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Abstract— Thanks to the improvements in semiconductor 

technologies, extreme-scale systems such as teradevices (i.e., 
composed by 1000 billion of transistors) will enable systems 
with 1000+ general purpose cores per chip, probably by 2020. 
Three major challenges have been identified: 
programmability, manageable architecture design, and 
reliability. TERAFLUX is a Future and Emerging Technology 
(FET) large-scale project funded by the European Union, 
which addresses such challenges at once by leveraging the 
dataflow principles. This paper describes the project and 
provides an overview of the research carried out by the 
TERAFLUX consortium. 

Keywords—TERAFLUX; dataflow; programming model; 
compilation; reliability; architecture; simulation; many-cores; 
exascale computing; multi-cores. 

I.  INTRODUCTION 
Continuous improvements in silicon manufacturing 

technology, such as FinFET [1] transistors and 3D-die 
stacking [2], start showing a tremendous impact on the near 
future computer systems. New silicon technology 
generations continue to double the number of transistors in 
every generation, but with no significant frequency 
enhancements and with the cost of power density. These 
facts open the doors for new chips (that we call teradevices) 
with a huge number of transistors (for current ITRS [3]  
projections, 1 Tera or 1012 transistors) with the possibility of 
exploiting the large amount of parallelism in different ways. 

In future exascale machines, the number of general 
purpose cores (i.e., compute elements) per die will exceed 
those of current systems by far. This suggests a major change 
in the software layers that are responsible of using all such 
cores. The three major challenges regard programmability, 
reliability and complexity of design. Also, a new Program 
eXecution Model (PXM) [6][49][12] seems suited in order to 
address such challenges. 

Given the large number of transistors and the diversity in 
the requirements for different applications, it is natural to 
expect that these massively parallel (or concurrent tera-
device) systems will be composed of heterogeneous cores. 
Thus, programmability of such large-scale systems will be a 
major challenge. Moreover, such large systems are expected 
to become more and more susceptible to failures, due to the 
increasing sensibility to process variations and 
manufacturing defects. Thus, this extreme scale of device 
integration represents a second major concern, in terms of 
reliability, for future many-core systems. Finally, the 
software industry is lagging behind as general purpose 
applications cannot take advantage of more than a handful a 
number of cores compared to the larger degree of parallelism 
offered by the current and future processors. Starting from 
this premise, there is the need for new ways to exploit the 
large parallelism offered by future architectures as expected 
to be a reality beyond the year 2020. 

The dataflow concept is known to overcome the 
limitations of the traditional control-flow model by exploring 
the maximum parallelism and reducing the synchronization 
overhead. As recalled by Jack Dennis [4], dataflow is “A 
Scheme of Computation in which an activity is initiated by 
presence of the data it needs to perform its function”. The 
dataflow paradigm is not new, but recently it has met mature 
silicon technology and architectural models to take 
advantage from the large intrinsic parallelism. 

TERAFLUX [43] is a Future Emerging Technologies 
(FET) large-scale project funded by the European Union. 
The aim is to exploit the dataflow paradigm in order to 
address the three major challenges presented above (i.e., 
programmability, reliability, and manageable architecture 
design). Since we are targeting 1000+ core systems, the 
dataflow paradigm enables us to use the increased degree of 
parallelism which emerges in future teradevices. 
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The rest of the paper is organized as follows. Section II 
provides a general overview of the project. Remaining 
sections are focused on describing the concepts together with 
the major achievements resulting from our research activity. 
In particular, Section III describes the possible applications 
based on the OmpSs programming model, while Section IV 
details a further possibility of using a productivity language 
such as Scala thanks to a dataflow runtime called DFScala. 
Another common layer (OpenStream, presented in Section 
V) is used for mapping feed-forward dataflow into lower-
level dataflow threads as expressed by the T* Instruction Set 
Extension, described in Section VI, together with the 
architecture of our target system. Section VII describes the 
Fault Detection Units (FDUs), which provide fault 
management and fault detection through monitoring 
techniques and redundant execution of dataflow threads. The 
experiments are integrated into a common simulator based 
on the HPLabs COTSon [5], presented in Section VIII. 
Finally, Section IX introduces the codelet model, while 
Section X concludes the paper. 

II. GENERAL OVERVIEW OF TERAFLUX 
To investigate our concepts, we use dataflow principles 

at any level of a complete transformation hierarchy, starting 
from general and complex applications able to load properly 
at teradevice through programming model, compilation tools, 
reliability techniques and architecture. Fig. 1 shows the 
TERAFLUX layered approach. 
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Fig. 1 The TERAFLUX Transformation Hierarchy. 

Different layers allow to transform applications source 
code into a dataflow-style binary, and to execute it on the 
target architecture. The top level of this hierarchy is 
represented by real world applications, which allow us to 
stress the underlying teradevice hardware. In the 
TERAFLUX project, implicit parallelism refers to the set of 
constraints on concurrent execution of threads, and the 
expression of these constraints in the source code. These 
constraints can be dependences, atomic transactions, 
synchronization barriers, privatization attributes, memory 
layout and extent properties, and a wide variety of hints. An 

explicitly parallel program, on the other hand, is made of 
concurrency constructs making the thread creation, 
termination, and possibly some target-specific aspects of the 
execution explicit [22][23][24]. 

A dataflow oriented programming model allows 
expressing data dependencies among the concurrent tasks of 
an application. In the dataflow terminology, such concurrent 
tasks are called dataflow threads, or simply threads when 
clear from the context. Nevertheless, applications use large 
data structures with in-place updates, for efficient memory 
management [18][19][52] and copy avoidance. Such 
applications require a mechanism to express the non-
interference of concurrent updates to shared data. To meet 
such need, we selected Transactional Memory (TM), as the 
most promising programming construct and concurrency 
mechanism for specifying more general forms of 
synchronization among threads, while preserving the 
composability of parallel dataflow programs and promising a 
high level of scalability [38]. We achieve this by defining a 
specific layer for studying the integration between the TM 
and dataflow programming models [25][28][54].  

Besides the programming model, implicit parallelism 
must be exploited by a compilation tool-chain [40][57][58], 
being able to convert dependences and transactions, into 
scalable target-specific parallelism. It is also responsible for 
properly managing the inter-node communications and a 
novel memory model. Compiler effectiveness is guaranteed 
by the implementation of a generalization of the state of the 
art algorithms to expose fine-grained dataflow threads from 
task-parallel OpenMP-, StarSs- or HMPP-annotated [61] 
programs. The algorithm generalization leverages a new 
dependence-removal technique to avoid the artificial 
synchronizations induced by in-place updates in the source 
program [34][51]. 

Our goals in designing an efficient compilation tool-
chain are to capture the important data reuse patterns, to 
optimize locality and reduce communication bandwidth, and 
to provide compiler support for transaction semantics 
embedded into a dataflow programming model. Both 
productivity and efficiency programming layers are 
supported. Compiler directives are used to lower the 
abstraction penalty of the productivity layer, and to exploit 
parallelism and locality explicitly. 

As mentioned in the Section I reliability will be a major 
concern for future many-cores architectures. With the aim of 
limiting the impact of faults in the target architecture, 
dedicated hardware modules are devoted to monitor the 
healthiness of the system, and drive specific counteractive 
measures [29][30]. To achieve this goal in TERAFLUX, we 
focused on inter-core fault detection techniques using Fault 
Detection Units (FDUs). We considered different FDU 
variants (push, pull, alert mechanisms for heartbeat 
messages), FDU implementations, and interfaces. 

The design space exploration finally resulted in a 
proposal of a functional FDU specification based on the 
MAPE (Monitoring, Analysis, Planning, and Execution) [42] 
cycle of Organic Computing. Abstract message interfaces of 
the FDU to all communication units (e.g., FDU-core, FDU-
operating system, etc.) were specified for push, pull, and 
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alert messages. Core healthiness is monitored by exploiting 
currently available performance monitoring and machine 
check hardware features (e.g., machine check architecture of 
current AMD/Intel processor families).  

System resources are managed at the highest level by the 
operating system. The main objective of the operating 
system is to balance the workload among the nodes while 
keeping an acceptable level of fault tolerance. The control of 
scheduling and the resource managing are hierarchically 
performed: distributed FDUs are used to guarantee the 
characteristics of the basic nodes by accessing the different 
resources such as the cores, and local memories.  

Similarly to the FDU, the other resources of the 
TERAFLUX system are hierarchically organized, mainly 
resembled to a set of nodes interconnected with each other. 
Each node contains a hardware structure for scheduling the 
medium/fine-grain dataflow threads generated by the 
compilation tool-chain, and execute them. The TERAFLUX 
architecture is designed in order to support the programming 
and execution models developed by the higher level layers. 
At this point the project focuses on defining the basic 
architecture modules as well as the necessary instruction 
extensions to support the programming and execution model. 
The basic architecture consists of a number of multi-core 
nodes. We are ISA agnostic, in principle, but we wanted to 
demonstrate our concept with a well-known ISA such as the 
x86-64. The nodes are interconnected through a Network on 
Chip (NoC). TERAFLUX supports a global address space 
across the whole system. Each node contains a portion of the 
global memory. There is no need for traditional coherency 
because the dataflow model is based on the single 
assignment semantics. Different memory types (e.g. shared 
and non-shared) are defined as to store particular data and 
metadata of the programs. Finally, there are custom hardware 
modules that are added to the cores and nodes to actively 
support dataflow thread scheduling and reliability monitoring 
(TSUs or Thread Scheduling Units). An abstraction software 
layer is defined to allow interfacing the operating system and 
the underlying hardware. 

The aim of the lowest layer of the TERAFLUX 
hierarchical approach is to the provide software and 
hardware infrastructures capable of simulating all the 
modules composing the target dataflow system. In 
TERAFLUX we rely on a state of the art many-core 
simulation infrastructure (HPLabs COTSon [5]), which is 
able to scale up the number of cores to two orders of 
magnitudes larger than what is currently available. This 
simulation infrastructure represents a common point for all 
the partners, allowing them to test their research ideas and 
integrating them in a common platform. 

III. PROGRAMMING DATAFLOW ARCHITECTURES  
           WITH TASK-BASED APPROACH 

One of the key aspects of the TERAFLUX project is the 
proposal of a new programming and execution model 
[32][33][45] based on dataflow instead of traditional control-
flow. Dataflow is known to overcome the limitations of the 
traditional control-flow model by exploring the maximum 
parallelism and reducing the synchronization overhead. The 
StarSs programming model [8] provides a paradigm for the 

development of applications following the sequential 
programming paradigm but based on an execution model 
that exploits the inherent concurrency of the applications 
taking into account the existing data dependencies.  

The code is developed in a standard, sequential language, 
such as C or Fortran. On the user’s side there are no explicit 
parallel constructs, like in thread or stream models. 

#pragma omp task inout ([TS][TS]A)
void spotrf (float *A);

#pragma omp task input ([TS][TS]T) input ([TS][TS]B)
void strsm (float *T, float *B);

#pragma omp task input ([TS][TS]A,[TS][TS]B)\
inout ([TS][TS]C )

void sgemm (float *A, float *B, float *C);

#pragma omp task input ([TS][TS]A)\
inout ([TS][TS]C)

void ssyrk (float *A, float *C);

void Cholesky( float *A ) {
int i, j, k;
for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]) ; 
for (i=k+1; i<NT; i++) 

strsm (A[k*NT+k], A[k*NT+i]); 
for (i=k+1; i<NT; i++) {

for (j=k+1; j<i; j++)
sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]);

ssyrk (A[k*NT+i], A[i*NT+i]);
}

}
}  
Fig. 2 Example of code annotated with OmpSs compiler directive. 

Since the paradigm is task-based, the programmer needs 
to add annotations or compiler directives to the code to mark 
those pieces of code which are to be considered a task and 
the directionality of key arguments of the tasks. At runtime, 
this information about the directionality of the task data is 
used to build a task data-dependence graph that exhibits the 
inherent data dependences of the application as well as its 
potential task parallelism. Current efforts at the Barcelona 
Supercomputing Center are focused on the OmpSs [9][46] 
implementation of StarSs which extends the OpenMP 
explicit tasks [10] with dependence clauses that indicate the 
directionality of the tasks arguments, and on the Task 
Superscalar design [59][60].  

Fig. 2 shows an example of OmpSs code. The example 
implements a Cholesky factorization. The kernels of the 
factorization have been annotated with OmpSs compiler 
directives. The directionality clauses (input, output, inout) 
indicate whether the given parameter is read, write or read 
and write in the scope of the task.  

In the framework of TERAFLUX, OmpSs has been used 
as a high level programming model to develop applications. 
The OmpSs coarse-grained tasks are then translated to finer 
dataflow threads that are executed in the dataflow 
architecture. OmpSs is available as open source and can be 
downloaded from http://pm.bsc.es/ompss. 

IV. DFSCALA: CONSTUCTING AND EXECUTING  
          DATAFLOW GRAPHS 

One part of this project is the construction of a high level 
dataflow framework which serves two purposes: i) to provide 
a high productivity language in which to construct dataflow 
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programs, and ii) to provide a high level platform for 
experimenting with new ideas such as using the type system 
to enforce different properties of the dataflow graph and 
different memory models. DFScala provides a key 
foundation and implements the base functionality of this 
research platform. One distinguishing feature of DFScala is 
the static checking of the dynamically constructed DF graph. 

In a dataflow program the computation is split into 
sections. Depending on the granularity of the program these 
vary from a single instruction to whole functions which can 
include calls to other functions, allowing arbitrarily large 
computation units. All of these sections are deterministic 
based on their input and side-effect free. The execution of the 
program is then orchestrated through the construction of a 
directed acyclic graph where the nodes are the sections of 
computation and the vertices are the data dependences 
between these. An example of this can be seen in Fig. 3. 
Once all the inputs of a node in the graph have been 
computed the node can be scheduled for execution. 

 
Fig. 3 An instance of a dataflow graph for a circuit routing algorithm. 

The DFScala library is open source and provides the 
functionality to construct and execute DF graphs in Scala. 
The nodes in the graph are dynamically constructed over the 
course of a program and each node executes a function 
which is passed as an argument. The arcs between nodes are 
all statically typed. More details are in recent work [17][26]. 

V. THE OPENSTREAM EXTENSION TO OPENMP 
A key point of TERAFLUX is the compilation flow, that 

has been vastly remodeled to target the reference 
architecture. In particular, such compilation flow has been 
implemented as a front- and middle-end extension to GCC 
4.7.1. Starting from a programming model which extends 
OpenMP to support streaming task directives, called 
OpenStream [35][20][50], designed by INRIA, the compiler 
is able to expand streaming task directives into dataflow 
threads and point-to-point communications. Programs 
written in higher level languages such as StarSs can be 
translated source-to-source to OpenStream using slightly 
modified implementations of their dependence resolver. The 
rationale for designing such streaming extension is motivated 
by the need to capture dataflow dependences explicitly in a 

parallel language, by the quest for increased productivity in 
parallel programming, and by the strong evidence that has 
been gathered on the importance of pipeline parallelism for 
scalability and efficiency. 

input/output (list)
list ::= list, item

item
item   ::= stream

stream >> window
stream << window

stream ::= var
array[expr]

expr ::= var
value

int s, Rwin[Rhorizon];
int Wwin[Whorizon];
input (s >> Rwin[Rburst])

s

output (s << Wwin[Wburst])

Rwin

Wwin

burst peek

burst poke

E.g.:

Rhorizon = 4
Rburst = 2

Whorizon = 6
Wburst = 3

(a)

(b)  
Fig. 4 Syntax for input and output clauses (a) and illustration  

of stream access through windows (b). 

OpenStream provides the programmer with the 
possibility of specifying the flow of data between OpenMP 
tasks, and to build the program task graph, via simple 
annotations. OpenStream allows dynamically constructed 
task graphs, as well as multiple tasks interleaving their 
communications in the same streams, and arbitrary and 
variable fan-in, fan-out, and communication rates. This 
approach differs from state-of-the-art streaming languages, 
which mostly rely on static and/or regular task graphs. 

The OpenStream compiler is responsible for converting 
the rich dependence patterns among dynamically constructed 
tasks into low-level, feed-forward dataflow operations 
expressed in the T* instruction set. This conversion involves 
streams as an intermediate data structures for producer 
threads to discover their consumers. 

The OpenStream syntactic extension to the OpenMP 
language specification consists of two additional clauses for 
task constructs, the input and output clauses, both taking a 
list of items, describing the stream and its behaviours. For 
example, within the body of a task, one can need to access 
each element of the stream one at a time (hence, the stream 
abbreviated form can be adopted), or multiple elements at a 
time through sliding windows (the forms adopting the << and 
>> stream operators are the most suitable). Fig. 4 shows both 
the syntax of the additional clauses (a) and an example of 
stream accessed via sliding window (b). 

OpenStream derived from the results of the ACOTES 
FP6 project. It is also adapted to embedded systems in the 
PHARAON FP7 project, to support dynamic voltage and 
frequency scaling under real-time constrains. 
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VI. THE TERAFLUX REFERENCE ARCHITECTURE 
Within the research performed in our project, an 

important aspect is represented by the execution model and 
architecture framework [44] including hardware modules to 
support the execution model. The proposed template for the 
TERAFLUX architecture is shown in Fig. 5. 

The execution model (PXM) is a combination of fine- 
and coarse-grain threaded DF models including UNISI DTA 
[6]8, UCY DDM [7] and BSC StarSs [8]. In addition, the 
transactional support is added to the dataflow model, which 
allows covering more applications: those that include 
dataflow threads that modify shared state. Combining 
dataflow with transactions is a unique feature of this project. 

 
Fig. 5 TERAFLUX Architecture Template. 

Current work is towards finalizing different parts of the 
system so that we can achieve the following main goals: i) 
Improving the overall performance (e.g., measured as 
execution time) by a factor of two compared to the baseline 
architecture (1000 complex cores); ii) Reducing the overall 
needed size of caches by 50% without any performance loss 
compared to the same baseline architecture. 

DDM. Data-Driven Multithreading (DDM) is one of the 
dataflow models studied in TERAFLUX. DDM is a 
multithreaded model that applies Dynamic Dataflow 
principles for communication among threads and exploits 
highly efficient control-flow execution within a thread. The 
core of DDM is the Thread Scheduling Unit that provides the 
Data-Driven scheduling of the Threads. DDM does not need 
traditional memory coherence because it enforces the single 
assignment semantics for data exchange among threads. 
Furthermore, it employs prefetching of input data before a 
thread is scheduled for execution by the TSU. DDM 
prefetching is deterministic and can be close to optimal 
because the TSU knows at any time which threads can be 
executed on which core and thus can initiate the necessary 
prefetching. DDM based processors can achieve high 
performance with simpler designs, as they do not need 
complex and expensive modules like out-of-order execution.  

Recently we have investigated whether DDM can 
achieve high performance in HPC applications [39]. We 
have implemented three linear algebra applications (Matrix 
Multiplication, LU decomposition and Cholesky 

decomposition) using DDM and tested their scalability for a 
large core number. The results so far [39] are encouraging 
and show that DDM can handle the parallelization required 
for linear algebra applications for present and future multi- 
and many-core systems. Thus, DDM should be further 
investigated as viable candidate for HPC. 

T* (T-STAR) INSTRUCTIONS. To support the execution 
of DF-Threads, we designed a minimalistic extension of the 
x86-64 ISA, that we call T-Star (or T-*) [31]. The key-points 
of this ISE are: i) it enables an asynchronous execution of 
threads, that will execute not under the control-flow of the 
program but under the dataflow of it; ii) the execution of a 
DF-thread is decided by an core-external component that we 
call DTS (or Distributed Thread Scheduler); iii) the types of 
memory that are used are distinguished in 4 main types (1-to-
1 communication or Thread Local Storage, N-to-1 or Frame 
Memory, 1-to-N or Owner Writable Memory, and N-to-N or 
Transactional Memory). 

VII. IMPROVING RELIABILITY BY LEVERAGING  
           DATAFLOW PROPERTIES 

The tera-scale level transistor integration capacity of 
future devices will make them orders of magnitude more 
vulnerable to faults. Without including mechanisms that 
dynamically detect and mask faults, such devices will suffer 
from uneconomic high failure rates. We focus on reliability 
aspects on four levels within the TERAFLUX architecture, 
to assemble a reliable system out of unreliable components. 
These levels are i) the cores, ii) the nodes, iii) the 
interconnection network, and iv) the operating system. 

At core and node level, we design specific units 
responsible for i) monitoring the health state of the cores, 
and ii) providing information to the hardware scheduler 
about the detected faults. We call such units Distributed 
Fault Detection Unit (D-FDU, operating at node-level) and 
Local Fault Detection Unit (L-FDU, at core-level). In 
TERAFLUX, the various D-FDUs detect faults by means of 
the Double Execution mechanism [41][42][56], a redundant 
execution scheme for DF-threads that we designed by 
leveraging the side-effect-free semantic of the dataflow 
execution. In particular, our mechanism duplicates the 
execution of each DF-Thread, and compares the results of 
both executions to check for correctness: L-TSUs are 
responsible for calculating a CRC-32 signature of both write 
sets, which will be sent to the D-FDU when the thread 
terminates. If the two signatures differ, a faulty execution is 
assumed, and the D-TSU is notified. Consequently, the 
results of the computation are discarded and the DF-threads 
are restarted on different cores. Fig. 6 compares the 
dependency graph of a regular dataflow execution to the 
Double Execution one. 

On the interconnection level, efficient methods have been 
designed to localize faults within the network (router and 
link) [21][37][55]. The localization technique utilizes the 
knowledge of the existing heartbeat messages and extracts 
inherent information from them.  Finally, the D-FDUs 
forward the gathered node health states to the operating 
system to provide additional information for global 
scheduling decisions. 

276



 
Fig. 6 Dependency graph for regular dataflow execution (left graph)  

and double execution (right graph). 
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Fig. 7 Overall picture of the “simulator illusion”. A number n of VCPUs 

can be used as “workers” or “x86-64 crunchers” or “auxiliary cores”;  
a generic kth VCPU can be used as service core. L- and S-threads 

represent legacy and system Threads, that our system is able to execute. 

VIII. THE COMMON EVALUATION PLATFORM 
The TERAFLUX project relies on a common evaluation 

platform [36] that is used by the partners with two purposes: 
i) evaluate and share their research by using such integrated, 
common platform, and ii) transfer to the other partners the 
reciprocal knowledge of such platform. 

The common platform includes not only the COTSon 
simulator, but it also encompasses the compiler that is being 
developed in the project, as well as other useful tools (e.g., 
McPAT [11] for power estimation) that we integrated to 
meet our research needs. Nevertheless, the COTSon 
simulator is the main component of the overall platform. 

COTSon has been chosen because since the first month 
of the project it could potentially provide an instance of a 
Teradevice system. An overall picture that highlights what 
the software sees - as a simulated machine - is shown in Fig. 
7. The relevant point is that the software should not look 
inside the COTSon simulated machine, or make any 
assumption about the developing Architecture: the exact 
purpose is to decouple the process of software design and 
hardware design (while keeping a “contract” between 
them)[47][48]. 

Therefore the simulation software exposes a number of 
virtual processors where the guest software can run 
unmodified (we called them VCPUs). From the software 
point of view all these VCPUs could be both considered as 
full x86-64 virtual machines or as simple “x86-64 ISA 

crunchers” (or “auxiliary cores”). It will be up to the 
simulator to expose or not the latter capability, but again for 
the sake of generality the application software should not 
presume the availability of any OS-service: each VCPU is 
just a bare machine. The COTSon, on the other side, can 
implement any virtualization trick to make this illusion 
becoming available. We can also assume, as a first instance, 
that one of the VCPUs is the service core(s) (e.g., the k-th) 
and runs a guest Linux OS that provides the necessary 
support to load both TERAFLUX Applications (TFX APPS 
for short) and LEGACY APPS (such as the ORACLE 
DBMS). This one OS will be internally modified to 
distribute the DF/L/S-threads in such a way that the TSU is 
informed. 

During these three years of the project, we extended the 
platform in order to support the TERAFLUX dataflow 
execution models (both DDM and T*). In particular, we 
added the full support for the T* extension to the x86-86 
ISA, by implementing a model for the TSU. We also added a 
fault-injection model for evaluating the overhead introduced 
by the Double Execution mechanism, which was also 
modeled with the FDU. Finally, we extended the platform in 
order to pass from a cluster-based view of the target tera-
device system, to a many-nodes-per-chip one, by realizing a 
communication mechanism via the host shared memory, 
considering appropriate timing model [27]. 

 
Fig. 8 The Codelet: a fine-grain piece of computation. 

IX. THE CODELET MODEL 
The codelet model [12] is a hybrid Von Neumann 

dataflow program execution model (PXM) aimed at 
providing a fine-grain parallel execution model. It relies on 
explicit data dependence specified between its units of 
computations, called codelets. A codelet (Fig. 8) is the main 
scheduling quanta of the model. The codelets are expected to 
be generated by a compiler. Previous experience with the 
codelet model’s ancestor, EARTH [13], have shown that 
automatic partitioning programs into thread that follow 
dataflow semantics is indeed possible [14]. 

The codelet PXM relies on an Abstract Machine Model 
(AMM). It features a hierarchical topology, as well as a 
heterogeneous architecture. While from a high-level point of 
view the codelet AMM may not look much different than 
other machines and it is compatible with the TERAFLUX 
architectural template, the important part is located at the 
chip level: the scheduling part is delegated to a dedicated 
unit (the SU), while the computational part is performed by 
the computation units (CUs). A codelet is a self-contained 
sequence of machine instructions scheduled atomically on a 
computation unit. As a principal scheduling quantum, a 
codelet, once allocated and scheduled to a computation unit 
(e.g. a computation core), will keep the computation unit 
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usefully busy, and will not be pre-empted in most common 
cases. One feature of the codelet execution is the efficient 
support of a non-preemptive thread model. A core on which 
a codelet is running is simply made idle when the codelet is 
suspended. Under a many-core architecture with hundreds or 
thousands cores, thread context switching can be costly. 

The codelet PXM also relies on a memory model. The 
codelet memory model is based on Location Consistency 
(LC) [15]. LC does not require a global ordering of memory 
operations on the same memory location visible to all 
processors. Consequently, a memory model based on LC 
should provide better scalability than other existing cache-
coherent based models and protocols. 

In the context of the TERAFLUX project, our goal is to 
study the impact of the codelet runtime DARTS (C++ 
implementation of the Codelet PXM), on teradevices. First, a 
comparison study has been done between the Codelet PXM 
and DF-Thread, the execution model on which COTSon (i.e., 
the TERAFLUX’s simulation platform) is based. Then, we 
ported the DARTS runtime on COTSon taking advantage of 
the features provided by the simulator (such as the TSUs) 
and implicitly by the DF-Thread execution model in 
COTSon. We are also studying different percolation 
techniques for teradevices. Percolation [16] is a mechanism 
that determines how code and/or data should be located, and 
where, on a given machine. Its goal is to guarantee as much 
locality as possible for the on-going computation. 

Other projects seems to move along similar directions 
[62][63]. 

X. CONCLUSIONS 
We presented TERAFLUX, a Future Emerging 

Technology Large-Scale Project funded by EU, which is at 
the forefront of major research challenges such as 
programmability, manageable architecture design reliability 
of many-core or 1000+ cores chip. We described the project 
transformation hierarchy, and provided a description of the 
major achievements coming from the research activities 
carried out in the project. Such achievements encompass 
applications and programming models for large-scale 
systems exploiting the dataflow principles, the compiler, 
fault-tolerance techniques, the architecture and the 
simulation infrastructure needed for the evaluation of the 
proposed  research. 
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