
The TERAFLUX Project: Exploiting the DataFlow Paradigm
in Next Generation Teradevices

Marco Solinas1, Rosa M. Badia2, François Bodin3, Albert Cohen4, Paraskevas Evripidou5, Paolo Faraboschi6,
Bernhard Fechner7, Guang R. Gao8, Arne Garbade7, Sylvain Girbal9, Daniel Goodman10, Behran Khan10, Souad

Koliai8, Feng Li4, Mikel Luján10, Laurent Morin3, Avi Mendelson11, Nacho Navarro2, Antoniu Pop4, Pedro
Trancoso5, Theo Ungerer7, Mateo Valero2, Sebastian Weis7, Ian Watson10,

Stéphane Zuckermann8, and Roberto Giorgi1
1 Dip. di Ingegneria dell’Informazione e Scienze Matematiche, Università di Siena, Italy. {solinas, giorgi}@dii.unisi.it

2 Barcelona Supercomputing Center, Spain. {rosa.m.badia, nacho, mateo.valero}@bsc.es
3 CAPS Enterprise, France. {francois.bodin, laurent.morin}@caps-entreprise.com

4 INRIA, France. {albert.cohen, antoniu.pop}@inria.fr
5 University of Cyprus, Cyprus. {pedro, skevos}@cs.ucy.ac.cy

6 Intelligent Infrastructure Lab, Hewlett Packard, Barcelona, Spain. paolo.faraboschi@hp.com
7 University of Augsburg, Germany. {bernhard.fechner, arne.garbade, theo.ungerer, sebastian.weis}@informatik.uni-augsburg.de

8 University of Delaware, Delaware, USA. {szuckerm, koliai}@eecis.udel.edu, ggao@capsl.udel.edu
9 THALES, France. sylvain.girbal@thalesgroup.com

10 University of Manchester, United Kingdom. mikel.lujan@manchester.ac.uk, watson@cs.man.ac.uk
11 Technion, Israel. avi.mendelson@tce.technion.ac.il

Abstract— Thanks to the improvements in semiconductor

technologies, extreme-scale systems such as teradevices (i.e.,
composed by 1000 billion of transistors) will enable systems
with 1000+ general purpose cores per chip, probably by 2020.
Three major challenges have been identified:
programmability, manageable architecture design, and
reliability. TERAFLUX is a Future and Emerging Technology
(FET) large-scale project funded by the European Union,
which addresses such challenges at once by leveraging the
dataflow principles. This paper describes the project and
provides an overview of the research carried out by the
TERAFLUX consortium.

Keywords—TERAFLUX; dataflow; programming model;
compilation; reliability; architecture; simulation; many-cores;
exascale computing; multi-cores.

I. INTRODUCTION
Continuous improvements in silicon manufacturing

technology, such as FinFET [1] transistors and 3D-die
stacking [2], start showing a tremendous impact on the near
future computer systems. New silicon technology
generations continue to double the number of transistors in
every generation, but with no significant frequency
enhancements and with the cost of power density. These
facts open the doors for new chips (that we call teradevices)
with a huge number of transistors (for current ITRS [3]
projections, 1 Tera or 1012 transistors) with the possibility of
exploiting the large amount of parallelism in different ways.

In future exascale machines, the number of general
purpose cores (i.e., compute elements) per die will exceed
those of current systems by far. This suggests a major change
in the software layers that are responsible of using all such
cores. The three major challenges regard programmability,
reliability and complexity of design. Also, a new Program
eXecution Model (PXM) [6][49][12] seems suited in order to
address such challenges.

Given the large number of transistors and the diversity in
the requirements for different applications, it is natural to
expect that these massively parallel (or concurrent tera-
device) systems will be composed of heterogeneous cores.
Thus, programmability of such large-scale systems will be a
major challenge. Moreover, such large systems are expected
to become more and more susceptible to failures, due to the
increasing sensibility to process variations and
manufacturing defects. Thus, this extreme scale of device
integration represents a second major concern, in terms of
reliability, for future many-core systems. Finally, the
software industry is lagging behind as general purpose
applications cannot take advantage of more than a handful a
number of cores compared to the larger degree of parallelism
offered by the current and future processors. Starting from
this premise, there is the need for new ways to exploit the
large parallelism offered by future architectures as expected
to be a reality beyond the year 2020.

The dataflow concept is known to overcome the
limitations of the traditional control-flow model by exploring
the maximum parallelism and reducing the synchronization
overhead. As recalled by Jack Dennis [4], dataflow is “A
Scheme of Computation in which an activity is initiated by
presence of the data it needs to perform its function”. The
dataflow paradigm is not new, but recently it has met mature
silicon technology and architectural models to take
advantage from the large intrinsic parallelism.

TERAFLUX [43] is a Future Emerging Technologies
(FET) large-scale project funded by the European Union.
The aim is to exploit the dataflow paradigm in order to
address the three major challenges presented above (i.e.,
programmability, reliability, and manageable architecture
design). Since we are targeting 1000+ core systems, the
dataflow paradigm enables us to use the increased degree of
parallelism which emerges in future teradevices.

2013 16th Euromicro Conference on Digital System Design

`/13 $26.00 © 2013 IEEE

DOI 10.1109/DSD.2013.39

272

The rest of the paper is organized as follows. Section II
provides a general overview of the project. Remaining
sections are focused on describing the concepts together with
the major achievements resulting from our research activity.
In particular, Section III describes the possible applications
based on the OmpSs programming model, while Section IV
details a further possibility of using a productivity language
such as Scala thanks to a dataflow runtime called DFScala.
Another common layer (OpenStream, presented in Section
V) is used for mapping feed-forward dataflow into lower-
level dataflow threads as expressed by the T* Instruction Set
Extension, described in Section VI, together with the
architecture of our target system. Section VII describes the
Fault Detection Units (FDUs), which provide fault
management and fault detection through monitoring
techniques and redundant execution of dataflow threads. The
experiments are integrated into a common simulator based
on the HPLabs COTSon [5], presented in Section VIII.
Finally, Section IX introduces the codelet model, while
Section X concludes the paper.

II. GENERAL OVERVIEW OF TERAFLUX
To investigate our concepts, we use dataflow principles

at any level of a complete transformation hierarchy, starting
from general and complex applications able to load properly
at teradevice through programming model, compilation tools,
reliability techniques and architecture. Fig. 1 shows the
TERAFLUX layered approach.

Abstraction Layer
and Reliability Layer

Compilation
Tools

Source code

Programming
Model

Data
dependencies

Transactional
memory

Teradevice
hardware
(simulated)

Threads

Virtual CPUs

Extract TLP Locality optimizations

T1

T2T2

possibly
1,000-10,000 cores...VCPU VCPU VCPU VCPU VCPU

PC PC PC P PCPU PCPU PCPUPCPUPC PCPU PCPUPCPU

APPLICATIONSAPPLICATIONS

Fig. 1 The TERAFLUX Transformation Hierarchy.

Different layers allow to transform applications source
code into a dataflow-style binary, and to execute it on the
target architecture. The top level of this hierarchy is
represented by real world applications, which allow us to
stress the underlying teradevice hardware. In the
TERAFLUX project, implicit parallelism refers to the set of
constraints on concurrent execution of threads, and the
expression of these constraints in the source code. These
constraints can be dependences, atomic transactions,
synchronization barriers, privatization attributes, memory
layout and extent properties, and a wide variety of hints. An

explicitly parallel program, on the other hand, is made of
concurrency constructs making the thread creation,
termination, and possibly some target-specific aspects of the
execution explicit [22][23][24].

A dataflow oriented programming model allows
expressing data dependencies among the concurrent tasks of
an application. In the dataflow terminology, such concurrent
tasks are called dataflow threads, or simply threads when
clear from the context. Nevertheless, applications use large
data structures with in-place updates, for efficient memory
management [18][19][52] and copy avoidance. Such
applications require a mechanism to express the non-
interference of concurrent updates to shared data. To meet
such need, we selected Transactional Memory (TM), as the
most promising programming construct and concurrency
mechanism for specifying more general forms of
synchronization among threads, while preserving the
composability of parallel dataflow programs and promising a
high level of scalability [38]. We achieve this by defining a
specific layer for studying the integration between the TM
and dataflow programming models [25][28][54].

Besides the programming model, implicit parallelism
must be exploited by a compilation tool-chain [40][57][58],
being able to convert dependences and transactions, into
scalable target-specific parallelism. It is also responsible for
properly managing the inter-node communications and a
novel memory model. Compiler effectiveness is guaranteed
by the implementation of a generalization of the state of the
art algorithms to expose fine-grained dataflow threads from
task-parallel OpenMP-, StarSs- or HMPP-annotated [61]
programs. The algorithm generalization leverages a new
dependence-removal technique to avoid the artificial
synchronizations induced by in-place updates in the source
program [34][51].

Our goals in designing an efficient compilation tool-
chain are to capture the important data reuse patterns, to
optimize locality and reduce communication bandwidth, and
to provide compiler support for transaction semantics
embedded into a dataflow programming model. Both
productivity and efficiency programming layers are
supported. Compiler directives are used to lower the
abstraction penalty of the productivity layer, and to exploit
parallelism and locality explicitly.

As mentioned in the Section I reliability will be a major
concern for future many-cores architectures. With the aim of
limiting the impact of faults in the target architecture,
dedicated hardware modules are devoted to monitor the
healthiness of the system, and drive specific counteractive
measures [29][30]. To achieve this goal in TERAFLUX, we
focused on inter-core fault detection techniques using Fault
Detection Units (FDUs). We considered different FDU
variants (push, pull, alert mechanisms for heartbeat
messages), FDU implementations, and interfaces.

The design space exploration finally resulted in a
proposal of a functional FDU specification based on the
MAPE (Monitoring, Analysis, Planning, and Execution) [42]
cycle of Organic Computing. Abstract message interfaces of
the FDU to all communication units (e.g., FDU-core, FDU-
operating system, etc.) were specified for push, pull, and

273

alert messages. Core healthiness is monitored by exploiting
currently available performance monitoring and machine
check hardware features (e.g., machine check architecture of
current AMD/Intel processor families).

System resources are managed at the highest level by the
operating system. The main objective of the operating
system is to balance the workload among the nodes while
keeping an acceptable level of fault tolerance. The control of
scheduling and the resource managing are hierarchically
performed: distributed FDUs are used to guarantee the
characteristics of the basic nodes by accessing the different
resources such as the cores, and local memories.

Similarly to the FDU, the other resources of the
TERAFLUX system are hierarchically organized, mainly
resembled to a set of nodes interconnected with each other.
Each node contains a hardware structure for scheduling the
medium/fine-grain dataflow threads generated by the
compilation tool-chain, and execute them. The TERAFLUX
architecture is designed in order to support the programming
and execution models developed by the higher level layers.
At this point the project focuses on defining the basic
architecture modules as well as the necessary instruction
extensions to support the programming and execution model.
The basic architecture consists of a number of multi-core
nodes. We are ISA agnostic, in principle, but we wanted to
demonstrate our concept with a well-known ISA such as the
x86-64. The nodes are interconnected through a Network on
Chip (NoC). TERAFLUX supports a global address space
across the whole system. Each node contains a portion of the
global memory. There is no need for traditional coherency
because the dataflow model is based on the single
assignment semantics. Different memory types (e.g. shared
and non-shared) are defined as to store particular data and
metadata of the programs. Finally, there are custom hardware
modules that are added to the cores and nodes to actively
support dataflow thread scheduling and reliability monitoring
(TSUs or Thread Scheduling Units). An abstraction software
layer is defined to allow interfacing the operating system and
the underlying hardware.

The aim of the lowest layer of the TERAFLUX
hierarchical approach is to the provide software and
hardware infrastructures capable of simulating all the
modules composing the target dataflow system. In
TERAFLUX we rely on a state of the art many-core
simulation infrastructure (HPLabs COTSon [5]), which is
able to scale up the number of cores to two orders of
magnitudes larger than what is currently available. This
simulation infrastructure represents a common point for all
the partners, allowing them to test their research ideas and
integrating them in a common platform.

III. PROGRAMMING DATAFLOW ARCHITECTURES
 WITH TASK-BASED APPROACH

One of the key aspects of the TERAFLUX project is the
proposal of a new programming and execution model
[32][33][45] based on dataflow instead of traditional control-
flow. Dataflow is known to overcome the limitations of the
traditional control-flow model by exploring the maximum
parallelism and reducing the synchronization overhead. The
StarSs programming model [8] provides a paradigm for the

development of applications following the sequential
programming paradigm but based on an execution model
that exploits the inherent concurrency of the applications
taking into account the existing data dependencies.

The code is developed in a standard, sequential language,
such as C or Fortran. On the user’s side there are no explicit
parallel constructs, like in thread or stream models.

#pragma omp task inout ([TS][TS]A)
void spotrf (float *A);

#pragma omp task input ([TS][TS]T) input ([TS][TS]B)
void strsm (float *T, float *B);

#pragma omp task input ([TS][TS]A,[TS][TS]B)\
inout ([TS][TS]C)

void sgemm (float *A, float *B, float *C);

#pragma omp task input ([TS][TS]A)\
inout ([TS][TS]C)

void ssyrk (float *A, float *C);

void Cholesky(float *A) {
int i, j, k;
for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]) ;
for (i=k+1; i<NT; i++)

strsm (A[k*NT+k], A[k*NT+i]);
for (i=k+1; i<NT; i++) {

for (j=k+1; j<i; j++)
sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

ssyrk (A[k*NT+i], A[i*NT+i]);
}

}
}
Fig. 2 Example of code annotated with OmpSs compiler directive.

Since the paradigm is task-based, the programmer needs
to add annotations or compiler directives to the code to mark
those pieces of code which are to be considered a task and
the directionality of key arguments of the tasks. At runtime,
this information about the directionality of the task data is
used to build a task data-dependence graph that exhibits the
inherent data dependences of the application as well as its
potential task parallelism. Current efforts at the Barcelona
Supercomputing Center are focused on the OmpSs [9][46]
implementation of StarSs which extends the OpenMP
explicit tasks [10] with dependence clauses that indicate the
directionality of the tasks arguments, and on the Task
Superscalar design [59][60].

Fig. 2 shows an example of OmpSs code. The example
implements a Cholesky factorization. The kernels of the
factorization have been annotated with OmpSs compiler
directives. The directionality clauses (input, output, inout)
indicate whether the given parameter is read, write or read
and write in the scope of the task.

In the framework of TERAFLUX, OmpSs has been used
as a high level programming model to develop applications.
The OmpSs coarse-grained tasks are then translated to finer
dataflow threads that are executed in the dataflow
architecture. OmpSs is available as open source and can be
downloaded from http://pm.bsc.es/ompss.

IV. DFSCALA: CONSTUCTING AND EXECUTING
 DATAFLOW GRAPHS

One part of this project is the construction of a high level
dataflow framework which serves two purposes: i) to provide
a high productivity language in which to construct dataflow

274

programs, and ii) to provide a high level platform for
experimenting with new ideas such as using the type system
to enforce different properties of the dataflow graph and
different memory models. DFScala provides a key
foundation and implements the base functionality of this
research platform. One distinguishing feature of DFScala is
the static checking of the dynamically constructed DF graph.

In a dataflow program the computation is split into
sections. Depending on the granularity of the program these
vary from a single instruction to whole functions which can
include calls to other functions, allowing arbitrarily large
computation units. All of these sections are deterministic
based on their input and side-effect free. The execution of the
program is then orchestrated through the construction of a
directed acyclic graph where the nodes are the sections of
computation and the vertices are the data dependences
between these. An example of this can be seen in Fig. 3.
Once all the inputs of a node in the graph have been
computed the node can be scheduled for execution.

Fig. 3 An instance of a dataflow graph for a circuit routing algorithm.

The DFScala library is open source and provides the
functionality to construct and execute DF graphs in Scala.
The nodes in the graph are dynamically constructed over the
course of a program and each node executes a function
which is passed as an argument. The arcs between nodes are
all statically typed. More details are in recent work [17][26].

V. THE OPENSTREAM EXTENSION TO OPENMP
A key point of TERAFLUX is the compilation flow, that

has been vastly remodeled to target the reference
architecture. In particular, such compilation flow has been
implemented as a front- and middle-end extension to GCC
4.7.1. Starting from a programming model which extends
OpenMP to support streaming task directives, called
OpenStream [35][20][50], designed by INRIA, the compiler
is able to expand streaming task directives into dataflow
threads and point-to-point communications. Programs
written in higher level languages such as StarSs can be
translated source-to-source to OpenStream using slightly
modified implementations of their dependence resolver. The
rationale for designing such streaming extension is motivated
by the need to capture dataflow dependences explicitly in a

parallel language, by the quest for increased productivity in
parallel programming, and by the strong evidence that has
been gathered on the importance of pipeline parallelism for
scalability and efficiency.

input/output (list)
list ::= list, item

item
item ::= stream

stream >> window
stream << window

stream ::= var
array[expr]

expr ::= var
value

int s, Rwin[Rhorizon];
int Wwin[Whorizon];
input (s >> Rwin[Rburst])

s

output (s << Wwin[Wburst])

Rwin

Wwin

burst peek

burst poke

E.g.:

Rhorizon = 4
Rburst = 2

Whorizon = 6
Wburst = 3

(a)

(b)
Fig. 4 Syntax for input and output clauses (a) and illustration

of stream access through windows (b).

OpenStream provides the programmer with the
possibility of specifying the flow of data between OpenMP
tasks, and to build the program task graph, via simple
annotations. OpenStream allows dynamically constructed
task graphs, as well as multiple tasks interleaving their
communications in the same streams, and arbitrary and
variable fan-in, fan-out, and communication rates. This
approach differs from state-of-the-art streaming languages,
which mostly rely on static and/or regular task graphs.

The OpenStream compiler is responsible for converting
the rich dependence patterns among dynamically constructed
tasks into low-level, feed-forward dataflow operations
expressed in the T* instruction set. This conversion involves
streams as an intermediate data structures for producer
threads to discover their consumers.

The OpenStream syntactic extension to the OpenMP
language specification consists of two additional clauses for
task constructs, the input and output clauses, both taking a
list of items, describing the stream and its behaviours. For
example, within the body of a task, one can need to access
each element of the stream one at a time (hence, the stream
abbreviated form can be adopted), or multiple elements at a
time through sliding windows (the forms adopting the << and
>> stream operators are the most suitable). Fig. 4 shows both
the syntax of the additional clauses (a) and an example of
stream accessed via sliding window (b).

OpenStream derived from the results of the ACOTES
FP6 project. It is also adapted to embedded systems in the
PHARAON FP7 project, to support dynamic voltage and
frequency scaling under real-time constrains.

275

VI. THE TERAFLUX REFERENCE ARCHITECTURE
Within the research performed in our project, an

important aspect is represented by the execution model and
architecture framework [44] including hardware modules to
support the execution model. The proposed template for the
TERAFLUX architecture is shown in Fig. 5.

The execution model (PXM) is a combination of fine-
and coarse-grain threaded DF models including UNISI DTA
[6]8, UCY DDM [7] and BSC StarSs [8]. In addition, the
transactional support is added to the dataflow model, which
allows covering more applications: those that include
dataflow threads that modify shared state. Combining
dataflow with transactions is a unique feature of this project.

Fig. 5 TERAFLUX Architecture Template.

Current work is towards finalizing different parts of the
system so that we can achieve the following main goals: i)
Improving the overall performance (e.g., measured as
execution time) by a factor of two compared to the baseline
architecture (1000 complex cores); ii) Reducing the overall
needed size of caches by 50% without any performance loss
compared to the same baseline architecture.

DDM. Data-Driven Multithreading (DDM) is one of the
dataflow models studied in TERAFLUX. DDM is a
multithreaded model that applies Dynamic Dataflow
principles for communication among threads and exploits
highly efficient control-flow execution within a thread. The
core of DDM is the Thread Scheduling Unit that provides the
Data-Driven scheduling of the Threads. DDM does not need
traditional memory coherence because it enforces the single
assignment semantics for data exchange among threads.
Furthermore, it employs prefetching of input data before a
thread is scheduled for execution by the TSU. DDM
prefetching is deterministic and can be close to optimal
because the TSU knows at any time which threads can be
executed on which core and thus can initiate the necessary
prefetching. DDM based processors can achieve high
performance with simpler designs, as they do not need
complex and expensive modules like out-of-order execution.

Recently we have investigated whether DDM can
achieve high performance in HPC applications [39]. We
have implemented three linear algebra applications (Matrix
Multiplication, LU decomposition and Cholesky

decomposition) using DDM and tested their scalability for a
large core number. The results so far [39] are encouraging
and show that DDM can handle the parallelization required
for linear algebra applications for present and future multi-
and many-core systems. Thus, DDM should be further
investigated as viable candidate for HPC.

T* (T-STAR) INSTRUCTIONS. To support the execution
of DF-Threads, we designed a minimalistic extension of the
x86-64 ISA, that we call T-Star (or T-*) [31]. The key-points
of this ISE are: i) it enables an asynchronous execution of
threads, that will execute not under the control-flow of the
program but under the dataflow of it; ii) the execution of a
DF-thread is decided by an core-external component that we
call DTS (or Distributed Thread Scheduler); iii) the types of
memory that are used are distinguished in 4 main types (1-to-
1 communication or Thread Local Storage, N-to-1 or Frame
Memory, 1-to-N or Owner Writable Memory, and N-to-N or
Transactional Memory).

VII. IMPROVING RELIABILITY BY LEVERAGING
 DATAFLOW PROPERTIES

The tera-scale level transistor integration capacity of
future devices will make them orders of magnitude more
vulnerable to faults. Without including mechanisms that
dynamically detect and mask faults, such devices will suffer
from uneconomic high failure rates. We focus on reliability
aspects on four levels within the TERAFLUX architecture,
to assemble a reliable system out of unreliable components.
These levels are i) the cores, ii) the nodes, iii) the
interconnection network, and iv) the operating system.

At core and node level, we design specific units
responsible for i) monitoring the health state of the cores,
and ii) providing information to the hardware scheduler
about the detected faults. We call such units Distributed
Fault Detection Unit (D-FDU, operating at node-level) and
Local Fault Detection Unit (L-FDU, at core-level). In
TERAFLUX, the various D-FDUs detect faults by means of
the Double Execution mechanism [41][42][56], a redundant
execution scheme for DF-threads that we designed by
leveraging the side-effect-free semantic of the dataflow
execution. In particular, our mechanism duplicates the
execution of each DF-Thread, and compares the results of
both executions to check for correctness: L-TSUs are
responsible for calculating a CRC-32 signature of both write
sets, which will be sent to the D-FDU when the thread
terminates. If the two signatures differ, a faulty execution is
assumed, and the D-TSU is notified. Consequently, the
results of the computation are discarded and the DF-threads
are restarted on different cores. Fig. 6 compares the
dependency graph of a regular dataflow execution to the
Double Execution one.

On the interconnection level, efficient methods have been
designed to localize faults within the network (router and
link) [21][37][55]. The localization technique utilizes the
knowledge of the existing heartbeat messages and extracts
inherent information from them. Finally, the D-FDUs
forward the gathered node health states to the operating
system to provide additional information for global
scheduling decisions.

276

Fig. 6 Dependency graph for regular dataflow execution (left graph)

and double execution (right graph).

COTSon

. . .
X86-64 ISA
cruncher-1

X86-64 ISA
cruncher-2

X86-64 ISA
cruncher-3

X86-64 ISA
cruncher-N

LINUX +

TFX scheduler patch awareness

TSU
FDU

TFX APPS
(e.g. GROMACS)

LEGACY APPS
(e.g. ORACLE

DB)

(x86-64 ISA + TStar ISE & NEW Memory Model)

DF-threads L-/S-threads

Fig. 7 Overall picture of the “simulator illusion”. A number n of VCPUs

can be used as “workers” or “x86-64 crunchers” or “auxiliary cores”;
a generic kth VCPU can be used as service core. L- and S-threads

represent legacy and system Threads, that our system is able to execute.

VIII. THE COMMON EVALUATION PLATFORM
The TERAFLUX project relies on a common evaluation

platform [36] that is used by the partners with two purposes:
i) evaluate and share their research by using such integrated,
common platform, and ii) transfer to the other partners the
reciprocal knowledge of such platform.

The common platform includes not only the COTSon
simulator, but it also encompasses the compiler that is being
developed in the project, as well as other useful tools (e.g.,
McPAT [11] for power estimation) that we integrated to
meet our research needs. Nevertheless, the COTSon
simulator is the main component of the overall platform.

COTSon has been chosen because since the first month
of the project it could potentially provide an instance of a
Teradevice system. An overall picture that highlights what
the software sees - as a simulated machine - is shown in Fig.
7. The relevant point is that the software should not look
inside the COTSon simulated machine, or make any
assumption about the developing Architecture: the exact
purpose is to decouple the process of software design and
hardware design (while keeping a “contract” between
them)[47][48].

Therefore the simulation software exposes a number of
virtual processors where the guest software can run
unmodified (we called them VCPUs). From the software
point of view all these VCPUs could be both considered as
full x86-64 virtual machines or as simple “x86-64 ISA

crunchers” (or “auxiliary cores”). It will be up to the
simulator to expose or not the latter capability, but again for
the sake of generality the application software should not
presume the availability of any OS-service: each VCPU is
just a bare machine. The COTSon, on the other side, can
implement any virtualization trick to make this illusion
becoming available. We can also assume, as a first instance,
that one of the VCPUs is the service core(s) (e.g., the k-th)
and runs a guest Linux OS that provides the necessary
support to load both TERAFLUX Applications (TFX APPS
for short) and LEGACY APPS (such as the ORACLE
DBMS). This one OS will be internally modified to
distribute the DF/L/S-threads in such a way that the TSU is
informed.

During these three years of the project, we extended the
platform in order to support the TERAFLUX dataflow
execution models (both DDM and T*). In particular, we
added the full support for the T* extension to the x86-86
ISA, by implementing a model for the TSU. We also added a
fault-injection model for evaluating the overhead introduced
by the Double Execution mechanism, which was also
modeled with the FDU. Finally, we extended the platform in
order to pass from a cluster-based view of the target tera-
device system, to a many-nodes-per-chip one, by realizing a
communication mechanism via the host shared memory,
considering appropriate timing model [27].

Fig. 8 The Codelet: a fine-grain piece of computation.

IX. THE CODELET MODEL
The codelet model [12] is a hybrid Von Neumann

dataflow program execution model (PXM) aimed at
providing a fine-grain parallel execution model. It relies on
explicit data dependence specified between its units of
computations, called codelets. A codelet (Fig. 8) is the main
scheduling quanta of the model. The codelets are expected to
be generated by a compiler. Previous experience with the
codelet model’s ancestor, EARTH [13], have shown that
automatic partitioning programs into thread that follow
dataflow semantics is indeed possible [14].

The codelet PXM relies on an Abstract Machine Model
(AMM). It features a hierarchical topology, as well as a
heterogeneous architecture. While from a high-level point of
view the codelet AMM may not look much different than
other machines and it is compatible with the TERAFLUX
architectural template, the important part is located at the
chip level: the scheduling part is delegated to a dedicated
unit (the SU), while the computational part is performed by
the computation units (CUs). A codelet is a self-contained
sequence of machine instructions scheduled atomically on a
computation unit. As a principal scheduling quantum, a
codelet, once allocated and scheduled to a computation unit
(e.g. a computation core), will keep the computation unit

277

usefully busy, and will not be pre-empted in most common
cases. One feature of the codelet execution is the efficient
support of a non-preemptive thread model. A core on which
a codelet is running is simply made idle when the codelet is
suspended. Under a many-core architecture with hundreds or
thousands cores, thread context switching can be costly.

The codelet PXM also relies on a memory model. The
codelet memory model is based on Location Consistency
(LC) [15]. LC does not require a global ordering of memory
operations on the same memory location visible to all
processors. Consequently, a memory model based on LC
should provide better scalability than other existing cache-
coherent based models and protocols.

In the context of the TERAFLUX project, our goal is to
study the impact of the codelet runtime DARTS (C++
implementation of the Codelet PXM), on teradevices. First, a
comparison study has been done between the Codelet PXM
and DF-Thread, the execution model on which COTSon (i.e.,
the TERAFLUX’s simulation platform) is based. Then, we
ported the DARTS runtime on COTSon taking advantage of
the features provided by the simulator (such as the TSUs)
and implicitly by the DF-Thread execution model in
COTSon. We are also studying different percolation
techniques for teradevices. Percolation [16] is a mechanism
that determines how code and/or data should be located, and
where, on a given machine. Its goal is to guarantee as much
locality as possible for the on-going computation.

Other projects seems to move along similar directions
[62][63].

X. CONCLUSIONS
We presented TERAFLUX, a Future Emerging

Technology Large-Scale Project funded by EU, which is at
the forefront of major research challenges such as
programmability, manageable architecture design reliability
of many-core or 1000+ cores chip. We described the project
transformation hierarchy, and provided a description of the
major achievements coming from the research activities
carried out in the project. Such achievements encompass
applications and programming models for large-scale
systems exploiting the dataflow principles, the compiler,
fault-tolerance techniques, the architecture and the
simulation infrastructure needed for the evaluation of the
proposed research.

ACKNOWLEDGMENTS
This work was partly funded by the European FP7

project TERAFLUX (id. 249013) http://www.teraflux.eu.
Prof. Avi Mendelson’s work has been carried out at
Microsoft R&D, Israel.

REFERENCES
[1] M. Jurczak, N. Collaert, A. Veloso, T. Hoffmann, S. Biesemans,

“Review of FINFET technology”, Proc. of the 2009 IEEE Intern.l
Silicon on Insulator (SOI) Conference, 5-8 Oct. 2009, pp. 1-4

[2] R. Chanchani, “3D Integration Technologies - An Overview”. In
Materials for Advanced Packaging, Springer 2009

[3] http://www.itrs.net/Links/2011ITRS/Home2011.htm
[4] J. Dennis, “The Data Flow concept Past, Present and Future”,

Dataflow Execution Models for Extreme Exascale Computing
(DFM), Oct. 2011

[5] E. Argollo et al. Cotson infrastructure for full system simulation.
Operating Systems Rev, 43:52–61, 2009.

[6] R. Giorgi, Z. Popovic, N. Puzovic, “DTA-C: A Decoupled multi-
Threaded Architecture for CMP System. Computer Architecture and
High Performance Computing”. In Proc. of the 19th Int.l Symp. on
Computer Architecture and High-Performance Computing (SBAC-
PAD 2007), pp.263-270, October 2007

[7] C. Kyriacou, P. Evripidou, and P. Trancoso, “Data-Driven
Multithreading Using Conventional Microprocessors,” IEEE Trans.
Parallel Distrib. Syst., vol. 17, no. 10, pp. 1176–1188, 2006

[8] J. Planas, R. M. Badia, E. Ayguadé and J. Labarta. “Hierarchical task
based programming with StarSs”. Int.l Journal of High Performance
Computing Applications, vol. 23, no. 3, 284 - 299, Aug. 2009

[9] A. Duran, R. Ferrer, E. Ayguadé, R. M. Badia and J. Labarta, "A
Proposal to Extend the OpenMP Tasking Model with Dependent
Tasks". Int.l J. of Parallel Programming, v. 37, 3(2009), pp. 292-305.

[10] OpenMP Architecture Review Board. OpenMP 3.1 Specification.
http://www.openmp.org, July 2011.

[11] S. Li, J.-Ho Ho Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, N.
P. Jouppi, McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. 42nd Annual
IEEE/ACM Int.l Symp. on Microarchitecture, 2009. MICRO-42. 12-
16 Dec. 2009, pp. 469 – 480.

[12] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Using a
“codelet” program execution model for exascale machines: position
paper. In Proceedings of the 1st International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era, EXADAPT ’11,
pages 64–69, New York, NY, USA, 2011. ACM.

[13] H. H. J. Hum, O. Maquelin, K. B. Theobald, X. Tian, G. R. Gao, and
L. J. Hendren. A study of the earth-manna multithreaded system. Int.
J. Parallel Program., 24(4):319–348, August 1996.

[14] L. Hendren, X. Tang, Y. Zhu, G. Gao, X. Xue, H. Cai, and P. Ouellet.
Compiling c for the earth multithreaded architecture. In Int.l Journal
of Parallel Programming, pp. 12–23. IEEE Comp. Soc. Press, 1996.

[15] G. R. Gao and V. Sarkar. Location consistency-a new memory model
and cache consistency protocol. IEEE Trans. Comput., 49:798–813,
August 2000.

[16] G. Gao, K. Likharev, P. Messina, and T. Sterling. Hybrid technology
multithreaded architecture. In Frontiers of Massively Parallel
Computing, 1996. Proceedings Frontiers ’96., Sixth Symposium on
the, pages 98 –105, oct 1996.

[17] D. Goodman, B. Khan, S. Khan, M. Luján, I. Watson: Software
transactional memories for Scala. J. Parallel Distrib. Comput. (JPDC)
73(2):150-163 (2013)

[18] N. Minh Lê, A. Pop, A. Cohen, and F. Zappa Nardelli. Correct and
efficient work-stealing for weak memory models. In Symp. on
Principles and Practice of Parallel Programming (PPoPP), Shenzhen,
China, February 2013

[19] B. Diouf, C. Hantaş, A. Cohen, Ö. Özturk, and J. Palsberg. A
decoupled local memory allocator. ACM Transactions on
Architecture and Code Optimization (TACO), selected for
presentation at the HiPEAC 2013 Conf., January 2013

[20] A. Pop and A. Cohen. OpenStream: Expressiveness and dataflow
compilation of OpenMP streaming programs. ACM Transactions on
Architecture and Code Optimization (TACO), selected for
presentation at the HiPEAC 2013 Conf., January 2013

[21] A. Garbade, S. Weis, S. Schlingmann, B. Fechner and T. Ungerer,
"Impact of Message-Based Fault Detectors on a Network on Chip," in
21th International Euromicro Conference on Parallel, Distributed and
Network-based Processing (PDP), Belfast, 2013

[22] J. Ciesko, J. Bueno, N. Puzovic, A. Ramirez, R. M. Badia, J. Labarta,
"Programmable and Scalable Reductions on Clusters", IPDPS, 2013

[23] J. Planas, R. M. Badia, E. Ayguade, J. Labarta, "Self-Adaptive
OmpSs Tasks in Heterogeneous Environments", IPDPS, 2013

[24] F. Yazdanpanah, D. Jimenez-Gonzalez, C. Alvarez-Martinez, Y.
Etsion, R. M. Badia, "FPGA-Based Prototype of the Task Superscalar
Architecture", WRC, 2013

278

[25] I. Herath, D. Rosas-Ham, D. Goodman, M. Luján, I. Watson. A case
for Exiting a Transaction in the Context of Hardware Transactional
Memory. 7th ACM SIGPLAN Ws on Transact. Computing, 2012.

[26] D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khan, M. Lujan, I.
Watson, "DFScala: High Level Dataflow Support for Scala", DFM
workshop, Minneapolis, USA, September 2012

[27] J. Navaridas, B. Khan, S. Khan, P. Faraboschi, M. Lujan,
"Reservation-based Network-on-Chip Timing Models for Large-scale
Architectural Simulation," Networks on Chip (NoCS), 2012 Sixth
IEEE/ACM Int.l Symposium on , vol., no., pp.91-98, 9-11 May 2012.

[28] R. Gayatri, R. M. Badia, E. Ayguade, M.l Lujan, I. Watson,
“Transactional access to shared memory in StarSs, a task based
programming model”. In proc. of Int.l European Conf. on Parallel and
Distributed Computing, EURO-PAR 2012, Rhodes Island, Greece,
August 27-31, 2012.

[29] J. Wolf, B. Fechner and T. Ungerer, "Fault Coverage of a Timing and
Control Flow Checker for Hard Real-Time Systems," in 18th IEEE
International On-Line Testing Symposium (IOLTS '12), 2012.

[30] J. Wolf, B. Fechner, S. Uhrig and T. Ungerer, "Fine-Grained Timing
and Control Flow Error Checking for Hard Real-Time Task
Execution," in 7th IEEE Symp. on Industrial Embedded Systems
(SIES '12), 2012.

[31] R. Giorgi, "TERAFLUX: Exploiting Dataflow Parallelism in
Teradevi-ces", ACM Computing Frontiers, , May 2012, pp.303-304.

[32] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguade,
J. Labarta, “Productive Programming of GPU Clusters with OmpSs”.
In Proc. of 26th Int.l Parallel and Distributed Processing Symp.
(IPDPS), Shanghai, China, May 21-25 2012.

[33] V. Krishnan Elangovan, R.M. Badia, E. Ayguade, "OmpSs-OpenCL
Programming Model for Heterogeneous Systems", LCPC, 2012

[34] F. Li, A. Pop, A. Cohen, "Automatic Extraction of Coarse-Grained
Dataflow Threads from Imperative Programs", IEEE-Micro.

[35] A. Pop and A. Cohen. Work-streaming compilation of futures. In 5th
Workshop on Programming Language Approaches to Concurrency
and Communication-cEntric Software (PLACES), March 2012

[36] A. Portero, A. Scionti, Z. Yu , P. Faraboschi, C. Concatto, L. Carro,
A. Garbade, S. Weis, T. Ungerer, R. Giorgi, “Simulating the Future
kilo-x86-64 core Processors and their Infrastructure”, (SpringSim'12),
March 26 - 29, 2012; Orlando, FL, USA.

[37] B. Fechner, A. Garbade, S. Weis, T. Ungerer, Title: "Fault
localization in NoCs by Timed Heartbeats". In Proc. 8th
ARCS/VERFE Workshop, GI, LNI 200 GI 2012.

[38] C. Seaton, D. Goodman, M. Lujan, and I. Watson. Applying Dataflow
and Transactions to Lee Routing. MULTIPROG, 2012.

[39] C. Christofi, G. Michael, P. Trancoso and P. Evripidou, “Exploring
HPC Parallelism with Data-Driven Multithreading”. In Proceedings
of the International workshop on Dataflow Execution Models for
Extreme Scale Computing, 2012.

[40] F. Li, B. Arnoux, and A. Cohen. A compiler and runtime system
perspective to scalable dataflow computing. In 5th Works. on Progr.
Issues for Heterogeneous Multicores (MULTIPROG), Jan. 2012

[41] S. Weis, A. Garbade, J. Wolf, B. Fechner, A. Mendelson, R. Giorgi,
and T. Ungerer. A Fault Detection and Recovery Architecture for a
Teradevice Dataflow System. In: Dataflow Execution Models for
Extreme Scale Computing (DFM) Workshop, IEEE, Oct 10, 2011.

[42] A. Garbarde, S. Weis, S. Schlingmann, and T. Ungerer. OC
Techniques Applied to Solve Reliability Problems in Future 1000-
core Processors. In: Organic Computing — A Paradigm Shift for
Complex Systems, pages 575-577. Springer, 2011.

[43] A. Portero, Z. Yu, R. Giorgi, "TERAFLUX: Exploiting Tera-device
Computing Challenges", Procedia Computer Science, 7(0), 2011, pp.
146-147.

[44] Z. Yu, A. Righi, R. Giorgi, "A Case Study on the Design Trade-off of
a Thread Level Data Flow based Many-core Architecture", Future
Computing, Rome, Italy, Sept. 25-30, 2011, pp. 100-106.

[45] R. Giorgi, Z. Popovic, N. Puzovic, "Implementing Fine/Medium
Grained TLP Support in a Many-Core Architecture", Proc. 9th Int.l

Works. on Embedded Computer Systems: Architectures, Modeling,
and Simulation, SAMOS 2009, Samos, Greece, July 2009, pp. 78-87

[46] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X.
Martorell and J. Planas. OmpSs: A proposal for programming
heterogeneous multi-core architectures. In: Parallel Processing Letter,
Volume 21, Issue 2, pp. 173 - 193, June 2011.

[47] R. Giorgi, C.A. Prete, G. Prina, L. Ricciardi, "A Hybrid Approach to
Trace Generation for Performance Evaluation of Shared-Bus
Multiprocessors", IEEE Proc. 22nd EuroMicro Int.l Conf. (EM-96), ,
Prague, Ceck Republic, Sept. 1996, pp. 207-214.

[48] R. Giorgi, C.A. Prete, G. Prina, L. Ricciardi, "Trace Factory:
Generating Workloads for Trace-Driven Simulation of Shared-Bus
Multiprocessors", IEEE Concurrency, ISSN:1092-3063, Los
Alamitos, CA, USA, vol. 5, no. 4, Oct. 1997, pp. 54-68.

[49] K.M. Kavi, R. Giorgi, J. Arul, “Scheduled dataflow: Execution
paradigm, architecture, and performance evaluation” IEEE Trans.
Computers, vol. 50, no. 8,:pp. 834–846, Aug. 2001.

[50] A. Pop and A. Cohen. A stream-computing extension to OpenMP. In:
Intl. Conf. on High Performance and Embedded Architectures and
Compilers (HiPEAC’11), January 24-26, 2011.

[51] F. Li, A. Pop, and A. Cohen. Extending loop distribution to ps-dswp.
In: 1st Workshop on Intermediate Representations (WIR’11,
associated with CGO), Chamonix, France, April 2011.

[52] K. Trifunović, A. Cohen, R. Ladelski, and F. Li. Elimination of
memory-based dependences for loop-nest optimization and
parallelization: Evaluation of a revised violated dependence analysis
method on a three-address code polyhedral compiler. In: 3rd GCC
Research Opportunities Workshop (GROW’11, associated with
CGO), Chamonix, France, April 2, 2011.

[53] D. Goodman, B. Khan, S. Khan, C. Kirkham, M. Lujan and I.
Watson. MUTS: Native Scala Constructs for Software Transactional
Memory. In: Scala Days Workshop, Stanford, June 2-3, 2011.

[54] A. Diavastos, P. Trancoso, M. Luján and I. Watson. Integrating
Transactions into the Data-Driven Multi-threading Model using the
TFlux Platform. In: Dataflow Execution Models for Extreme Scale
Computing (DFM) Workshop, Galveston (Texas), Oct 10, 2011.

[55] S. Schlingmann, A. Garbade, S. Weis, T. Ungerer: “Connectivity-
Sensitive Algorithm for Task Placement on a Many-Core Considering
Faulty Regions”, 2011 19th Euromicro Int.l Conf. on Parallel,
Distributed and Network-Based Processing, Cyprus, 9-11 Feb. 2011.

[56] S. Weis, A. Garbade, S. Schlingmann, T. Ungerer: “Towards Fault-
Detection Units as an Autonomous Fault Detection Approach for
future Many-Cores”, 1st Works. Software-controlled, Adaptive Fault-
tolerance in Microprocessors (SCAFT), Como, Italy, Feb. 2011.

[57] C. Miranda, A. Pop, P. Dumont, A. Cohen and M. Duranton,
"ERBIUM: A Deterministic, Concurrent Intermediate Representation
to Map Dataflow Tasks to Scalable, Persistent Streaming Processes".
In CASES 2010 Oct. 24-29 2010, Scottsdale, Arizona.

[58] A. Pop, A. Cohen, "Preserving high-level semantics of parallel
programming annotations through the compilation flow of optimizing
compilers" 15th Workshop on Compilers for Parallel Computers.,
July 7-9, 2010, Vienna, Austria

[59] Y. Etsion, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta, and M.
Valero, "Task Superscalar: Using Processors as Functional Units",
USENIX Workshop on Hot Topics In Parallelism (HotPar), Jun 2010

[60] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E.
Ayguade, J. Labarta, and M. Valero, "Task Superscalar: An Out-of-
Order Task Pipeline". In IEEE Symp. On Microarch. Dec. 2010.

[61] HMPP User’s Manual. CAPS enterprise, 2012.
[62] L. Jozwiak, M. Lindwer, R. Corvino, P. Meloni, L. Micconi, J.

Madsen, E. Diken, D. Gangadharan, R. Jordans, S. Pomata, P. Pop, G.
Tuveri, L. Raffo: ASAM: Automatic Architecture Synthesis and
Application Mapping, Proc. DSD 2012 - 15th Euromicro Conf. on
Digital System Design, Cesme, , 5-7 Sept. 2012, , pp. 216 - 225.

[63] Y. Jan and L. Jozwiak: Communication and memory architecture
design of application-specific high-end multiprocessors, VLSI
Design, Vol. 2012, Hindawi Publishing Corporation,
doi:10.1155/2012/794753, January 2012, pp. 1 – 20.

279

