
Integrated Design Environment
for Reconfigurable HPC

Lilian Janin, Shoujie Li and Doug Edwards,

School of Computer Science, The University of Manchester,
Manchester M13 9PL, United Kingdom

{lilian.janin, shoujie.li, doug.edwards}@manchester.ac.uk

Abstract. Using FPGAs to accelerate High Performance Computing (HPC)
applications is attractive, but has a huge associated cost: the time spent, not for
developing efficient FPGA code but for handling interfaces between CPUs and
FPGAs. The usual difficulties are the discovery of interface libraries and tools,
and the selection of methods to debug and optimize the communications. Our
GALS (Globally Asynchronous Locally Synchronous) system design
framework, which was originally designed for embedded systems, happens to
be outstanding for programming and debugging HPC systems with
reconfigurable FPGAs. Its co-simulation capabilities and the automatic re-
generation of interfaces allow an incremental design strategy in which the HPC
programmer co-designs both software and hardware on the host. It then
provides the flexibility to move components from software abstraction to
Verilog/VHDL simulator, and eventually to FPGA targets with automatic
generation of asynchronous interfaces. The whole design including the
generated interfaces is visible in a graphical view with real-time representation
of simulation events for debugging purpose.

Keywords: hardware-software interface generator, asynchronous, GALS

1 Introduction

Using FPGAs to accelerate HPC applications involves a huge cost in time.
Developing efficient FPGA code is far from being the most time-consuming part of
the process. The main problem usually comes from handling the interface between
CPU and FPGA: figuring out which libraries to use and how to debug the
communications. In fact the difficulties are:

• the choice and description of the interface between the main software and the
FPGA implementation;

• how to setup an environment that enables the software programmer to co-
design and debug his HPC+FPGA application.

One feature that is usually difficult to achieve is the ability to design and debug the
HPC+FPGA application on a separate non-HPC host. This leads to tremendous
increases in efficiency as the programmer is free from the HPC constraints: remote
text-based terminal, delays for processes to be scheduled, and dynamic compute node

allocation. Of course, the debugging environment also needs, at some point, to be able
to target directly the HPC environment as specific bugs may appear at that stage only.
The design environment proposed here allows HPC designers to:

• Design and debug their whole design on a non-HPC host, by linking the
software code to Verilog or VHDL simulators;

• Remotely target the real HPC system while keeping debugging feedback in
the IDE;

• Move components one by one from software abstractions to hardware with
the new interfaces being automatically regenerated.

1.1 Background

In order to open up the FPGA market to software programmers, a variety of C-like
programming languages have appeared and are available to the HPC programmer [1]:
Mitrion-C [2], Celoxica with Handle-C [3], and Nallatech Dime-C [4] being the main
ones. These languages provide a higher level of abstraction than conventional
Verilog or VHDL and appear more familiar to software HPC developers, leading to
shorter development times. However, one of the real benefits of these languages is
that they are provided with complete integrated design environments, pre-configured
for specific HPC systems. These environments are able to handle the complexity of
interfacing CPUs to FPGAs themselves, freeing the user from what we believe is the
most difficult task.
The design environment presented in this paper provides similar benefits for
interfacing automatically the software running on CPUs to FPGA code described in
Verilog or VHDL. Programming in Verilog and VHDL also has some desirable
properties: code efficiency and control of the implementation details are sometimes
necessary as the FPGA clock runs ten times slower than CPU clocks. Although these
HDL languages may require significantly longer development times, their availability
for small efficient accelerators is important. With experience, shorter design times can
also be achieved as pre-programmed IPs and open-source modules are also available
for re-use in these hardware languages.

2 GALAXY Design Framework

The GALAXY framework [5] was originally designed for GALS (Globally
Asynchronous Locally Synchronous) embedded system design. It aims at providing
an environment of development for iterative design and prototyping of embedded
systems where the circuit designer can refine the system description from high levels
of abstraction to lower levels, and from software simulation to FPGA prototyping.
Components are handled independently at any level of abstraction, targeting any
simulator, and the communication interfaces between components, between
abstractions and between simulators are automatically regenerated for each
simulation. Through the use of various FPGA prototyping boards, we discovered that
the GALAXY IDE and tools could help greatly in the task of HPC acceleration.

The framework provides a graphical IDE where software and hardware components
are represented as entities (Fig. 1). Each of these components can have multiple
implementations (for example an FFT component can have a software
implementation in C calling a library and a hardware implementation in Verilog) and
implementations can be switched from one to another at the click of a mouse.
For each component the user selects a “simulation target” (where simulation actually
includes anything from software execution to FPGA boards) dependent on its source
code description: a C description can be executed on host, whereas a Verilog
description can be simulated in a Verilog simulator or synthesized and sent to an
FPGA. If C synthesizers are available and added to GALAXY’s tool flow system,
Verilog simulators and FPGA targets become automatically available to components
described in C (this is also applicable to any other language).
When two connected components are set to different simulation targets, the
communication links are replaced by asynchronous components following a delay-
insensitive protocol. This allows the user to experiment with several architectures
before optimizing the critical paths, and appears to be an efficient way to proceed.

Fig. 1. GALAXY Integrated Design Environment – Dual Graph View.

2.1 The ASIP (Asynchronous-Synchronous IP) XML format

ASIP is a standard component-based description format describing the tree of
components making up a circuit. It was developed as part of the GALAXY project.
Starting from a top-level component, each component is described in a standard
hierarchical way, with a specification of its interfaces, sub-components and
connections between sub-components. The leaf components contain a description of
their associated source code in any HDL.

Fig. 2. GALAXY Tool Flow View showing back-end tools.

What makes ASIP interesting is a set of special constructs, which define the
assumptions made to be able to refine a system into asynchronous parts and the
constraints on the system description these assumptions impose:
• Asynchronous channels: In the description of the interface and connections, the
standard wire and TLM socket types are available, but also an asynchronous channel
type. Asynchronous channels are associated to asynchronous protocols. This new
channel type allows further design exploration, where the designer can try out various
protocols, for example to check for link efficiency. Protocol adapters are
automatically added in the GUI where necessary, clearly showing to the designer
where bottlenecks may arise.
• Multiple implementations: For each ASIP component, the designer can provide
multiple implementations. They must describe the same behaviour and share the same
interface, but can be in different languages and at different levels of abstraction.
• Multiple interfaces + transactors: This feature was brought in after long
discussions, and makes the GALAXY framework unique: for each ASIP component,
the designer can provide multiple interfaces! The problem is that other components in
the system might expect one particular interface, and letting the user switch a
component’s interface could invalidate some connections. For this reason, some
constraints apply: proper use of multiple interfaces can be achieved by providing
interfaces that are functionally equivalent. The ASIP format encourages this by
requiring transactors between the various interfaces. In practice, interfaces are
supports for the same communications at different levels of abstraction, with/without
debugging signals, and to support synchronous-asynchronous IP wrapping in the
GALS context.
An ASIP component can therefore have many implementations and multiple
interfaces. Adapters between the different interfaces are included in the ASIP
description as transactors, letting the designer select an interface at one level of
abstraction for the IP, and a different level of abstraction for its implementation. For
example, if an IP is included in a system using its pin-level interface, and the architect
needs to simulate it at the SystemC TLM level, an inconsistency is raised and the
transactor “pin-level to TLM” is automatically inserted to simulate the component
using its TLM description and adapt the transactions to the pin-level interfaces of the
connected components. The ability to provide and switch easily between multiple
implementations and interfaces, together with the presence of transactors between
interfaces, allow a very efficient design space exploration, where IPs can be switched
between levels of abstraction in a single operation. In most cases, the transactors can
even be automatically generated, for example when TLM sockets are mapped to
asynchronous channels.

2.2 GALAXY Back-end Tool Flow

ASIP descriptions are processed by a collection of back-end tools to achieve the
regeneration of interfaces for transparent co-simulation for every change in the system
architecture. The ASIP flow is as follows (see also an example with four simulation
targets in Fig. 2):

• Asip-add-cosim-comps inserts co-simulation components in the ASIP file. Each
time two connected components are set to be simulated on a different simulator,
the connection is split into two and a co-simulation component is added at each
end. The co-simulation components behave as if they were wirelessly
transferring the data to each other. After this step, the graphs of components
corresponding to each simulator are fully disconnected from each other, even
though they are still all contained in the same ASIP file. In a HPC environment,
these components are programmed to use the HPC communication libraries
provided with the FPGA system.

• Asip-target-split creates one ASIP file per simulator. All the components
targeting a specific simulator are copied to the corresponding file. Incidentally, a
flattening of the ASIP structure is also performed at this stage. All the hierarchy
is removed and each resulting file is made of one top level components
containing directly all the leaf components.

• Each ASIP file is then processed by the code generators asip2systemc, asip2v,
asip2vhdl, asip2asm or asip2bash to generate the top-level source code in an
appropriate language for the selected simulator. Keeping the same structure as
the input ASIP file, the generated source code is a top-level code instantiating
and linking together the various IP source codes. Due to the ASIP flattening
occurring in asip-target-split, the generated source code is actually a top-level
procedure instantiating user-written modules. Most of the time, intermediate
modules are created to rename and reorder the signals in order to match the user-
defined component interfaces.

• Finally, each generated source code undergoes its own flow as shown in each
branch in Fig. 2, specific to the targeted simulator. It can be compiled,
synthesized, placed and routed, sent to FPGAs, executed on the host or
interpreted. The information about the available tools is stored in the Tool Flow
System.

2.3 Tool Flow System: Execution of Tool Flows

The GALAXY IDE also serves as a front-end to launch all the tools, internal back-
end tools or external tool flows. A tool flow window allows the user to control these
tools, and an execution window provides means of interaction with these tools.
The Tool Flow System is the gateway to link external (vendor or open-source) tools
to the GALAXY framework. It has a well-defined interface to facilitate the
integration of new tools and tool flows. Its aim is to generate, from the knowledge of
available tool flows, an execution sequence of tools to go from the ASIP and IP
source codes to the simulators. To achieve this, the tool flow database is made of
three main sections:

• available file formats (including how to recognise them, e.g. from their
extension);

• available simulators, specifying which input file formats they require;
• available translators (tools able to convert one file format into another, such

as compilers and synthesizers), with their required input and produced output
file formats.

From this information, a graph of tools and file formats is created (Fig. 3), and
appropriate execution sequences are generated when the user desires to “simulate file
X with simulator Y”.

2.4 Ability to design and debug on a separate non-HPC host

The GALAXY IDE is usually running on a host with graphical display, therefore not
directly on the HPC system. In the first stage of the design process, the HPC designer
can design and simulate the HPC application on the non-HPC host, giving him the
advantage of faster access and direct control over the hardware simulators. This leads
to tremendous increases in efficiency, as the programmer is free from the HPC
constraints: remote text-based terminal, delays for processes to be scheduled, dynamic
compute node allocation.
A good way to run and debug the system on a single non-HPC host is to have the
FPGA code simulated in a Verilog simulator, or even better: a graphical debugger like
ISE.
However, parallel HPC code cannot always be compiled and executed on any host,
due to the links to MPI libraries, but a non-MPI test harness is usually an acceptable
way to start the design of the FPGA code. Of course, the debugging environment also

Fig. 3. GALAXY Internal and External Tool Flow.

needs, at some point, to be able to target directly the HPC environment, as specific
bugs may appear at that stage only. This is achieved by the Tool Flow System after
configuration of scripts to handle the transfers between the host and the HPC system.
Scripts can include the ability to access HPC systems behind gateways and submit
jobs in queues.

3. CONCLUSIONS AND FURTHER WORK

The GALAXY framework, originally designed for GALS embedded system design,
happens to be mature for the design of accelerated HPC applications. It allows HPC
programmers to apply an iterative strategy for the use of HPC FPGA boards. They
can design and debug their whole design on a non-HPC host, by linking the software
code to Verilog or VHDL simulators, and then remotely target the real HPC system
while keeping debugging feedback in the IDE. Components can be moved one by one
from software abstractions to hardware with the new interfaces being automatically
regenerated.
The generated asynchronous interfaces happen to be efficient enough for a first
version of the user’s HPC application. They allow the user to experiment with several
architectures before optimizing the critical paths, and appear to be an efficient way to
proceed.
Although no benchmark is available yet, the GALAXY framework presented in this
paper has been augmented for HPC by using a Cray XD1 with Xilinx Virtex 4
FPGAs. The Xilinx tool flow has been integrated in the tools, and we are now
working on a demonstrator.

Acknowledgements

This project is funded by the European Seventh Framework Programme (FP7).
We would like to express our thanks to the CCLRC Daresbury Laboratory and their
great team for providing access to their Cray XD1.

References

1. R. Wain, I. Bush, M. Guest, M. Deegan, I. Kozin and C. Kitchen , “An overview of FPGAs
and FPGA programming; Initial experiences at Daresbury”, Computational Science and
Engineering Department, CCLRC Daresbury Laboratory, 2006.

2. S. Mohl, “The Mitrion-C programming language,” Mitrionics Inc., 2006. [online].
Available: http://www.mitrionics.com/

3. Celoxica Ltd. http://www.celoxica.com
4. Nallatech Dime-C. http://www.nallatch.com
5. http://www.galaxy-project.org

