
GALAXY Tools Manual
	

GALAXY	
 Tools	
 Manual ..1	

1.	
 Introduction ..2	

2.	
 Administrator	
 Guide	
 –	
 How	
 to	
 install	
 the	
 tools ...3	

2.1	
 Tools	
 Installation	
 and	
 Setup	
 –	
 GUI	
 part..3	

2.1.1	
 Dependencies .. 3	

2.1.2	
 Compilation	
 and	
 Installation .. 3	

2.1.3	
 Testing .. 4	

2.2	
 Back-­end	
 configuration	
 (Compilation&simulation	
 scripts)4	

3.	
 User	
 Guide	
 –	
 How	
 to	
 use	
 the	
 tools ..5	

3.1	
 XPipes	
 NoC ...5	

3.1.1	
 Lib_xpipes	
 and	
 its	
 NoC	
 building	
 blocks.. 5	

3.2	
 Parameterised	
 components	
 (via	
 Generators) ...6	

3.2.1	
 Parameters	
 section.. 7	

3.2.2	
 Generator	
 attribute ... 7	

3.3	
 Starting	
 a	
 simulation ..8	

3.4	
 Importing	
 existing	
 Verilog	
 or	
 VHDL	
 projects ...8	

3.4.1	
 VHDLASIP... 8	

4.	
 User	
 Config	
 Guide	
 –	
 How	
 to	
 customise	
 the	
 tools ...9	

4.1	
 Galaxy	
 IDE ..9	

4.1.1	
 Adding	
 a	
 new	
 View.. 9	

5.	
 Developer	
 Guide	
 –	
 How	
 to	
 make	
 changes	
 to	
 the	
 source	
 code.................. 10	

5.1.1	
 Adding	
 a	
 new	
 View..10	

5.2	
 How	
 to	
 properly	
 change	
 the	
 ASIP	
 schema.. 10	

5.2.1	
 Updating	
 the	
 version	
 number ..10	

5.3	
 How	
 to	
 add	
 a	
 new	
 language	
 to	
 the	
 framework ... 10	

6.	
 Unsorted	
 items .. 11	

6.1	
 Global	
 ports	
 and	
 global	
 connections .. 11	

6.1.1	
 To	
 reduce	
 clutter..11	

6.1.2	
 To	
 handle	
 clocks	
 on	
 multiple	
 simulation&hardware	
 targets11	

6.2	
 Working	
 with	
 hardware ... 12	

6.2.1	
 The	
 problem(s)...12	

6.2.1.1	
 Problem	
 0 ..12	

6.2.1.2	
 Problem	
 1 ..12	

6.2.1.3	
 Problem	
 2 ..12	

6.2.1.4	
 Problem	
 3 ..12	

6.2.1.5	
 Problem	
 4 ..12	

6.2.2	
 Some	
 answers..12	

6.2.2.1	
 Ideas	
 for	
 problem	
 1...12	

6.2.2.2	
 Ideas	
 for	
 problem	
 2...12	

6.2.2.3	
 Ideas	
 for	
 problem	
 3...12	

6.2.3	
 Handling	
 from	
 a	
 user’s	
 point	
 of	
 view ..12	

6.2.4	
 Handling	
 from	
 an	
 admin’s	
 point	
 of	
 view ...13	

6.3	
 Co-­simulation	
 with	
 HLA.. 13	

6.3.1	
 Waiting	
 for	
 all	
 other	
 simulators	
 to	
 connect ...13	

6.3.2	
 End	
 of	
 simulation...13	

1. Introduction

2. Administrator Guide – How to install the tools

2.1 Tools Installation and Setup – GUI part
The tools are provided as a source code package, which can be compiled on any
UNIX system.

2.1.1 Dependencies
The dependencies are:

• GTKmm 2.4 (usual package name: gtkmm24-devel or libgtkmm-2.4-dev)
• Xerces-c (usual package name: xerces-c-devel or libxerces-c2-dev)
• Expat (usual package name: expat-devel or libexpat1-dev)
• Boost (usual package name: boost-devel or libboost-dev)
• Graphviz (usual package name: graphviz-devel or libgraphviz-dev)
• Libgvc (sometimes included in Graphviz, or in package libgvc)
• XSD from CodeSynthesis (usual package name: xsd)
• Gawk (usually included with OS, may require installation on MacOS)
• If co-simulation is wanted: Portico (see below)

On recent linux/unix systems, most dependencies can be installed by using
installation tools such as yum or apt.

yum install gtkmm24-devel xerces-c-devel expat-devel
graphviz-devel boost-devel xsd

OR

yum install libgtkmm-2.4-dev libxerces-c2-dev
libexpat1-dev libgraphviz-dev libboost-dev libgvc
xsd

Two dependencies, XSD and Portico, may need to be installed manually.
XSD’s download page is: http://codesynthesis.com/products/xsd/download.xhtml
Portico’s download page is: http://porticoproject.org/index.php?title=Download

2.1.2 Compilation and Installation
The galaxy-tools-<version>.tar.bz2 file can be decompressed anywhere. It creates a
galaxy-tools-<version> directory, from which one can run the usual configure, make,
make install, possibly as root for the last step.
Two arguments may be passed to the configure script:

--with-xsd=<path-to-xsd> : indicates where XSD was installed
--prefix=<path> : indicates where to install the tools after compilation

(/usr/local/galaxy recommended)
The final step is to adjust the PATH and GALAXY_PATH environment variables:

tar xjf galaxy-tools-1.0.tar.gz

cd galaxy-tools-1.0

./configure -–prefix=/usr/local/galaxy

make

sudo make install

export GALAXY_PATH=/usr/local/galaxy

export PATH=${PATH}:${GALAXY_PATH}/bin

Make sure every user has GALAXY_PATH and PATH set up.

2.1.3 Testing
Correct operation can be checked by running galaxy-ide on an example:

cd test/g3card

galaxy-ide –i g3card.asip.xml

2.2 Back-end configuration (Compilation&simulation scripts)

The compilation and simulation scripts can be found in the source code sub-directory:
galaxy-tools-<version>/scripts.
Three classes of scripts are there:

- galaxy-wrapper-*: wrapper scripts around compilers or tools able to convert
files from one format to another

- galaxy-launcher-*: scripts launching a simulator and generating a trace file
- galaxy-loader-*: scripts transfering a file on an fpga board

For each script, 2 versions are available: <script name>-local and <script name>-
remote.
During installation (make install), each <script>-local is run with the –t option,
which tests whether the corresponding tool is installed locally (for example, “galaxy-
wrapper-xst-local –t” tests if xst is in the current PATH. If yes, then <script>-local
will be installed. Otherwise, <script>-remote will be installed. In both cases, the -
local or -remote extension is removed in the installed version of the script.

Using the remote versions of the scripts is really not recommended at the moment.
Too many things are specific to our own system, and it needs a big update.

The local scripts may all work directly.
The easiest way to test them is to describe a project using the desired simulators, as
described in Section 3.3 "Starting a simulation”, and check any error message.

3. User Guide – How to use the tools

3.1 XPipes NoC

3.1.1 Lib_xpipes and its NoC building blocks
Step 1: Adding the component library
Using the ‘+’ icon button located at the bottom of the Component Library View, add
the library lib_xpipes.asip.xml.
The library should be present in the following directory:
<galaxy_installation_directory>/share/asip_libraries/lib_xpipes.
By default the Galaxy installation directory is /usr/local/galaxy. If it is not present,
ask your administrator.

Step 2: Instantiating building blocks
Three building blocks are available:

• Switches
• Network interface Initiators
• Network interface Targets

To instantiate one of these components: Drag&drop it from the Component Library
View to the main design view (called Graph View).
These are parameterised components. A window should appear to make you
customise those parameters.
The environment is automatically switched to “Edit mode”, where you can move and
resize components with the mouse in the design view.
Note 1: Once a parameterised component has been instantiated with a set of
parameters, it is also shown as a new component in the Components Library View
(with a name of the form “main_name_param1_param2_param3…”). You can create
more instances of the same component without having to re-enter the parameters, by
drag&dropping this new item.
Note 2: If you just intend to generate a noc file to use with XPipes, you only need
these 3 building blocks. There is no need to connect real OCP components
(processors, memories, etc.) to the network interfaces, as these will be inferred
automatically by the XPipes tools.

Step 3: Creation of NoC interconnect
Select 2 components (click the 1st one, then CTRL+click the 2nd one) then select
“Create Connection” from the Design menu.
A new window appears, where you can drag&drop ports (or groups thereof) from one
side to the other side to create connections.
For example, select a NI_Initiator and a Switch, and connect the “noc input port” of
the 1st component to the “noc output port 1” of the 2nd component.
Note: In the design view, the automatic layout of the new connections is not
implemented yet. It is normal that they look rather “unorganised”.

Step 4: Creation of NoC routes
To create each route: Select a series of components

• Starting by clicking on an initiator network interface, then
• CTRL+clicking successive switches, and finally
• CTRL+clicking the final target network interface)

Finalise the route creation by selecting “Create NoC connection group” from the
Design menu.
Repeat for each route.
Created routes can be inspected or deleted by selecting a source component (usually
an initiator network interface) and selecting “Edit connection groups” from the
Design menu.

Step 5: Clock domains
Clock domains are created by selecting “Edit clock domains” from the Design menu.
In order to work with the XPipes tools, the names of the clock domains must follow
the XPipes conventions: “clk_x_y”, where x and y are integers starting from 1, and
where all mesochronous clock domains should share the same x numbers.
Enter the clock names, and indicate which clock domains are mesochronous to each
other.
Note: The clock domains will be created as invisible ports for the top-level
component.

Step 6: Assigning clock domains to the NoC building blocks
For each component (network interfaces and switches):
Select the component, and click “Connect global signals” from the Design menu.
Connect the noc_Clock of the component to the desired clock domain by using the
drag&drop technique.
Note: You can leave some component clocks unconnected. They will automatically
be assigned to the first clock domain (clk_1_1) by the next tools.
Note 2: The clock connections will be created as invisible connections to the
(invisible) top-level clock ports. If you wish to make all those visible, you can do so
by right-clicking on the design view, and selecting “Global connections On”.

Step 7: Generating the XPipes .noc file

• Make sure you save your project first.
• Select “Generate XPipes” from the Design menu.
• The Execution window should come up with a lot of red messages. Do not

worry, these are only warnings.
• Check your current directory. A .noc file should have been generated.
• Use your XPipes tools to process this noc file.

3.2 Parameterised components (via Generators)
Parameterised components have to be described by hand for the moment, as there is
no GUI wizard to create them.
A good starting point is to look at the XPipes library libxpipes.asip.xml located in
<galaxy_install_directory>/share/asip_libraries/lib_xpipes.
After a few headers, the first ASIP component description looks like:

<ASIP-component generator="xpipes_asip_generator_initiator"
name="NI_Initiator">
 <version>
 <version-number>1.0</version-number>
 <description></description>
 </version>
 <parameters>

 <parameter default-value="6" name="NB_BUFFERS"/>
 </parameters>
 </ASIP-component>

The items that are specific to parameterised components are:

- The parameters section, lines 6-8
- The generator attribute, line 1

3.2.1 Parameters section
The <parameters> section contains <parameter> (without ‘s’) elements with these
attributes:

- Name (required): the name of the parameter
- default-value (optional(?)): a default value

We may add a type attribute in the future, but it is not in there at the moment, so no
type checking is done (i.e. the user can enter a string when a number is expected. The
generator is in charge of checking the validity).

3.2.2 Generator attribute
A Generator is an executable program or script, which will generate an ASIP-
component description based on the provided parameters.
In our XPipes example, the generator script’s name is
xpipes_asip_generator_initiator. You should be able to find it installed in
<galaxy_install_directory>/bin.

If you look at this generator script, the important lines are:

while getopts "o:p:vth" OPTION
do
 case $OPTION in
 o)
 OUTPUT_FILE=$OPTARG
 ;;
 p)
 PARAMS="$PARAMS -e s=$OPTARG=g"
 ;;
[…]
sed ${PARAMS}
${SCRIPT_DIR}/xpipes_asip_generator_initiator.template >
${OUTPUT_FILE}

The getopts+case part is parsing the command line arguments, which are:
 -o <output file name>
 -p=<parameter name>=<user value>

The sed command (over the last 3 lines) is reading the template file
xpipes_asip_generator_initiator.template from the same directory, and is doing a
Replace operation to replace in the template all the occurrences of parameters to the
values specified by the user.

If you look at the template file, 5 lines before the end, this line:

<procedure>NI_Initiator_NB_BUFFERS</procedure>

will become, if the user specified NB_BUFFERS=6:

<procedure>NI_Initiator_6</procedure>

You can copy these files (asip+generator+template) to define your own parameterised
components.

3.3 Starting a simulation
This section relies on proper configuration of the compilation and simulation scripts,
as described in Section 2.2 “Back-end configuration (Compilation&simulation
scripts)”.
The following sequence of steps usually gets your simulation running:

- Select each/all the components linked to source code files (i.e. the ‘leaf’
components, which do not contain any sub-component)

- In the property view, select the desired simulator on the Target row.
- Check inside the Simulation targets view that only 1 item is shown (the one

corresponding to your selected simulator). Especially avoid having an empty
rectangle: it means that some components don’t have assigned targets (and
they will just get ignored during the simulation, resulting in undefined
components). If you see an empty rectangle, click on it, and select Select
simulated components from the Property view in order to select all the
attached components. Then select a proper simulation target for them.

- Click the Play icon, or select Run Simulation from the Run menu.
- Two windows should come up: Tool flow window and Execution window.
- Your simulation results/errors should appear in the Execution window.
- The Tool flow window shows the tools that are being run, and can be used to

run the tools independently if required. It is useful in order to control co-
simulations.

3.4 Importing existing Verilog or VHDL projects

3.4.1 VHDLASIP
vhdl2asip.sh –d <vhdl project root directory> -t <vhdl top level name>

4. User Config Guide – How to customise the tools

4.1 Galaxy IDE

4.1.1 Adding a new View
TODO: <Edit galaxy-ide.ui>

5. Developer Guide – How to make changes to the
source code

5.1.1 Adding a new View
Views (sometimes also called Plugin Views) must derive from class view defined in
view.h.
They must override the virtual method Gtk::Widget* view::get_gtk_widget(), which
should return the gtk widget of the view. The actual widget construction can be done
in this method or somewhere else if the programmer prefers to (sometimes it can be
desired to construct the widget in the new view’s constructor).
The view will also be able to receive events via the callback method
event_from_event_manager(class event e).

5.2 How to properly change the ASIP schema

5.2.1 Updating the version number
The current asip schema is a symbolic link in trunk/xml_schemas from asip.xsd to
asip_<version_number>.xsd.

• Create a new asip_<next_version_number>.xsd corresponding to the new version
number

• Update the symbolic link to point to the new file
• Each of the following files contain 1 reference each to the asip version number.

Search for the old version number between quotes and replace with the new
version number:

o src/asip-generators/noc2asip/noc2asip.cpp
o src/asip-generators/stg2asip/stg2asip.cpp

o src/asip-split-sim/main.cpp
o src/libasip/asip_doc.cpp

• Update every .asip.xml demo file to conform to the new asip version

5.3 How to add a new language to the framework
We will go through a real life example: adding Petri nets to the Galaxy framework.
The main use of our framework being debugging through co-simulation, our first task
is to find a Petri net simulator able to handle co-simulation. We will also need to
figure out how we define the interface between the Petri net and the other languages.

We actually decided to use a different route, as Petri nets are very simple descriptions
which can be converted entirely to ASIP. We therefore simply need a Petri net to
ASIP converter.
We decided to use the Petri Net Markup Language (PNML) format as an input
format, and we just need to write a pnml2asip tool.

6. Unsorted items

6.1 Global ports and global connections

6.1.1 To reduce clutter
Clock and reset wires are usually spreading across the whole design. This clutters the
design view as they are often useless to watch during the debugging process.

In ASIP, we use global ports and global connections to connect modules to these ports
without going through the whole hierarchy (a module’s port can be connected to the
clock signal without going through his parent’s interface, so the parent doesn’t need
any clock port).
We use the key symbol ‘^’ to access those global ports.

Declaration is ASIP:
• The global port is a port defined at the top-level prefixed with ‘^’.

• TO BE CHANGED TO: The global port is simply a port defined at the top-
level, without prefixed ‘^’.

• When a connection refers to a global port, the referred component is “”, and
the port name is the global port name, with its prefix.

• TO BE CHANGED TO: When a connection refers to a global port, the
referred component is “^”, and the port name is the global port name, without
prefix.

6.1.2 To handle clocks on multiple simulation&hardware targets
When a component is moved from one simulation target to another, its associated
clock generator usually needs to follow the same change, as it is not desirable to
transfer clock signals across a co-simulation interface. When multiple components
simulated on the same target are moved to different targets, too many adjustements of
clock generators become needed.

In order to let the user move components between simulation targets without having
to adjust the attached clock generator component, we make special use of the global
ports:

• Global ports are allowed to have multiple input connections (i.e. multiple
clock generators)

• The only active connection between a clock generator and a component is the
one where both ends share the same simulation target.

• If a clock generator doesn’t exists for this simulation target, then no
connection is made.

6.2 Working with hardware

6.2.1 The problem(s)

6.2.1.1 Problem 0
Can the hardware pins be accessed using our traditional cosimulation components, as
inserted by asip-add-cosim-comps?

6.2.1.2 Problem 1
When placing one module on an FPGA, and another module on a connected FPGA,
we need a way to indicate to the back-end tools which of the hardware connections
we want to use.

6.2.1.3 Problem 2
How do we specify when a module placed on an FPGA needs access to specific
FPGA pins in order to access a hardware component?

6.2.1.4 Problem 3
How do we use the FPGA clock?

6.2.1.5 Problem 4
When we plan on using a bus, how do we specify and implement the merging of all
signal to a “bus controller”?
This problem needs to be considered either if the user wants to use the bus, or if the
ASIP routers need the bus. What if both want to use it together?

6.2.2 Some answers

6.2.2.1 Ideas for problem 1
The hardware wire name (the connection’s name in the ASIP description of the
hardware target) is specified as a property of the connection in the user ASIP.

6.2.2.2 Ideas for problem 2
For each desired pin, the user will need to create a connection pointing to the
hardware wire.
We need a second component to connect the connection to, and this component needs
NOT to be simulated. For the moment we achieve this by giving the component the
keyword HARDWARE as its implementation and simulation target names.

6.2.2.3 Ideas for problem 3
Same as Problem 2, with the CLK pin.

6.2.3 Handling from a user’s point of view

6.2.4 Handling from an admin’s point of view
Asip2v will be called with a –t <target name> option, in order to identify and load the
proper hardware model.

The hardware model, an ASIP description, is made of ASIP-components representing
the hardware modules. ASIP-ports are named after their LOC, so that asip2v can write
the proper “//synthesis LOC=”…””. Connections’ names are those used in the user
design to identify hardware wires.

6.3 Co-simulation with HLA
For speed and simplicity, we often co-simulate 2 targets just by using 2 files: sim1to2
and sim2to1. Unfortunately, this has the problem of 1. Requiring its own syntax and
2. Not being extendable to more simulators.

It is now time to move all co-simulations to HLA.
A HLA co-simulation goes through the following stages:

• Connection to HLA server
• Publication of all the output wires

• Waiting for all other simulators to connect
• Association of all the input wires to the corresponding output wires published

by other simulators
• Simulation run

o Synchronised by time step (or not?)
o Changes in inputs should be propagated to the main design

o Changes to outputs need to be sent over HLA
o Series of inputs&outputs changes during the same timestep need to be

handled correctly
• End of simulation

6.3.1 Waiting for all other simulators to connect
One problem faced is that we don’t know how many other simulators there are.

6.3.2 End of simulation
This is actually very tricky to detect.

