Speculative Multithreading: An Object-Driven Approach

Simon Wilkinson and Tan Watson
University of Manchester, UK
{swilkinson, iwatson }@cs.manchester.ac.uk

Abstract

Speculative multithreading (SpMT) is a par-
allelizing execution model for single-threaded
programs on multi-core architectures. In this
paper, we introduce a new SpMT model,
Object-Driven Speculative Multithreading,
which exploits the structure and semantics of
object-oriented programs to generate specula-
tive parallelism. Within our technique, indi-
vidual program objects take the responsibility
to predict their own future behavior, and to
speculatively mutate their own state and that
of other objects. We present a detailed descrip-
tion of the Object-Driven Speculative Multi-
threading model, discuss our current progress
and challenges, and include some preliminary
results.

1 Introduction

Speculative multithreading (SpMT) has been
widely investigated as a parallelizing execution
model for single-threaded programs on multi-
core architectures. The premise of SpMT is
to execute the predicted future computation
of a sequential program in ‘sandboxed’ paral-
lel threads, whose side-effects are committed to
memory in original program order. To main-
tain correctness, the control and data-flow vi-
olations that this parallelization might expose
are caught at runtime by an underlying con-
flict detection mechanism, which rolls-back or
squashes unsafe execution. Using this model,

parallelization is cast from a question of cor-
rectness, to one of a cost/benefit trade-off:
The fixed overheads of SpMT and the dynamic
overheads of mis-speculation must be offset by
the speedup brought by parallel execution.

An important component to winning this
trade-off is an SpMT system’s thread spawn-
ing model, which defines where a program is
partitioned into threads and when they begin
execution. The thread spawning model must
balance three mutually competitive goals: to
extract the greatest amount of threads as pos-
sible; to maximize the chance of any particu-
lar thread executing without violation; and to
minimize the necessary complexity for the un-
derlying mechanisms of conflict detection, side-
effect buffering, rollback and commit.

In this paper, we introduce a new
SpMT model, Object-Driven Speculative Mul-
tithreading (ODe-SpMT), which allows spawn-
ing to occur outside of the sequential control-
flow constraints employed by existing schemes.
Our aim is to abstract SpMT into an implicit
object behavior for object-oriented programs,
whereby individual objects take the responsi-
bility to predict their own future behavior, and
to speculatively mutate their own state and
that of other objects.

In the following section we introduce
the ODe-SpMT model, discuss our current
progress and challenges, and present some pre-
liminary results. In Section 3 we conclude with

a summary of related work.

‘X:Classl‘ ‘y:ClassZ‘

‘X:Classl‘

y:ClassZ‘
Self-invocation of

foo () \ foo () \

M liilihhnreey

Sequential Execution

y.bar () on
speculative thread

Speculative
invocation
record,
including
side-effects

Object-driven Speculative Multithreading

Figure 1: UML sequence diagrams of object invocation for sequential and ODe-SpMT execution.

2 Object-Driven Speculative
Multithreading

The parallelization strategy of SpMT is based
on the premise that in a sequential program,
data is often available before the computation
that consumes it. A thread spawning model
must, therefore, predict both when data is
likely to be available and the associated com-
putation. Previous studies [2, 7, 8, 12] on
the application of SpMT to object-oriented
programs have evaluated control-flow driven
threading spawning models, which essentially
ignore any object semantics within the original
program. For example, method-level spawn-
ing [2] predicts that when dynamic control-flow
reaches a method call, data is available for the
method’s continuation. Prediction of the asso-
ciated computation is implicit in the control-
flow of the method’s eventual return. The key
observation of ODe-SpMT is that the encap-
sulation principle of object-orientation makes
an explicit association between data and com-
putation that is exploitable in making these
predictions.

ODe-SpMT logically partitions a program so
that a method is the unit of work for a spec-

ulative thread. The novelty of our approach
is to spawn threads on a per-object basis, at
a time when the object itself can predict a
future incoming method invocation and the
availability of the necessary data (the method’s
read-set). At such a time, the object self-
invokes the method, spawning its execution
on a speculative thread. The thread’s side-
effects are buffered, and upon method com-
pletion, are logically associated with the ob-
ject, together with a record containing meta-
information needed to later validate the exe-
cution. Validation and committal occur when
a self-invoked method is externally-invoked by
another object. Hereafter, we make a distinc-
tion between standard method invocation se-
mantics, which we denote external-invocation,
and object self-invocation.

Figure 1 demonstrates a simple case of ob-
ject invocation within the ODe-SpMT execu-
tion model using the notation of a UML se-
quence diagram. In the single-threaded case,
object x invokes y.bar() as determined by se-
quential control-flow. Within ODe-SpMT, ob-
ject y self-invokes bar() early, on a speculative
thread, in anticipation of the invocation. A
record of the speculative execution is created,

which is later validated and committed when
the method is externally invoked by object x.

Examining this basic model, we identify four
requirements that must be fulfilled in order for
ODe-SpMT to be effective:

e An object must be able to predict its fu-
ture external-invocations.

e An object must be able predict when a
potentially self-invoked method’s read-set
is available.

e Self-invoked methods must generate sig-
nificant useful parallelism.

e An efficient mechanism for conflict resolu-
tion and side-effect commit must underpin
the model.

The following sections describe our current
work on each of these components.

2.1 Predicting Future Method Invo-
cations

This problem is approached from a simple
perspective, by predicting the next (in origi-
nal program order) method to be externally-
invoked on an object.

We have profiled invocations within single-
threaded Java programs from the SPECJvm98
and Dacapo benchmark suites, and observed
that approximately 92% of all objects have
at most four (non-constructor) methods in-
voked upon them. Given this characteristic,
we propose the use of per-object finite context
method (FCM) prediction on invocation histo-
ries. FCM is a low-cost scheme for predicting
a value, based on a small history of proceed-
ing values. We note that FCM is routinely
used in other speculative execution contexts,
such as branch prediction and load value pre-
diction [10].

Our FCM design uses a packed number-
ing scheme for a class’s methods (including

’ Benchmark \ Invoke Qty \ Correct \ No Pred. ‘

antlr 156,705,456 | 95.35% 1.40%
db 86,593,360 | 94.61% 5.13%
bloat 323,644,584 | 90.66% 7.10%
jess 94,440,746 | 83.89% 8.63%
jack 36,851,458 | 81.81% 10.54%
luindex 29,860,790 | 80.03% 8.99%

Table 1: Accuracy obtained by per-object invocation
FCM predictors. SPECjvm98 benchmarks db, jack and
jess were executed for 1 iteration using the s100 data
set. Dacapo benchmarks antlr, bloat and luindex were
executed for 1 iteration using the default data set.

all those inherited), where each method is as-
signed a unique identifier within its class. Cur-
rently this is in the range 0 — 255. Every
object is initialized with an additional header
word — the history word, which records the
method identifier for the last four external-
invocations or committed self-invocations on
the object. A per-class table is kept, which
records a finite number of previously seen his-
tory words, using an LRU eviction scheme.
Each table entry points to a second-level table,
which records the frequency of method identi-
fiers that have followed the history word. To
gain a prediction of the next method to be
invoked, an object looks-up its history word
in the class’s prediction table, and selects the
method identifier most frequently seen next.
Per-class table updates occur at the return of
external-invocations or the committal of self-
invocations.

We have implemented per-object invocation
predictors within the Jikes research virtual
machine. Table 1 shows the accuracy ob-
tained for a sample of six programs taken
from the SPECjvm98 and Dacapo benchmark-
ing suites!. The ‘No Pred’ column refers to
prediction requests that could not be fulfilled

LAl single-threaded programs from these bench-
marks were run, the six results shown are representa-
tive of the accuracy levels achieved. luindex proved the
hardest to predict across all benchmarks.

java.lang.Object id

protected clone()
public equals () 1
protected finalize()
public getClass ()| 2

A

antlr.GrammarElement| id

public generate() 3
public getColumn () 4
A

antlr.AlternativeElement | id

public getAutoGenType () 5
public setAutoGenType () 6

antlr.ActionElement | id antlr.AlternativeBlock | id

public generate() 7
public look () 8

public addAlternative ()| 7
public generate() 8

Figure 2: Example class hierachy with method
identifiers for FCM prediction.

due to the learning time of the FCM method.
We are encouraged by the relatively high accu-
racy, and believe the no-prediction rate can be
lowered by including constructor invocations
within an object’s history word as a predictor
warm-up.

Figure 2, a portion of the
GrammarElement class hierarchy from the
Dacapo benchmark’s application is
shown. FEach public method is annotated
with its unique prediction identifier;
that identifiers are re-used between sibling
classes. Figure 3 shows the application of
ODe-SpMT’s next-method prediction mech-
anism to an instance of ActionElement, a
GrammarElement subclass.

In
antlr

note

2.2 Predicting Self-invoked Method
Read-set Availability

A method’s read-set is composed of two sub-
sets: the method’s arguments (excluding any

instance of antlr.ActionElement
+0 0x00010000 class_rec_ptr
+4 0x00000000 mark_word

+8 0x[07101[03[09 history_word
+12 0x00000000 fieldO

class record
+0 0x00000000
+4 0x00000000

class_datal
class_datal

+40 0x00020000 patt_table_ptr

pattern table -
pattern freq _table_ptr
+0 0x07070706|0x00030000
+8 0x[07[01[0305| 0x00040000
+16 0x06020606|0x00050000

frequency table
next id
+0 [0x04
+2 0x07
+4 0x01

frequency
0x20
0x04
0x02

Next predicted method:

GrammarElement.getColumn () (id == 4)

Figure 3: The application of ODe-SpMT’s
next-method prediction mechanism to an in-
stance of ActionElement, a concrete class
within the class hierarchy of Figure 2.

notion of a ‘this’ pointer, which is implicit to
the predicting object), and the object fields
read by the method. For brevity, we refer only
to object ‘fields’. Heap-based arrays are con-
sidered to be objects, with each array element
a separate field.

Our initial approach for predicting the avail-
ability of object fields is to assume availabil-
ity as soon as the previous externally-invoked
method has completed. In simple terms, an ob-
ject will self-invoke its next predicted method
when no external-invocation is ongoing. This
assumption of read-set availability is simi-
lar to that of method-continuation spawning
schemes, in that we exploit the task-level par-
allelism inherent in the program’s structural

‘X:Classl ‘ ‘ y:Class2
ﬁQQil444> | Prediction and
self-invocation
of y.bar() on
<<pred.>> speculative
thread

bar ()

<<new>> |,
T 1:SpecDatgq

M MIhIhOh;r;;D N

Figure 4: UML sequence diagram of object in-
vocation for ODe-SpMT execution with next
method prediction.

composition. Figure 4 shows a revised UML
sequence diagram, with next-method predic-
tion and self-invocation following external-
invocation completion.

Method arguments are not available any ear-
lier than external-invocation time, hence, they
cannot be considered when predicting read-set
availability. To overcome this limitation, the
values themselves must be predicted. FCM
prediction is attractive for this purpose as it
has very low performance overheads, however,
the space requirement to keep a per-object his-
tory for each method and parameter is not fea-
sible. We are currently investigating how a
time/space trade-off can be achieved around
an FCM design.

2.3 Generating Parallelism

We first consider leaf methods in the con-
text of self-invocation. A SpMT system’s
non-speculative thread will potentially trigger
spawning on return from such a method, and
commit the resulting self-invoked method’s
side-effects at the sequentially next invocation
on the object. However, it may be the case
that the speculation was incorrect — the next
invocation on the object is a different method

to that which has been self-invoked. In this
situation we do not need to squash the spec-
ulative execution, rather, its association with
the object can be maintained until resource
constraints force its eviction. Therefore an
object may acquire multiple speculative side-
effect sets, which can be matched against in-
coming external-invocations and, if validated,
committed out-of-order of their actual execu-
tion time.

This model is conceptually simple, but it
must be expanded to generate the necessary
levels of parallelism to offset its potential over-
heads. @ We therefore consider the seman-
tics of nesting, which translates to the self-
invocation of non-leaf methods. A self-invoked
non-leaf method may ezxternally-invoke meth-
ods of other objects. Therefore, we have the
opportunity to trigger self-invocation within
these objects, and also consume speculative
side-effects from previous self-invocations. In
the most unconstrained case, we need not ap-
ply any high-level ordering rules as to how this
occurs, and simply let the underlying conflict
resolution mechanism discard unsafe specula-
tion from unordered nesting. This, however,
may generate too much wasted execution to
justify. We are currently exploring this design
space experimentally in our simulator of ODe-
SpMT.

2.4 Conflict Resolution and Side-
effect Commit

Many existing thread spawning models use the
entry and exit points of control-flow structures
to drive thread creation [5]. These schemes
are attractive as they create a total ordering
of threads and speculative data in the system
(with respect to sequential execution), which
allows simple mechanisms for conflict resolu-
tion and side-effect commit. ODe-SpMT has
more complex semantics, however, an underly-
ing mechanism can enforce sequential consis-

tency, even in the case of unordered nesting.

Conflict resolution within ODe-SpMT is
based on lazy validation of threads’ read
and write sets. Firstly, the system’s non-
speculative thread maintains a circular data-
structure? recording the last n locations to
which it has written. This structure is incre-
mentally timestamped to partition it into m
epochs. Speculative threads maintain two pri-
vate data-structures to record their read and
write locations. On thread start-up they also
record the current non-speculative epoch, and
any argument value predictions they will con-
sume. Upon speculative thread completion
(i.e. self-invoked method return), the read and
write sets, and the buffer of speculative side-
effects are associated with an invocation record
which identifies the self-invoked method and
the current non-speculative epoch. The invo-
cation record is then maintained by the self-
invoking object.

Speculative data committal occurs at the
time of an external-invocation. If it is the non-
speculative thread externally-invoking, then
the receiver object is queried for a speculative
invocation record for the method. If this ex-
ists then any argument value predictions are
validated, and the record’s read-set is checked
for a null intersection with the non-speculative
thread’s write-set. The epoch timestamps are
used to reduce the effective size of the write-
set to those accesses which occurred at or after
the speculative thread’s creation. If no conflict
is found, then the speculative data is commit-
ted to memory. If a conflict is found, then the
invocation record is discarded and the method
externally-invoked.

In the case where a speculative thread
externally-invokes a method which has an in-
vocation record, then we perform an equiva-

2For this discussion, we generalize by not making
a distinction between hardware and software compo-
nents.

lent operation as that for the non-speculative
thread, but instead of committing results to
memory, the invocation record is subsumed
into that of the currently self-invoking method.
If the wvalidation is unsuccessful then the
method is externally-invoked, but we need not
discard the invocation record; a subsequent
external-invocation by a different thread may
successful commit the results.

This commit procedure guarantees correct-
ness for the unordered nesting model dis-
cussed in Section 2.3. It also, however,
clearly adds overhead to the non-speculative
thread’s progress. As a response, we note that
ODe-SpMT operation is orthogonal to that
of method-continuation speculation [2], which
could be applied at method call sites to hide
ODe-SpMT commit latency.

3 Related Work

The implementation and performance of
loop-iteration, loop-continuation and method-
continuation thread spawning for SpMT have
been widely investigated [2, 12, 5, 13, 4]. Se-
quential control-flow based spawning has also
been considered at the level of basic-blocks [9],
and optimized via graph-theoretic strategies
for identifying likely control-flows [3]. We note
that none of these studies consider directly ap-
plying object semantics to spawning.

Value prediction has been applied to SpMT
to overcome inter-thread register and flow de-
pendencies [6, 11, 9]. We use value prediction
to speculate directly on control-flow, via per-
object invocation prediction.

Program Demultiplexing (PD) [1] has simi-
lar semantics to ODe-SpMT, in that procedure
bodies are the units of speculative work, and
spawning occurs when a procedure’s read-set
is available. However, PD spawning heuristics
are based on offline profiling of data-flow, and
do not consider object behavior or structure.

References

1]

Saisanthosh Balakrishnan and
Gurindar S. Sohi. Program demulti-
plexing: Data-flow based speculative
parallelization of methods in sequential
programs. In ISCA ’06: Proceedings of
the 33rd annual international sympo-
stum on Computer Architecture, pages

302-313, 2006.

M. K. Chen and K. Olukotun. Exploit-
ing method-level parallelism in single-
threaded Java programs. In PACT
’98: Proceedings of the 1998 International
Conference on Parallel Architectures and
Compilation Techniques, pages 176-184,
1998.

Troy A. Johnson, Rudolf Eigenmann, and
T. N. Vijaykumar. Min-cut program de-
composition for thread-level speculation.
In Proceedings of the SIGPLAN ’04 Con-
ference on programming language design
and implementation (PLDI), pages 59-70,
2004.

Wei Liu, James Tuck, Luis Ceze, Won-
sun Ahn, Karin Strauss, Jose Renau, and
Josep Torrellas. POSH: a TLS com-
piler that exploits program structure. In
PPoPP ’06: Proceedings of the eleventh
ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming,
pages 158-167, 2006.

Pedro Marcuello and Antonio Gonzélez.
Thread-spawning schemes for specula-
tive multithreading. In Proceedings of
the FEighth International Symposium on
High-Performance Computer Architecture
(HPCA’02), pages 5564, 2002.

Pedro Marcuello and Antonio Gonzalez.
Thread partitioning and value prediction

[11]

[12]

for exploiting speculative thread-level par-
allelism. IEEFE Transactions on Comput-
ers, 53, 2004.

Jeffrey T. Oplinger, David L. Heine, and
Monica S. Lam. In search of specula-
tive thread-level parallelism. In PACT
’99: Proceedings of the 1999 International
Conference on Parallel Architectures and
Compilation Techniques, pages 303-313,
1999.

Christopher J. F. Pickett and Clark Ver-
brugge. Software thread level speculation
for the Java language and virtual machine
environment. In LCPC’05: Proceedings of
the 18th International Workshop on Lan-
guages and Compilers for Parallel Com-
puting, pages 304-318, 2005.

Carlos Garcia Quinones, Carlos Madriles,
Jestis Sanchez, Pedro Marcuello, Antonio
Gongzéalez, and Dean M. Tullsen. Mitosis
compiler: an infrastructure for specula-
tive threading based on pre-computation
slices. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN conference on Pro-
gramming language design and implemen-
tation, pages 269-279, 2005.

Yiannakis Sazeides and James E. Smith.
The predictability of data values. In MI-
CRO 30: Proceedings of the 30th annual
ACM/IEEE international symposium on
Microarchitecture, pages 248-258, 1997.

J. Gregory Steffan, Christopher B.
Colohan, Antonia Zhai, and Todd C.
Mowry. Improving value commu-
thread-level speculation.
In FEighth International Symposium on
High-Performance Computer Architecture

(HPCA’02), pages 65-75, 2002.

nication for

Fredrik Warg and Per Stenstrém. Limits
on speculative module-level parallelism in

imperative and object-oriented programs
on CMP platforms. In PACT ’01: Pro-
ceedings of the 2001 International Confer-
ence on Parallel Architectures and Com-
pilation Techniques, pages 221-230, 2001.

Fredrik Warg and Per Stenstrom. Reduc-
ing misspeculation overhead for module-
level speculative execution. In CF
05: Proceedings of the 2nd conference
on Computing frontiers, pages 289-298,
2005.

