
List of Slides

1 Topic 11: RecursiveData Structures:Directed Graphs
2 Section 1: DirectedGraphs
3 Directed Graphs
4 What are Directed Graphs?
5 Terminology: Dependent versus dependency
6 Terminology: Dependent versus dependency
7 Cyclic graphs
8 Cyclic graph: chicken and egg
9 Cyclic graph

10 Acyclic graphs
11 Acyclic graph
12 Trees are graphs
13 Graph demonstrator
14 Graph demonstrator
15 Graph demonstrator
16 Example graphs

0-0

17 Applications of graphs: Java classes
18 Shell script to find class dependencies
19 Output for Snake program (as 3 columns)
20 Applications of graphs: Java classes
21 Applications of graphs: Web pages
22 Topological order
23 Applications of graphs: task order planning
24 Topological order is not uniq
25 Section 2: ImplementationofDirectedGraphs
26 Implementation of directed graphs
27 Graphs are a recursive data structure
28 GraphNode code
29 GraphNode constructor
30 getName()
31 addDependency()
32 deleteDependency()
33 deleteAllDependencies()
34 dependsOn()

0-1

35 dependencyCount()
36 dependentCount()
37 getDependencies()
38 getDependents()
39 Finding a topological order
40 Dealing with cycles
41 Which graph node do we start at?
42 Example topological order
43 topologicalOrder()
44 privateTopologicalOrder()
45 privateTopologicalOrder()
46 End of GraphNode
47 Transitive dependencies
48 Transitive dependencies
49 More complicated topological orders
50 More complicated topological orders
51 Example topological orders (again)

0-2

Topic 11

Recursive

Data Structures:

Directed Graphs

April 28, 2005 CS1092 - John Latham Page 1(0/0)

Section 1

Directed

Graphs

April 28, 2005 CS1092 - John Latham Page 2(0/0)

Directed Graphs
� Another recursive data structure related to trees is directed graphs.

� These are mostly used for dependency modelling.

� For example the task dependencies in the mini-project were modelled using a program

called DependEdit, which uses a directed graph.

April 28, 2005 CS1092 - John Latham Page 3(0/0)

What are Directed Graphs?
� A directed graph consists of graph nodes linked together by graph arcs.

� Arcs are directed – they connect from one node to one other. (In non-directed graphs the

arcs just join two nodes, with no order of the nodes.)

� When used for dependency modelling, the nodes are entities from the real world scenario

being modelled, and the arcs are dependencies between entities.

� E.g. nodes might be tasks in the mini-project, and arcs the dependencies between tasks:

division depends on multiplication.

� We shall not look at graphs where the arcs have no direction, and so for economy we

shall refer to directed graphs as just graphs.

April 28, 2005 CS1092 - John Latham Page 4(0/0)

Terminology: Dependent versus dependency
� It is important to get the terminology right early on.

� Say node A depends on B. E.g. division depends on multiplication.

� A is a dependent of B. E.g. division is a dependent of multiplication.

� B is a dependency of A. E.g. multiplication is a dependency of division.

� In general A can have many dependencies, including B.

� In general B can have many dependents, including A.

April 28, 2005 CS1092 - John Latham Page 5(0/0)

Terminology: Dependent versus dependency

A B

Dependent Dependency

April 28, 2005 CS1092 - John Latham Page 6(0/0)

Cyclic graphs
� Graphs can be cyclic graphs.

� This means it is possible to follow arcs from some node and arrive back at that same node.

� Let us not permit a node to be directly dependent on itself. That is, every arc must

connect from one node to a different node. (Some people permit self dependency in their

graphs – we shall not.)

� In dependency modelling terms, if a graph is cyclic, then some entity is mutually
dependent on one or more other entities.

April 28, 2005 CS1092 - John Latham Page 7(0/0)

Cyclic graph: chicken and egg

Chicken Egg

April 28, 2005 CS1092 - John Latham Page 8(0/0)

Cyclic graph

17 27 99

1234

49

75

53

19

81

April 28, 2005 CS1092 - John Latham Page 9(0/0)

Acyclic graphs
� An acyclic graph has no cycles.

� There are no infinite paths.

� There may still be many paths from any node to any other node.

� But there are no (non-empty) routes from any node to itself.

April 28, 2005 CS1092 - John Latham Page 10(0/0)

Acyclic graph

17 27 99

1234

49

75

53

19

81

April 28, 2005 CS1092 - John Latham Page 11(0/0)

Trees are graphs
� A tree is a special kind of acyclic graph.

� Each node, except the root, has exactly one dependency – called the parent. The root has

none.

� Nodes can have many dependents – called children. In binary trees the non-empty
nodes have two dependents, which are the roots of the left child and right child
sub-trees.

� There is at most one route from any node to any other node, because each node has only

one dependency. (There is no route from a node to most others.)

� Trees are always drawn with dependencies going upwards so there is no need to show the

arrow heads.

� But they are still graphs.

April 28, 2005 CS1092 - John Latham Page 12(0/0)

Graph demonstrator

I have built a graph demonstrator which we will use to explore graphs.

April 28, 2005 CS1092 - John Latham Page 13(0/0)

Graph demonstrator

April 28, 2005 CS1092 - John Latham Page 14(0/0)

Graph demonstrator

April 28, 2005 CS1092 - John Latham Page 15(0/0)

Example graphs
� Let us look at some randomly created cyclic graphs and acyclic graphs.

� Graph demo: random-cyclic-graphs

– Note the way graphs are drawn here: the diagonal line of nodes allows us to easily

connect any node to any other. We permit arcs destined for the same node to join

together for economy of display. Arcs on the left of the diagonal are going upwards,

whereas arcs on the right are going downwards.

� Graph demo: random-acyclic-graphs

– Note that the acyclic graphs have no arcs on the right of the diagonal line of nodes.

The way the graph demonstrator (usually) draws the graphs enables us to easily spot

any cycles.

April 28, 2005 CS1092 - John Latham Page 16(0/0)

Applications of graphs: Java classes
� When we develop Java programs, we can easily end up with a large number of classes –

indeed we usually start by identifying these classes in advance.

� A useful notion is simple ‘textual dependency’ of the classes in a Java program: i.e. one

class makes some reference to another.

� The textual dependencies of the classes in a directory can be found using a simple shell

script.

April 28, 2005 CS1092 - John Latham Page 17(0/0)

Shell script to find class dependencies

#!/bin/sh

for i in ‘ls *.java | sed "s,.java,,g"‘

do

echo $i

for j in ‘ls *.java | sed "s,.java,,g"‘

do

if test "$i" != "$j" \

&& cat $i.java | sed ’s,"[ˆ"]*",,g’ \

| egrep \(ˆ\|[ˆA-Za-z0-9]\)$j\(\$\|[ˆA-Za-z0-9]\) \

> /dev/null

then

echo $j

fi

done

echo

done

April 28, 2005 CS1092 - John Latham Page 18(0/0)

Output for Snake program (as 3 columns)

AboutBox GameGUI GameMethodTest

AboutBox Cell

BufferedPanel Direction Direction

GameImage Game

CellImage Game

Cell SpeedController Snake

Direction GameGUI

GameImage

Cell BufferedPanel SpeedControllerImage

CellImage SpeedController

Direction Game

SpeedController

Game SpeedControllerImage

Cell

Direction

April 28, 2005 CS1092 - John Latham Page 19(0/0)

Applications of graphs: Java classes
� We can run the shell script and store the results in a file. Quite deliberately, the output

format matches the files used by DependEdit and GraphDemo, so the graphs can be

displayed by those programs.

� Graph demo: snake-classes

� Graph demo: lottery-classes

� Graph demo: graph-demo-classes

� Graph demo: tree-demo-classes

� Graph demo: depend-edit-classes

April 28, 2005 CS1092 - John Latham Page 20(0/0)

Applications of graphs: Web pages
� A similar script can find the references in a set of html files.

� For example, the web pages for AnotherLevelUp.

– Graph demo: ALU-html

April 28, 2005 CS1092 - John Latham Page 21(0/0)

Topological order
� A topological order of a graph is a list of the nodes, such that each node is listed after

any it depends upon.

� Clearly it is only possible to have a topological order for an acyclic graph.

� We can attempt to find a topological order for any graph, of course, but any cycles will

stop us achieving one.

� The graph demonstrator (usually) attempts to display the nodes in a topological order –

that is why there are no arcs on the right hand side for acyclic graphs: the dependency

lines only need to point upwards.

� Graph demo: random-acyclic-graphs

April 28, 2005 CS1092 - John Latham Page 22(0/0)

Applications of graphs: task order planning
� A topological order is particularly useful when we wish to plan an order of tasks which

have inter dependencies: e.g. we cannot put hot water on our tea bag until we have boiled

the kettle.

� If these dependencies are not cyclic, then we can build a graph where the nodes are the

tasks, express the dependencies, and find a topological order.

� We can then perform the tasks in that order.

� Graph demo: house

� Graph demo: mini-project

April 28, 2005 CS1092 - John Latham Page 23(0/0)

Topological order is not uniq
� Most acyclic graphs have more than one topological order.

� For example, if C depends on A and C also depends on B, then both A and B must appear

before C, but A and B could come in either order if there is no dependency between them.

� Graph demo: house-orders

� Graph demo: family-orders

– A curious use of graphs is to model a family tree. These are acyclic (of course!) but

they are not really trees in the strict sense.

– Children depend on both their parents, and people can have children with different

people as co-parent, so parents are separate nodes.

– As we have only one kind of arc in our graphs, we (arbitrarily?) decide that a husband

/ male partner depends on his wife / female partner.

April 28, 2005 CS1092 - John Latham Page 24(0/0)

Section 2

Implementation

of

Directed

Graphs

April 28, 2005 CS1092 - John Latham Page 25(0/0)

Implementation of directed graphs
� We shall study a way of implementing graphs.

� We shall study the simplest algorithm for finding a topological order.

� We shall talk about maintaining transitive dependencies.

� We shall talk about more complicated topological order algorithms.

April 28, 2005 CS1092 - John Latham Page 26(0/0)

Graphs are a recursive data structure
� Graphs are a recursive data structure.

� Here is one definition, leading to an implementation.

– A graph node comprises a name (or a piece of data),

– a possibly empty set of graph nodes, which it depends upon,

– and a possibly empty set of graph nodes, which depend on it.

� Note that we do not really need to store both dependents and dependencies: one would do

to maintain the graph structure. For efficiency we store them both and we must keep them

consistent.

April 28, 2005 CS1092 - John Latham Page 27(0/0)

GraphNode code

import java.util.*;

public class GraphNode

{

// The name of this node.

private String name;

// The nodes this node depends upon.

private ArrayList dependencies = new ArrayList();

// The nodes which depend on this node.

private ArrayList dependents = new ArrayList();

April 28, 2005 CS1092 - John Latham Page 28(0/0)

GraphNode constructor

// Create a graph node.

public GraphNode(String requiredName)

{

name = requiredName;

} // GraphNode

April 28, 2005 CS1092 - John Latham Page 29(0/0)

getName()

public String getName()

{

return name;

} // getName

April 28, 2005 CS1092 - John Latham Page 30(0/0)

addDependency()

// Record that this node depends on the given one.

public boolean addDependency(GraphNode dependency)

{

if (this == dependency)

return false; // Self dependency not permitted.

else

{

// Add dependency to dependencies if not already present.

if (dependencies.contains(dependency))

return false;

dependencies.add(dependency);

dependency.dependents.add(this);

return true;

} // if

} // addDependency

April 28, 2005 CS1092 - John Latham Page 31(0/0)

deleteDependency()

// Record that this node does not depend on the given one.

public boolean deleteDependency(GraphNode dependency)

{

// Remove dependency from dependencies.

boolean result = dependencies.remove(dependency);

// Remove this from dependents of dependency.

dependency.dependents.remove(this);

return result;

} // deleteDependency

April 28, 2005 CS1092 - John Latham Page 32(0/0)

deleteAllDependencies()

// Remove all the dependencies of this node.

public void deleteAllDependencies()

{

for (int i = 0; i < dependencies.size(); i++)

{

GraphNode dependency

= (GraphNode) dependencies.get(i);

dependency.dependents.remove(this);

} // for

dependencies.clear();

} // deleteAllDependencies

April 28, 2005 CS1092 - John Latham Page 33(0/0)

dependsOn()

// Does this node depend on the given other one?

public boolean dependsOn(GraphNode other)

{

return dependencies.contains(other);

} // dependsOn

April 28, 2005 CS1092 - John Latham Page 34(0/0)

dependencyCount()

// Get the number of dependencies.

public int dependencyCount()

{

return dependencies.size();

} // dependencyCount

April 28, 2005 CS1092 - John Latham Page 35(0/0)

dependentCount()

// Get the number of dependents.

public int dependentCount()

{

return dependents.size();

} // dependentCount

April 28, 2005 CS1092 - John Latham Page 36(0/0)

getDependencies()

// Get the dependencies, in a default order.

public Iterator getDependencies()

{

return dependencies.iterator();

} // getDependencies

April 28, 2005 CS1092 - John Latham Page 37(0/0)

getDependents()

// Get the dependents, in a default order.

public Iterator getDependents()

{

return dependents.iterator();

} // getDependents

April 28, 2005 CS1092 - John Latham Page 38(0/0)

Finding a topological order
� We are given a graph node.

� First we ensure all its dependencies are in the resulting topological order, by recursively

considering each of them.

� Then we add the given graph node to the topological order.

� Overall then we have added the given graph node and all its dependencies to the

topological order, if they were not already in it.

� So if we start with an empty topological order, we end up with the topological order of all

nodes which are accessible from the given starting one.

� If we terminate

April 28, 2005 CS1092 - John Latham Page 39(0/0)

Dealing with cycles
� How do we deal with cycles?

� Cycles would lead to infinite recursion as we attempt to process the dependencies of a

node before we add it to the result, and cycles mean some nodes are their own indirect

dependency.

� We detect cycles by keeping a set of all the graph nodes we are currently considering, and

do nothing if we arrive at one which is already in that set.

� So, if our graph is cyclic we will finish with an attempted topological order, and if it is

acyclic, we will get a topological order.

� The topological order will contain all the nodes in the graph, if they are accessible from

the node we started with

April 28, 2005 CS1092 - John Latham Page 40(0/0)

Which graph node do we start at?
� How do we make sure all the graph nodes are processed and so end up in the topological

order?

� Depending on where we start we might not visit every node.

� Indeed, our graph might not even be a connected graph: it might actually consist of a
collection of separate graphs.

� One simple way of making all our graph nodes be part of a single graph is to have one
extra node, called the end node. We make sure this node is dependent upon all the other
nodes in the graph.

� For example, the dependency graph of making a house can be thought of as having one
one extra node, perhaps called “Finished!”. Every task which is part of the project has
this end node as a dependent.

� To find the topological order of all the nodes in a graph, we simply start with the end
node.

April 28, 2005 CS1092 - John Latham Page 41(0/0)

Example topological order
� The graph demonstrator maintains an end node for its graphs, but does not normally show

it because it is not interesting.

� One time when we can see it is during the computing of a topological order.

� Also, graphs are usually displayed in a topological order. However, during the computing

of a topological order they are shown in alphabetical order by name.

� Graph demo: house-top-order

� Graph demo: mini-project-top-order

April 28, 2005 CS1092 - John Latham Page 42(0/0)

topologicalOrder()

// A simple topologicalOrder method.

public Iterator topologicalOrder()

{

topologicalOrder = new ArrayList();

nodesBeingConsidered = new HashSet();

privateTopologicalOrder(this);

return topologicalOrder.iterator();

} // topologicalOrder

private ArrayList topologicalOrder;

private HashSet nodesBeingConsidered;

April 28, 2005 CS1092 - John Latham Page 43(0/0)

privateTopologicalOrder()

// Recursive part of the simple topologicalOrder method.

private void privateTopologicalOrder

(GraphNode graphWalkPosition)

{

// Check for cycles & multiple paths.

if (nodesBeingConsidered.contains(graphWalkPosition))

return;

// Check if already added this node.

else if (topologicalOrder.contains(graphWalkPosition))

return;

nodesBeingConsidered.add(graphWalkPosition);

April 28, 2005 CS1092 - John Latham Page 44(0/0)

privateTopologicalOrder()

for (Iterator i = graphWalkPosition.getDependencies();

i.hasNext();)

{

GraphNode thisDependency = (GraphNode) i.next();

privateTopologicalOrder(thisDependency);

} // for

topologicalOrder.add(graphWalkPosition);

nodesBeingConsidered.remove(graphWalkPosition);

} // privateTopologicalOrder

� Graph demo: mini-project-top-order

– See the code. Please note that to clarify things, the demonstrator ensures the

dependencies of a node are considered in alphabetic order.

April 28, 2005 CS1092 - John Latham Page 45(0/0)

End of GraphNode

} // class GraphNode

� That concludes our short detailed coverage of the implementation of graphs.

� Remaining issues for less detailed discussion include

– maintaining transitive dependencies

– and more complicated topological order algorithms.

April 28, 2005 CS1092 - John Latham Page 46(0/0)

Transitive dependencies
� It can be useful to know if a graph node transitively depends upon another.

� If A transitively depends on C it means there is another, B, such that A depends on B and

B depends on C, or B transitively depends on C.

� This could be computed on demand as needed, but it is not quick to do so.

� The approach taken here (but not shown in detail) is to have as instance variables a third

ArrayList called transitiveDependencies and an associated boolean variable called

transitiveDependenciesAreUpToDate.

� Every time the dependencies of a node are changed, we set

transitiveDependenciesAreUpToDate to false, and also do so (recursively) for all

nodes which are dependents of that node.

April 28, 2005 CS1092 - John Latham Page 47(0/0)

Transitive dependencies
� Whenever we need to look up a transitive dependency, if

transitiveDependenciesAreUpToDate is false we build the

transitiveDependencies first and set that variable to true.

� To build transitiveDependencies we add every dependency of every dependency of

this node. We then do the same for every transitive dependency of every dependency of

this node.

� Finding the transitive dependencies of every dependency of this node recursively causes

them to be computed, if necessary.

� Sounds complicated? It is!

April 28, 2005 CS1092 - John Latham Page 48(0/0)

More complicated topological orders
� We have said that topological orders are (generally) not unique.

� The resulting order depends on the order in which the dependencies of each node are

considered: essentially the sooner a node is considered, the sooner it will appear in the

topological order.

� The simple alogorithm we saw in detail uses whatever default order is obtained by

iteration from the ArrayList of dependencies, which will be the order the dependencies

were added. The graph demonstrator actually considers the dependencies in alphabetical

order for clarity.

April 28, 2005 CS1092 - John Latham Page 49(0/0)

More complicated topological orders
� Other possible orders include

– random order – the dependencies of a node are jumbled into a random order before

they are processed.

– ascending dependency – the dependencies of a node are processed from the least total

dependency to the highest. The total dependency is the sum of the number of

dependencies and the number of transitive dependencies.

– descending dependency – the dependencies of a node are processed from the most

total dependency to the lowest.

� We can also make our topological order eager for dependents. This means that when we

add a graph node to the topological order, we immediately consider all the nodes which

are dependents of it. This can lead to clustering of groups of closely dependent nodes.

April 28, 2005 CS1092 - John Latham Page 50(0/0)

Example topological orders (again)
� Graph demo: house-orders

� Graph demo: family-orders

April 28, 2005 CS1092 - John Latham Page 51(0/0)

