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Abstract

Scalar Expectancy Theory (SET) is a mathematically rigorous explanation of timing in animals and humans.   Central to SET is the proposal that timing is performed by an internal clock manifest in a pacemaker that generates pulses at a mean rate, and an accumulator that sums these pulses.    In the ‘accumulator neural network’ elapsed time is represented as an activation quantity.   This neural network tends to preserve all external activation it receives over a sequence of time steps.  If the activation quantity from an external input is constant over time, then the activation increases in a linear fashion. Activation transfers probabilistically over short temporal units.  The standard deviation of a sample of activation values for each time step increases proportionally with elapsed time allowing scalar variance.  A neural network for peak interval performance incorporated a rearrangement of the decision rules proposed by SET.  Simulations generated approximations of animal data including the scalar property.  In addition, the acquisition of close to geometrical mean bisection was performed by a neural network which learnt the most optimal discriminant between the small and large intervals, rather than decision processes based on explicit representations proposed by SET.    The thesis explores problems with these simple models and suggests ideas relevant to further research developments. 
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SECTION 1

Introduction

1.1 About timing

Timing is crucial for the control of cognition and behaviour.    Many cognitive operations may be timed implicitly by the way neural events unfold in real time.   There are, however, conditions where animals display timing of behaviour for intervals in the range of seconds to minutes (Gibbon and Church 1990).  It seems that evolution has endowed the nervous system of animals to anticipate rather than merely react to events in the environment (Gibbon, Malapani, Dale and Gallistel, 1997).    One important use of timing in animals is to provide an index of behaviour spent on goal directed behaviour.  This is clearly shown in foraging where birds need to change food searching plans as a consequence of unexpected changes to feeding areas.   Under such circumstances the optimal time that would be spent on a new search depends partly on the time spent flying to the present location.  If this time is very long it may be more worthwhile for the bird to persist foraging in the same location.  This optimisation reflects the goal of the bird to collect the best recourses per unit of time (Gibbon and Church 1990).    Needless to say, optimisation of various costs also characterise much of timing in humans.   

Research has shown that interval timing can be learnt and executed with an impressive degree of command and flexibility. For example, timing can be arbitrary reset and even stopped for some interval before being continued (Roberts 1981).   These together with other empirical observations have made plausible the view that such behaviours rely on specific internal timing mechanisms.    As the subsequent review shall show, a number of researchers have developed a variety of research methodologies and mathematically rigorous explanations of mechanisms involved in temporal perception. The question of how a neural system might perform temporal perception is considerably less well understood.  Despite a number of proposals there is a general air of uncertainty concerning this problem.   This problem is owed, at least in part, to the absence of firm neurobiological data.  There is a lack strong evidence implicating with some useful degree of precision where timing is performed in the brain (See Gibbon et al, 1997; O’Boyle, 1997) despite wide continued speculation (e.g. Ivry, 1996; Meck, 1996; Hinton and Meck, 1997; Marcar and Casini, 1998; Grossberg and Merril, 1998).    The presence of such data would allow one to make inferences about what kind of computational architectures and dynamical interactions between brain structures perform timing.   Compared to the maturity of other perceptual sciences such as vision and audition; the neurobiology of time perception is still in it early infancy.  As a result, it is of particular importance to note that constructing a neural network model of timing must be considered a very open-ended research problem.

1.2 Research goals
The goal of this research was considerably explorative.  There is a wealth of experimental data on animal timing which suggests amongst other things the following properties:

1)
Scalar property: The precision and variability of timed responses increases proportionally with the size of the interval being timed thus yielding a constant fraction between the standard deviation and the mean of time estimates.  This regularity is termed the scalar property and is an example of Weber’s law.

2) 
Linearity: The subjective representation of elapsed time increases approximately linearly with real objective time.  Although there may be error in the representation of some elapsed interval, the mean of a sample of representations for that interval closely approximates objective time.

3)
Quantifiable:  The nervous system appears to be able to calculate differences between experienced intervals suggesting the subjective representation of elapsed time is quantifiable to the cognitive system.

The primary concern of this project was to construct a neural network model that would reproduce the properties inferred from experimental data as outlined above.   There are other connectionist models of timing in the literature but only one proposed by Church and Broadbent (1990) provides comprehensive simulations of these properties for psychophysical tasks involving timing in the range of seconds to minutes.   The neural network is based on an information processing theory of timing called Scalar Expectancy Theory (SET).   Timing in SET relies on an internal clock manifest in a pacemaker and accumulator.  The pacemaker generates pulses at a mean rate and the accumulator sums the number of pulse generated.   In Church and Broadbent's model timing is performed by resetting a set of oscillators each differing in frequency.  A previously learnt interval is reproduced by comparing the current phases of the oscillator set with the memory of the phases when the learnt interval elapsed.   As such timing oscillators have never been located in the brain the goal was to explore other ways of modelling an internal clock mechanism. The most obvious approach was to develop a neural network model of a pacemaker/accumulator that would produce the properties outlined above.   This is precisely what has been done together with simple neural networks that simulate performance on animal timing tasks.

SECTION 2

Experimental research on timing

There are a number of psychophysical tasks that have been developed over the years for examining temporal perception in both animals and humans.  Animal tasks include temporal generalisation (Church and Gibbon, 1982;), peak procedure (Roberts, 1981,), temporal bisection (Church and Deluty, 1977) and time-left (Gibbon and Church, 1981).   Most of these tasks shall be reviewed, each of them suggesting important constraints on models of timing.

2.1 Temporal reproduction

Recording the time spent on goal directed behaviour is paramount for applying ones energy optimally.  One of the most widely reported temporal reproduction tasks is a modification of the ‘fixed interval schedule’ (FI) called the ‘peak interval’ (PI) (Roberts 1981).  In this task a rat is presented with two types of trials: a) food (FI or reinforcement trials) and b) non-food (no reinforcement trials).   On the food trial a signal initiates the beginning of a fixed time period (e.g. 20s).   The first lever press made by the rat after the fixed time period is rewarded with food and the signal is terminated.   On non-food trials the signal is presented for some period much greater than the food trial (e.g. 120 seconds with a 20 seconds food trial period) and the response time since signal onset for each lever press is recorded.  

A first relevant observation concerns the ‘break-run-break’ pattern observed on single trials. A pattern of abrupt response states from low to high and ending with low is typically observed. This suggests that the animal is generalising the leant reinforced time so that when its subjective estimation of time is close to the remembered interval it responds at a high rate and continues to do this until the estimation seems significantly different.   Of particular relevance is the observation that the median interval of the high response states, computed from single trials, tend to vary around the objective reinforcement time.  Such an observation is predicted if the subjective estimation of elapsed time, remembered time or both have error that differs over trials.  

Another important observation is acquired when the mean probability of a response over a number of trials for every fixed successive interval (e.g.. 1 seconds) is plotted as a function of time since the onset of the peak trial stimulus.  The typical pattern observed is a Gaussian shaped distribution characterised by a smooth and gradual increase in responses to the period that approximates the time of reward followed by a slightly asymmetrical but smooth decrease.    This suggests that either the error in memory or elapsed time estimation causes the median interval of the high response states on single trials, to vary around the objective reinforcement time with a probability that is Gaussian shaped. 

A third and more important observation concerns the relationship between the standard deviation of the response times and the mean or peak response time.  A discussed in section 1.1, temporal reproduction of increasingly larger intervals are performed by animals and humans but at a cost in precision.   If response distributions are taken for subject’s performance on the peak procedure, for each of a number of different reinforcement times, a constant fraction called the coefficient of variation (CV), is observed when the standard deviation of response times is divided by the mean response time. This pattern accords with Weber’s psychophysical law and is commonly referred to as the scalar property.  This can also be expressed geometrically when the probability of a response is plotted against elapsed time since signal onset relative to the peak time.  Under such manipulations the distribution superimpose.   This scaling pattern is widely referred to as superposition (by American authors) or superimposition.  In simple terms, the scalar property means that an animal’s temporal sensitivity or response precision increases proportionally with the length of the interval being estimated. 

Figure 2.1-2.3: Data from the peak interval procedure
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2.2 The temporal discrimination bias

 A task called temporal bisection reveals an interesting discrimination bias when performed by animals (Church and Deluty, 1977).  These authors were concerned with how the representation of time increases in the nervous system.   In this procedure an animal has to discriminate between two intervals of different lengths called short (S) and long (L).  Each of these intervals is signalled by the same stimulus.  Typically, S might be 2 seconds and L might be 8 seconds.   Each of the intervals S and L is learnt to be associated with a corresponding lever (S lever and L lever).  Only when the correct associated lever is pressed will the animal be rewarded.  When the animal has learnt to discriminate between the two intervals to a high degree of accuracy, a range of intermediate intervals including S and L are presented.    In this stage of the task no rewards are given for lever presses to any of the intervals. 

The probability of a response to the L lever is computed for each of the intervals presented and plotted as a function of the interval length.  The pattern of L responses is typically a half Gaussian that increases to the highest response probability at the interval L.   Of theoretical concern is the location of the bisection point.  This is the intermediate interval at which discrimination is indifferent and results in 50% of the response presses for L.   The researchers predicted that if the bisection point was found at the arithmetic mean, this would indicate linear time, at the geometrical mean, logarithmic time, and at the harmonic mean, reciprocal time.  In line with a logarithmic view the bisection point was found at the geometric mean (the square root of the product of S and L). 

The geometrical mean has been a commonly expressed prediction of bisection performance with animal subjects (e.g. Wearden, 1994; Rodrigouz-Girones and Kacelnik, 1998).  However, data has suggested that near geometrical mean bisection is merely a co-incidental finding that frequently occurs with 1:4 ratios but not always (See Siegal and Church 1984; Siegal 1986).   Siegal and Church (1986) for example have found that when S was 1 second and L was 16 seconds the bisection point was significantly less than the geometrical mean and less than the bisection point for performance when S was 2 seconds and L was 8 seconds.   Both 1:16 and 2:8 stimulus intervals predict the same geometrical mean even though the ratios are different.  These studies suggest that the ratios of the two intervals may play an important role in determining the animal bisection point. This is also true in human temporal bisection (Wearden and Ferrara, 1996) Note that human temporal bisection performance shows many differences than when performed by animals.   This literature shall not be reviewed.  The problem of conceptualising the discrimination bias in animal temporal bisection tasks, will be addresses in section 9, in which a novel method is reported different to that expressed by proponents of SET.

2.3 The linear flow of subjective time

One important experimental task suggesting that subjective time increases linearly rather than logarithmically is Time-Left (Gibbon and Church 1981).   In this task an animal is trained on two intervals each of which is associated with a corresponding signal and lever.  These are just FIs in which the animal is rewarded for the correct lever press after some fixed interval.   The researchers cited here used 30 and 60 second FIs.    The 30 second interval is called the standard FI  (S-FI) and the 60 second interval is called the comparison FI (C-FI).   Following learning, combined trials are given and the animal gets to make a choice of which lever to press for a reward.   The combined trials always begin with C-FI and then S-FI is presented at 15, 30 or 45 seconds in to C-FI.    If S-FI is presented 15 seconds in to the C-FI, the rat will be rewarded earlier if it presses the S-FI lever.   If the S-FI is presented at 45 seconds in to the C-FI the rat will be rewarded earlier if it presses the C-FI lever.   At 30 seconds in to C-FI, rewards will be given for either lever press at the same time.  As one would predict of linear subjective time, rats favoured the S-FI response at 15 seconds in to C-FI, were indifferent to either response at 30 seconds in to C-FI, and favoured the C-FI response at 45 seconds in to C-FI.   Relative to the indifference at 30 seconds, the preference increase for S-FI at 15 seconds and C-FI at 45 seconds in to C-FI, were equivalent and therefore symmetrical. These results strongly suggest that mean of subjective time estimates increases in a linear fashion with objective time.

This data also suggests another important feature concerning the subjective representation of time.  That is that, such representations, both remembered and currently elapsed, are quantifiable to the cognitive system.  In the time-left task it would seem reasonable to infer that an animal’s nervous system computes the difference between its current representation of elapsed time and memories for two other times.  It would be hard to imagine how such a task could be performed without quantifiable representations.
2.4 Pavlovian response timing 

Another kind of experimental task worthy of mention involves Pavlovian or classical conditioning tasks.  An example of this is the eyeblink procedure in which a subject is presented with a conditioned stimulus (CS) such as a tone followed by an unconditioned stimulus (US) such as a puff of air aimed at the subjects eye.   The puff of air will evoke an unconditioned response (UCR) of eyelid closure.  Through learning the US becomes associated with the CS permitting the subject to produce a timed conditioned response (CR) of eyelid closure when only the CS is present. The timing of the CR is accurate occurring just before the US is normally emitted.  Experiments of this kind have reported accurate response timing in the milliseconds range.    This is an example of short interval timing and has been thought to involve timing mechanism different to those used for longer intervals as employed in experiments discussed above (Ivry, 1996).   
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