
1

CS1092 : Inheritance in Java
(#2 of 4)

Gavin Brown

Kilburn Building, rm 2.81

gavin.brown@cs.man.ac.uk

www.cs.man.ac.uk/~gbrown/teaching/java/

Porsche

PorscheVersionTwo

The class we have written has the header:

public class PorscheVersionTwo extends Porsche

This is now called a subclass of the Porsche class.
The ‘extends Porsche’ part makes sure that Java recognises it as so.

The Porsche class is said to be the superclass of the PorscheVersionTwo class.

Super-class

Sub-class

REMINDER OF YESTERDAY

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.cs.man.ac.uk/~gbrown/teaching/java/
http://www.pdfpdf.com

2

public class PorscheVersionTwo extends Porsche {
private double percentBoost;

public void accelerate() {
currSpeed = currSpeed + (currSpeed*percentBoost);

}

public void setTurboBoost(double perc) {
percentBoost = perc;

}
}

- The important bit is “extends Porsche” – that makes inheritance happen.

- This class INHERITS all the methods/variables of the superclass.

…as if they were copied down into the subclass, automatically.

- The accelerate method here OVERRIDES the one from the superclass.

- The setTurboBoost method ADDS EXTRA FUNCTIONALITY.

REMINDER OF YESTERDAY

public class Bicycle
{

protected int numberOfGears;
protected int numberOfWheels;

public void turn(double degrees)
{

//code for turning corners
}
// more methods

}

public class MountainBike extends Bicycle
{

protected double suspensionRatio;

// more methods
}

REMINDER OF YESTERDAY

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

3

Class Hierarchies

REMINDER OF YESTERDAY

The subclasses inherit the ‘type’ of their superclass.
Q. What type is MountainBike?

This is called ‘polymorphism’.

Bicycle

RacingBikeMountainBike

Porsche

PorscheVersionTwo

Vehicle

Today

1. Design – variables in the hierarchy?
2. More polymorphism – making use of it
3. Casting to subclasses
4. Checking the type of an object at runtime
5. Superclass… superconstructor
6. “abstract” classes

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

4

Design : Where do variables go?

class Vehicle
int numberOfWheels

class Porsche extends Vehicle
String numberPlate
double currSpeed
double nationalSpeedLimit

class Bicycle extends Vehicle
int numberOfGears

class RacingBike extends Bicycle
String sponsorName

Bicycle

RacingBike

Porsche

Vehicle

Variables in COMMON go at the top of the hierarchy.

Variables specific to a class go in that class.

The same applies for methods.

Vehicle v1 = new Porsche();
Vehicle v2 = new Bicycle();
Vehicle v3 = new Plane();

System.out.println(v1.numberOfWheels)
System.out.println(v2.numberOfWheels)
System.out.println(v3.numberOfWheels)

Polymorphism (inheriting the ‘type’) makes this code possible:

Making use of polymorphism

> java test
4
2
6

Let’s run that code:

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

5

Vehicle [] vehicleList = new Vehicle[4];

vehicleList[0] = new Porsche();
vehicleList[1] = new Bicycle();
vehicleList[2] = new Plane();
vehicleList[3] = new Porsche();

for (int i=0; i<4; i++)
System.out.println(vehicleList[i].numberOfWheels)

Or even more useful, an array of Vehicle objects:

Making use of polymorphism

> java test
4
2
6
4

Let’s run that code:

vehicleList[3] = new Porsche();

Vehicle v = vehicleList[3];
System.out.println(v.numberOfWheels); //ok
System.out.println(v.numberPlate); //ERROR

(because numberPlate is part of the Porsche
class, not the Vehicle class…)

> javac test.java

test.java:12: cannot resolve symbol
symbol : variable numberPlate
location: class Vehicle

System.out.println(v.numberPlate);
^

1 error

Be careful with types…

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

6

Porsche p = (Porsche)vehicleList[3];
System.out.println(p.numberPlate); //ok! :)

The object has to be cast to the subclass first:

> javac test.java
> java test
<NO-NUMBERPLATE-REGISTERED>
>

Be careful with types : casting to the subclass

The word ‘Porsche’ in brackets tells Java which type we want to cast to.

Vehicle [] vehicleList = new Vehicle[4];

vehicleList[0] = new Porsche();
vehicleList[1] = new Bicycle();
vehicleList[2] = new Bicycle();
vehicleList[3] = new Porsche();

for (int i=0; i<4; i++) {
System.out.print(“In your array position “+i+” is”);

if (vehicleList[i] instanceof Porsche) {
System.out.println(“ a fast car!”);

}

if (vehicleList[i] instanceof Bicycle) {
System.out.println(“ my bike.”);

}
}

Checking the type of an object

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

7

> javac test.java
> java test
In your array position 0 is a fast car!
In your array position 1 is my bike.
In your array position 2 is my bike.
In your array position 3 is a fast car!
>

Checking the type of an object

public class Porsche
{

public String numberPlate;

public Porsche(String plate)
{

numberPlate = plate;
}

…

public class PorscheVersionTwo extends Porsche
{

public PorscheVersionTwo(String plate)
{

super(plate);
numberPlate = ”$$ ” +numberPlate+ ” $$”

}
…

Superclass…superconstructor
> java test
<NO-NUMBERPLATE-REGISTERED>

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

8

PorscheVersionTwo p2 = new PorscheVersionTwo(“cdc 9922”);
System.out.println(p2.numberPlate);

public class PorscheVersionTwo extends Porsche
{

public PorscheVersionTwo(String plate)
{

super(plate);
numberPlate = ”$$-” +numberPlate+ ”-$$”

}
…

Superclass…superconstructor

> java test
$$-cdc-9922-$$

Call to superconstructor MUST be first!

5 minutes…

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

9

How many wheels on a bike?

Q. It makes sense to have a “Porsche” object, and also a
“MountainBike” object. Does it make sense to have a “Vehicle”
object?

Porsche p = new Porsche();
RacingBike rb = new RacingBike();

Vehicle v = new Vehicle(); // ????

Technically correct, but what does it mean?

Bicycle

RacingBikeMountainBike

Porsche

PorscheVersionTwo

Vehicle

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

10

public abstract class Vehicle
{

private int numberOfWheels;

public int getNumWheels() {
return numberOfWheels;

}

public abstract void turn();
}

And forces ALL subclasses to
have a “turn()” method

Provides data and
methods common
to all Vehicles

Abstract class: Vehicle

Abstract classes : Useful software engineering tool: when working in a team,
write an abstract class and give it to a colleague to work from. You can provides
some functionality, and impose some rules, like the above class making the rule
that subclasses should have a turn() method.

public class Plane extends Vehicle
{

private double wingspan;

public void takeOff() {
// more code

}
}

Extending from the abstract Vehicle class

> javac Plane.java
Plane.java:1: Plane should be declared abstract; it does
not define turn() in Vehicle
public class Plane extends Vehicle

^
1 error

Here, the compiler is telling us that the Plane should be made abstract,
because we do not define turn(). In fact, we should just define the turn()
method and all will be fine. The compiler gave the best advice it could,
assuming that we wanted Plane to be abstract, and forgot to do so.

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

11

Today
1. Design – variables in the hierarchy
2. More polymorphism – making use of it
3. Casting to subclasses
4. Checking object type: instanceof
5. Superclass… superconstructor
6. “Abstract” classes

Tomorrow
1. More on abstract classes
2. dynamic method binding
3. is-a versus has-a rules
4. ‘final’ keyword to control inheritance
5. constructor ordering

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

