NU & EU

Newcastle

Manchester2.3 Technology Mapping

4.1 Structural DfT

4.2 Synthesis for Testability

4.3 Post Synthesis Testability

5.2 Evaluation of Case Studies

MU, NU & EU

WP 4: Design for Test

WP 5: Test Cases

PI + RA1

50% RA1

50% RA1

PI + RA2

Ph.D.

RA1

RA1

Ph.D.

RA1

100% RA1

PIs (All)

RAs (All)PIs

PI + RA1

RA1

RA2

Complete

D 1.1.1

D 3.1.1 D 1.2.1

D 4.3.1

D 4.2.1

D 4.3.1

D 2.1.1

D 4.2.2

D 2.3.1

D 2.2.2 D 2.2.3D 1.3.1

D 4.1.1

D2.2.1

D 3.2.1

D 3.2.2

D 3.2.3

D 3.2.4

D 2.3.3D2.3.2 D 2.3.4

Technology
Mapping

Technology
Mapping

Technology
Mapping

Structural
Synthesis

Design For Test

Multilevel
Synthesis

+ Encoding

Macro
Netlists

Test−Pattern
GenerationStructural Netlist

In−Synthesis
Analysis

Synthesis for Testability

Synthesis for Testability

Post−Synthesis DfT

Timing
Verification

Performance Analysis

Performance Analysis

Performance Analysis

encoding information

pipeline descriptions

structure
refinement

relative timing constraints
macro descriptions

macro descriptions

Binary Logic Synthesis

Technology Mapping

CAD Suite

relative tim
ing constraints

layout and simulation outputlayout and simulation output

Architecture
Generation

Decomposition
Functional

RTL Description

Strongly−Indicating
Synthesis

Weakly−Indicating
Synthesis

Relative−Timing
Synthesis

Monotonic
Synthesis

Technology
Mapping

