
List of Slides

1 Case study 2: A Pack of Cards(leading to a game of Snap)
2 Section 1: Introduction
3 Introduction
4 There are many ways to crack an egg . . .
5 The basis for variation
6 Section 2: Approach A:Ex C hacker
7 Using integers
8 Card
9 Card code

10 Card code
11 Card code
12 Card code
13 Card code
14 Card code
15 Card code
16 Card code

0-0

17 Card code
18 Pros
19 Cons
20 Cons continued
21 Section 3: Approach B:Exact abstract model
22 Have the classes Suit and Face
23 Private constructor
24 Exactly four suits
25 Suit ordering based on integers
26 Suit code
27 Suit code
28 Suit code
29 Suit code
30 Array of Faces
31 Static initialiser
32 Face code
33 Face code
34 Face code

0-1

35 Face code
36 Face code
37 Face code
38 Face code
39 Face code
40 Example Faces
41 Card code
42 Card code
43 Card code
44 Card code
45 Pros and Cons
46 Section 4: Approach C:Using Inheritance
47 Have the classes Suit and Club (etc.)
48 Suit code
49 Suit code
50 Suit code
51 Clubs code
52 Diamonds code

0-2

53 Faces
54 Face code
55 Face code
56 Face code
57 Ace code
58 Two code
59 Card code
60 Pros and Cons
61 Section 5: A Pack of Cards
62 Card collections
63 CardCollection
64 CardCollection code
65 CardCollection code
66 CardCollection code
67 CardCollection code
68 CardCollection code
69 CardCollection code
70 CardCollection code

0-3

71 CardCollection code
72 A pack of cards
73 CardPack code
74 CardPack code
75 A test program
76 TestPack code
77 TestPack code
78 TestPack code
79 TestPack sample output
80 TestPack sample output
81 TestPack sample output
82 TestPack sample output
83 Section 6: A Game of Snap
84 A game of Snap
85 The game speed
86 The end of the game
87 Example play
88 Classes of the implementation

0-4

89 Classes of the implementation
90 Classes of the implementation
91 Classes of the implementation
92 Classes of the implementation
93 Classes of the implementation
94 Section 7: Code management issues
95 Installing Snap as a command
96 Installing Snap as a command
97 Installing Snap as a command
98 Makefiles
99 Makefile for Snap

100 Makefile for Snap
101 Software tools
102 Make your own software tools
103 Make your own software tools
104 Make your own software tools
105 Make your own software tools
106 Make your own software tools

0-5

107 Make your own software tools
108 Make your own software tools

0-6

Case study 2

A Pack of Cards

(leading to a game of Snap)

May 3, 2005 CS1092 - John Latham Page 1(0/0)

Section 1

Introduction

May 3, 2005 CS1092 - John Latham Page 2(0/0)

Introduction
� In this case study we shall implement a pack of playing cards.

� We shall do this 3 times, each time using a different approach.

� We shall also write a simple text-based test program.

� Then we shall go on to provide images for the cards, and develop a simple Human

reaction enhancement aid, based on the popular game of Snap. :-)

� Run: /opt/teaching/bin/Snap

May 3, 2005 CS1092 - John Latham Page 3(0/0)

There are many ways to crack an egg . . .
� . . . and also many ways to build a bridge.

� There are usually many solutions to a problem. Part of the engineering process is making

decisions about which one to use. These are sometimes subjective.

� The 3 approaches we study here to implementing the pack of cards are:

– A: The “I model everything as a number because I used to be a C hacker” approach.

– B: The “I build an exact abstract model of the requirements because I know it is safer

than hacking” approach.

– C: The “I religiously follow the teachings of OO and exploit the power of inheritance

whenever I can” approach.

� I hope my prejudice isn’t showing too much. :-)

May 3, 2005 CS1092 - John Latham Page 4(0/0)

The basis for variation
� A playing card comprises a suit and a face.

� There are 4 suits: Clubs, Diamonds, Hearts and Spades.

� There are 13 Faces: Ace, King, Queen, Jack, Ten, Nine, Eight, Seven, Six, Five, Four,

Three and Two.

� The variation in the 3 approaches is concerned with how we model these two small sets

of values.

May 3, 2005 CS1092 - John Latham Page 5(0/0)

Section 2

Approach A:

Ex C hacker

May 3, 2005 CS1092 - John Latham Page 6(0/0)

Using integers
� You have seen lots of examples of integers being used to model a small set of values. For

example:

– Direction and types of Cell in the Snake program.

– Positions of placement in a BorderLayout.

� It is in fact quite commonly used.

� It gets its inspiration from how one does similar things in the programming language C –

there we can use #defines to achieve a similar result.

� Many Java programmers are also, or used to be, C programmers.

May 3, 2005 CS1092 - John Latham Page 7(0/0)

Card
� Essentially then, an instance of Card consists of a pair of integers, one for the suit and

one for the face.

� The integer for the suit is in the range 1 to 4 – 1 representing the lowest value suit. (Any

true C hacker would use 0 to 3 probably!).

� The integer for the face is in the range 2 to 14 – 14 representing Ace which is the highest

value. (Some would here be tempted to use 0 to 12, and add/substract 2 all the time!)

� The class provides 8 public static final variables for convenience, such as ACE and

SPADES.

� Observe the compareTo() method.

May 3, 2005 CS1092 - John Latham Page 8(0/0)

Card code

public class Card implements Comparable

{

public static final int CLUBS = 1;

public static final int DIAMONDS = 2;

public static final int HEARTS = 3;

public static final int SPADES = 4;

public static final int JACK = 11;

public static final int QUEEN = 12;

public static final int KING = 13;

public static final int ACE = 14;

May 3, 2005 CS1092 - John Latham Page 9(0/0)

Card code

private final int suit;

private final int face;

public Card(int requiredSuit, int requiredFace)

{

suit = requiredSuit;

face = requiredFace;

} // Card

May 3, 2005 CS1092 - John Latham Page 10(0/0)

Card code

public int getSuit()

{

return suit;

} // getSuit

public int getFace()

{

return face;

} // getFace

May 3, 2005 CS1092 - John Latham Page 11(0/0)

Card code

// Why is the parameter type Object, rather than Card?

public boolean equals(Object other)

{

if (other instanceof Card)

return suit == ((Card) other).suit && face == ((Card) other).face;

else

return super.equals(other);

} // equals

May 3, 2005 CS1092 - John Latham Page 12(0/0)

Card code

// Why do we need to cast other to Card?

public int compareTo(Object other)

{

Card otherCard = (Card) other;

if (suit == otherCard.suit)

return face - otherCard.face;

else

return suit - otherCard.suit;

} // compareTo

May 3, 2005 CS1092 - John Latham Page 13(0/0)

Card code

public String toString()

{

return faceToString(face) + " of " + suitToString(suit);

} // toString

May 3, 2005 CS1092 - John Latham Page 14(0/0)

Card code

private String suitToString(int suit)

{

switch (suit)

{

case CLUBS: return "clubs";

case DIAMONDS: return "diamonds";

case HEARTS: return "hearts";

case SPADES: return "spades";

default: return "error!";

} // switch

} // suitToString

May 3, 2005 CS1092 - John Latham Page 15(0/0)

Card code

private String faceToString(int face)

{

switch (face)

{

case 2: return "two";

case 3: return "three";

case 4: return "four";

case 5: return "five";

case 6: return "six";

case 7: return "seven";

case 8: return "eight";

case 9: return "nine";

case 10: return "ten";

May 3, 2005 CS1092 - John Latham Page 16(0/0)

Card code

case JACK: return "jack";

case QUEEN: return "queen";

case KING: return "king";

case ACE: return "ace";

default: return "error!";

} // switch

} // faceToString

} // class Card

May 3, 2005 CS1092 - John Latham Page 17(0/0)

Pros
� The most attractive feature of this approach is its simplicity – we did not need to make

classes for the data types Suit and Face.

� Of course, this is why it is commonly used.

May 3, 2005 CS1092 - John Latham Page 18(0/0)

Cons
� The most repulsive feature of this approach is its dangerous over simplicity – we did not

make classes for the data types Suit and Face and so we have no control over them.

� Every suit has an associated integer, but not vice versa. There is nothing to stop someone

writing:

Card card = new Card(5, 15);

thus making a ‘cheat’ card which has a greater value than any in a real pack! We could

tighten that up by making the constructor raise an exception, but we cannot stop people

trying to do it (i.e. their code will still compile).

May 3, 2005 CS1092 - John Latham Page 19(0/0)

Cons continued
� We also cannot stop someone writing:

Card card1 = new Card(Card.CLUBS, 2);

Card card2 = new Card(Card.SPADES, Card.ACE);

int hasNoMeaning = card1.getSuit() * card2.getFace() - 17;

� That is almost certainly nonsense, but we have no way of stopping it being done. Because

a suit is an integer, someone can do anything to it which can be done to any other integer.

� We would like to make the datatype safer to guard against stupidity like that.

� Afterall, a major motivation for having datatypes (and classes in Java) is to gain safety.

(Compare this with having to dangerously use int in C for booleans because there is no

boolean type, etc..)

May 3, 2005 CS1092 - John Latham Page 20(0/0)

Section 3

Approach B:

Exact abstract model

May 3, 2005 CS1092 - John Latham Page 21(0/0)

Have the classes Suit and Face
� We can gain control over the suits and faces if we make classes for them.

� At the heart of these classes we will use an integer so that we get an ordering of the

values. But this integer will be private, so no-one can abuse it.

� Of course, the approach we use here is not as straightforward as the previous – there is no

gain without some pain. Do not let that put you off: in many situations the extra cost is

worth it, and it is certainly important that you study the approach so that you are able to

choose freely.

May 3, 2005 CS1092 - John Latham Page 22(0/0)

Private constructor
� Most (all?) the constructor methods you have seen up to now have had public visibility.

� This has enabled instances of the classes to be made from code in other classes.

� However, here we want there to be exactly four suits, each being an instance of the class

Suit. We cannot guarantee this if code in other classes can make more instances.

� So, we simply make the constructor private!

May 3, 2005 CS1092 - John Latham Page 23(0/0)

Exactly four suits
� We make the four instances of Suit within the class and store references to them in

public static final variables.

May 3, 2005 CS1092 - John Latham Page 24(0/0)

Suit ordering based on integers
� When we construct a suit, we give it an ordinal number so that suits can be compared to

see which is the greatest.

� This integer is stored in a private instance variable.

May 3, 2005 CS1092 - John Latham Page 25(0/0)

Suit code

public class Suit implements Comparable

{

public static final Suit CLUBS = new Suit(1);

public static final Suit DIAMONDS = new Suit(2);

public static final Suit HEARTS = new Suit(3);

public static final Suit SPADES = new Suit(4);

private final int ordinalInt;

private Suit(int requiredOrdinalInt)

{

ordinalInt = requiredOrdinalInt;

} // Suit

May 3, 2005 CS1092 - John Latham Page 26(0/0)

Suit code

// Why is the parameter type Object, rather than Suit?

public boolean equals(Object other)

{

if (other instanceof Suit)

return this == other; // Safe because no duplicates.

else

return super.equals(other);

} // equals

// Look at the definition of equals() in the superclass --

// was this method needed here?

May 3, 2005 CS1092 - John Latham Page 27(0/0)

Suit code

// Why do we need to cast other to Suit?

public int compareTo(Object other)

{

return ordinalInt - ((Suit) other).ordinalInt;

} // compareTo

May 3, 2005 CS1092 - John Latham Page 28(0/0)

Suit code

public String toString()

{

if (this == CLUBS) return "clubs";

else if (this == DIAMONDS) return "diamonds";

else if (this == HEARTS) return "hearts";

else if (this == SPADES) return "spades";

else return "impossible!";

} // toString

} // class Suit

May 3, 2005 CS1092 - John Latham Page 29(0/0)

Array of Faces
� Face is similar to Suit.

� We shall have 4 constants for Ace, King, Queen and Jack.

� Rather than 9 more separate constants, for convenience we shall have a static array to

store the references to the 9 faces which are based on the numbers 2 to 10.

� This array will be initialised by a static initialiser.

May 3, 2005 CS1092 - John Latham Page 30(0/0)

Static initialiser
� A static initialiser is a piece of code in a class that is executed once when the program

starts (as the class is loaded). It can be used to initialise values of static variables.

� The syntax is:

static { /* Put here any code you like,

but it can only access static variables. */

} // static initialiser

� We have not needed one so far (I think), as the values of static variables have been given

via a single assignment.

public static int X = 10;

Is equivalent to

public static int X;

static { X = 10; }

May 3, 2005 CS1092 - John Latham Page 31(0/0)

Face code

public class Face implements Comparable

{

public static final Face JACK = new Face(11);

public static final Face QUEEN = new Face(12);

public static final Face KING = new Face(13);

public static final Face ACE = new Face(14);

May 3, 2005 CS1092 - John Latham Page 32(0/0)

Face code

// A static array for the numbers mapping int onto Face.

// Positions 0 and 1 are unused.

private static final Face [] numbers = new Face [11];

// A static initialiser for the array.

static

{

for (int i = 2; i <= 10; i++)

numbers[i] = new Face(i);

} // static initialiser

May 3, 2005 CS1092 - John Latham Page 33(0/0)

Face code

private final int ordinalInt;

private Face(int requiredOrdinalInt)

{

ordinalInt = requiredOrdinalInt;

} // Face

May 3, 2005 CS1092 - John Latham Page 34(0/0)

Face code

// An accessor function for the numbers array.

public static Face number(int i)

{

if (i >= 2 && i <= 10)

return numbers[i];

else

return null;

} // number

May 3, 2005 CS1092 - John Latham Page 35(0/0)

Face code

// Why is the parameter type Object, rather than Suit?

public boolean equals(Object other)

{

if (other instanceof Face)

return this == other; // Safe because no duplicates.

else

return super.equals(other);

} // equals

// Look at the definition of equals() in the superclass --

// was this method needed here?

May 3, 2005 CS1092 - John Latham Page 36(0/0)

Face code

// Why do we need to cast other to Face?

public int compareTo(Object other)

{

return ordinalInt - ((Face) other).ordinalInt;

} // compareTo

May 3, 2005 CS1092 - John Latham Page 37(0/0)

Face code

public String toString()

{

if (this == numbers[2]) return "two";

else if (this == numbers[3]) return "three";

else if (this == numbers[4]) return "four";

else if (this == numbers[5]) return "five";

else if (this == numbers[6]) return "six";

else if (this == numbers[7]) return "seven";

else if (this == numbers[8]) return "eight";

else if (this == numbers[9]) return "nine";

else if (this == numbers[10]) return "ten";

May 3, 2005 CS1092 - John Latham Page 38(0/0)

Face code

else if (this == ACE) return "ace";

else if (this == JACK) return "jack";

else if (this == QUEEN) return "queen";

else if (this == KING) return "king";

else return "impossible!";

} // toString

} // class Face

May 3, 2005 CS1092 - John Latham Page 39(0/0)

Example Faces
� The 13 instances of Face are accessed either by a constant name, or via the number()

method. For example:

Face aFace = Face.ACE;

Face anotherFace = Face.number(7);

May 3, 2005 CS1092 - John Latham Page 40(0/0)

Card code

public class Card implements Comparable

{

private final Suit suit;

private final Face face;

public Card(Suit requiredSuit, Face requiredFace)

{

suit = requiredSuit;

face = requiredFace;

} // Card

May 3, 2005 CS1092 - John Latham Page 41(0/0)

Card code

public Suit getSuit()

{

return suit;

} // getSuit

public Face getFace()

{

return face;

} // getFace

May 3, 2005 CS1092 - John Latham Page 42(0/0)

Card code

public boolean equals(Card other)

{

// We can use == as there are no duplicates in Suit and Face.

return suit == other.suit && face == other.face;

} // equals

// Why do we need to cast other to Card?

public int compareTo(Object other)

{

Card otherCard = (Card) other;

if (suit == otherCard.suit) // Safe because no duplicates.

return face.compareTo(otherCard.face);

else

return suit.compareTo(otherCard.suit);

} // compareTo

May 3, 2005 CS1092 - John Latham Page 43(0/0)

Card code

public String toString()

{

return face.toString() + " of " + suit.toString();

} // toString

} // class Card

May 3, 2005 CS1092 - John Latham Page 44(0/0)

Pros and Cons
� The most attractive feature of this approach is its safety – because we have control over

what anyone can do with Suits and Faces, people are protected from their stupidity.

� The disadvantage is that it is a little more complex than using integers directly.

May 3, 2005 CS1092 - John Latham Page 45(0/0)

Section 4

Approach C:

Using Inheritance

May 3, 2005 CS1092 - John Latham Page 46(0/0)

Have the classes Suit and Club (etc.)
� In this third approach we consider that Club is not an instance of Suit but a subclass of

it. Obviously we think the same of the other 3 suits.

� This means we do not need to use a conditional statement when we need variations in the

properties of the different suits. Instead each subclass overrides a method in the Suit

class. For example each suit subclass overrides toString().

� We do not want anyone to make instances of Suit directly so we shall declare that class

as abstract.

� We want exactly one instance of each of the four suits, so their constructors will be

private, and we shall have one public static final variable in each referring to the

one instance. We shall call that variable SUIT. So the four suits will be accessed as

Clubs.SUIT Diamonds.SUIT Hearts.SUIT Spades.SUIT

May 3, 2005 CS1092 - John Latham Page 47(0/0)

Suit code

public abstract class Suit implements Comparable

{

// This is now a method so it can be overridden / implemented.

// Making it abstract forces it to be implemented.

protected abstract int ordinalInt();

// Making it protected means it can be accessed by classes in the same

// package, plus subclasses.

// This is the same as public if we have only the default package!

// Java could do with another, tighter, visibility,

// for access in subclasses only.

May 3, 2005 CS1092 - John Latham Page 48(0/0)

Suit code

// Needed?

public boolean equals(Object other)

{

if (other instanceof Suit)

return this == other; // Safe because no duplicates.

else

return super.equals(other);

} // equals

public int compareTo(Object other)

{

return ordinalInt() - ((Suit) other).ordinalInt();

} // compareTo

May 3, 2005 CS1092 - John Latham Page 49(0/0)

Suit code

// This also must be implemented in subclasses.

// Each subclass provides a method that returns the right string.

public abstract String toString();

} // class Suit

May 3, 2005 CS1092 - John Latham Page 50(0/0)

Clubs code

public class Clubs extends Suit

{

public final static Clubs SUIT = new Clubs();

private Clubs() { } // No one else can make instances.

protected int ordinalInt()

{ return 1; }

public String toString()

{ return "clubs"; }

} // class Clubs

May 3, 2005 CS1092 - John Latham Page 51(0/0)

Diamonds code

public class Diamonds extends Suit

{

public final static Diamonds SUIT = new Diamonds();

private Diamonds() { } // No one else can make instances.

protected int ordinalInt()

{ return 2; }

public String toString()

{ return "diamonds"; }

} // class Diamonds

May 3, 2005 CS1092 - John Latham Page 52(0/0)

Faces
� We treat faces in the same way.

� We have one abstract class called Face.

� We have 13 subclasses called Ace, King, Queen, Jack, Ten, Nine, Eight, Seven, Six,

Five, Four, Three and Two.

� These each have private constructors, and make one instance referenced from a public

static final variable called FACE. That is, they will be accessed as

Ace.FACE King.FACE Queen.FACE Jack.FACE Ten.FACE ...

May 3, 2005 CS1092 - John Latham Page 53(0/0)

Face code

public abstract class Face implements Comparable

{

// This is now a method so it can be overridden / implemented.

// Making it abstract forces it to be implemented.

protected abstract int ordinalInt();

May 3, 2005 CS1092 - John Latham Page 54(0/0)

Face code

// Needed?

public boolean equals(Object other)

{

if (other instanceof Face)

return this == other; // Safe because no duplicates.

else

return super.equals(other);

} // equals

public int compareTo(Object other)

{

return ordinalInt() - ((Face) other).ordinalInt();

} // compareTo

May 3, 2005 CS1092 - John Latham Page 55(0/0)

Face code

// This also must be implemented in subclasses.

public abstract String toString();

} // class Face

May 3, 2005 CS1092 - John Latham Page 56(0/0)

Ace code

public class Ace extends Face

{

public final static Ace FACE = new Ace();

private Ace() { } // No one else can make instances.

protected int ordinalInt()

{ return 14; }

public String toString()

{ return "ace"; }

} // class Ace

May 3, 2005 CS1092 - John Latham Page 57(0/0)

Two code

public class Two extends Face

{

public final static Two FACE = new Two();

private Two() { } // No one else can make instances.

protected int ordinalInt()

{ return 2; }

public String toString()

{ return "two"; }

} // class Two

May 3, 2005 CS1092 - John Latham Page 58(0/0)

Card code
� The Card class in approach C is identical to that in approach B.

May 3, 2005 CS1092 - John Latham Page 59(0/0)

Pros and Cons
� It has the safety of approach B.

� It is, possibly, more efficient: if/else statments are replaced by dynamic method binding.

� On the other hand, it is much more code than approach B!

May 3, 2005 CS1092 - John Latham Page 60(0/0)

Section 5

A Pack of Cards

May 3, 2005 CS1092 - John Latham Page 61(0/0)

Card collections
� Having only single cards would not be much fun!

� We want to have collections of cards.

� For example one obvious collection is a Pack of Cards.

� However, in a game of cards we might have collections like a hand, a discard pile, a take

up pile, etc..

� We shall start by creating a super-class of card collections with some general features.

� As it happens, the code for this class is the same in all three of the approaches to

modelling cards.

May 3, 2005 CS1092 - John Latham Page 62(0/0)

CardCollection
� A CardCollection is based on an ArrayList of Cards.

� It has two obvious places where we can add cards – the low end (index 0) and the high

end. The high end is more efficient as it does not require the ArrayList to shift cards up

to make room when we insert a card or down to close a gap when we remove one.

� So subclasses of CardCollection which only need to use one end for adding and

removing cards should use the high end. For example, a stack of cards.

� Some subclasses of CardCollection will need to use both ends, For example a queue of

cards.

� In addition to adding and removing cards, other operations on a CardCollection

include shuffling and sorting.

May 3, 2005 CS1092 - John Latham Page 63(0/0)

CardCollection code

import java.util.ArrayList;

import java.util.Collections;

public class CardCollection

{

private ArrayList cards = new ArrayList();

public CardCollection()

{

} // CardCollection

May 3, 2005 CS1092 - John Latham Page 64(0/0)

CardCollection code

public boolean isEmpty()

{

return cards.size() == 0;

} // isEmpty

public int size()

{

return cards.size();

} // size

May 3, 2005 CS1092 - John Latham Page 65(0/0)

CardCollection code

// Could throw an exception for illegal index?

public Card lookAt(int index)

{

if (index < 0 || index >= cards.size())

return null;

else

return (Card) cards.get(index);

} // lookAt

May 3, 2005 CS1092 - John Latham Page 66(0/0)

CardCollection code

public void addHigh(Card card)

{

cards.add(card);

} // addHigh

public Card removeHigh()

{ if (cards.size() == 0)

return null;

else

{ int highestIndex = cards.size() - 1;

Card result = (Card) cards.get(highestIndex);

cards.remove(highestIndex);

return result;

} // else

} // removeHigh

May 3, 2005 CS1092 - John Latham Page 67(0/0)

CardCollection code

public void addLow(Card card)

{

cards.add(0, card);

} // addLow

public Card removeLow()

{

if (cards.size() == 0)

return null;

else

{ Card result = (Card) cards.get(0);

cards.remove(0);

return result;

} // else

} // removeLow

May 3, 2005 CS1092 - John Latham Page 68(0/0)

CardCollection code

public void shuffle()

{

ArrayList shuffledCards = new ArrayList();

while (cards.size() > 0)

{

int randomIndex = (int) (Math.random() * cards.size());

shuffledCards.add(cards.get(randomIndex));

cards.remove(randomIndex);

} // while

cards = shuffledCards;

} // shuffle

May 3, 2005 CS1092 - John Latham Page 69(0/0)

CardCollection code

public void sort()

{

Collections.sort(cards);

} // sort

May 3, 2005 CS1092 - John Latham Page 70(0/0)

CardCollection code

public CardCollection removeAll()

{

CardCollection result = new CardCollection();

result.cards = cards;

cards = new ArrayList(); // Sharing issue?

return result;

} // removeAll

} // class CardCollection

May 3, 2005 CS1092 - John Latham Page 71(0/0)

A pack of cards
� A pack of cards is one type of CardCollection so we define it as a subclass.

� A CardPack always starts off with one copy of all 52 cards.

� The code for CardPack is different for each of the three approaches to modelling cards,

because of the different way we build actual cards. Here we show the version for

approach B.

May 3, 2005 CS1092 - John Latham Page 72(0/0)

CardPack code

public class CardPack extends CardCollection

{

public CardPack()

{

addNewSuitOfCards(Suit.SPADES);

addNewSuitOfCards(Suit.HEARTS);

addNewSuitOfCards(Suit.CLUBS);

addNewSuitOfCards(Suit.DIAMONDS);

} // CardPack

May 3, 2005 CS1092 - John Latham Page 73(0/0)

CardPack code

private void addNewSuitOfCards(Suit suit)

{

addHigh(new Card(suit, Face.ACE));

addHigh(new Card(suit, Face.JACK));

addHigh(new Card(suit, Face.QUEEN));

addHigh(new Card(suit, Face.KING));

for (int i = 2; i <= 10; i++)

addHigh(new Card(suit, Face.number(i)));

} // addNewSuitOfCards

public Card dealCard()

{

return removeHigh();

} // dealCard

} // class CardPack

May 3, 2005 CS1092 - John Latham Page 74(0/0)

A test program
� We want to have a test program to check that our implementation works.

� The test program presented here proceeds as follows.

– Take two packs of cards, pack1 and pack2.

– Shuffle pack1 and deal seven cards from it – showing these cards on the standard

output.

– Next sort both packs.

– Now deal from each, and see where they are different. Show the similar and different

cards on the standard output.

– The result should show seven random cards, followed by a sorted pack of cards

indicating where the seven random cards would be in the sequence.

May 3, 2005 CS1092 - John Latham Page 75(0/0)

TestPack code

public class TestPack

{

public static void main(String args [])

{

CardPack pack1 = new CardPack();

CardPack pack2 = new CardPack();

pack1.shuffle();

for (int i = 1; i <= 7; i++)

{

Card card = pack1.dealCard();

System.out.println(card);

} // for

System.out.println("-----------------------------");

pack1.sort();

pack2.sort();

May 3, 2005 CS1092 - John Latham Page 76(0/0)

TestPack code

// Go through both packs and compare cards.

// Pack1 will run out no later than pack2.

while (! pack1.isEmpty())

{

Card card1 = pack1.dealCard();

Card card2;

do

{

card2 = pack2.dealCard();

if (! card2.equals(card1))

System.out.println("------ " + card2);

} while (! card2.equals(card1));

System.out.println(card1);

} // while

May 3, 2005 CS1092 - John Latham Page 77(0/0)

TestPack code

// Now finish of pack2 if needed.

while (! pack2.isEmpty())

{

Card card2 = pack2.dealCard();

System.out.println("------ " + card2);

} // while

} // main

} // class TestPack

May 3, 2005 CS1092 - John Latham Page 78(0/0)

TestPack sample output

two of hearts

three of clubs

ten of hearts

six of clubs

six of hearts

five of hearts

jack of clubs

ace of spades

king of spades

queen of spades

jack of spades

ten of spades

nine of spades

eight of spades

May 3, 2005 CS1092 - John Latham Page 79(0/0)

TestPack sample output

seven of spades

six of spades

five of spades

four of spades

three of spades

two of spades

ace of hearts

king of hearts

queen of hearts

jack of hearts

------ ten of hearts

nine of hearts

eight of hearts

seven of hearts

------ six of hearts

May 3, 2005 CS1092 - John Latham Page 80(0/0)

TestPack sample output

------ five of hearts

four of hearts

three of hearts

------ two of hearts

ace of diamonds

king of diamonds

queen of diamonds

jack of diamonds

ten of diamonds

nine of diamonds

eight of diamonds

seven of diamonds

six of diamonds

five of diamonds

four of diamonds

May 3, 2005 CS1092 - John Latham Page 81(0/0)

TestPack sample output

three of diamonds

two of diamonds

ace of clubs

king of clubs

queen of clubs

------ jack of clubs

ten of clubs

nine of clubs

eight of clubs

seven of clubs

------ six of clubs

five of clubs

four of clubs

------ three of clubs

two of clubs

May 3, 2005 CS1092 - John Latham Page 82(0/0)

Section 6

A Game of Snap

May 3, 2005 CS1092 - John Latham Page 83(0/0)

A game of Snap
� To put our cards to ‘good’ use, we next develop a simple card game.

� Actually, it is a Human reaction enhancement program, based on the game of Snap.

� The user can either play against the computer or another Human.

� The two players are dealt cards into a playing queue, face down. They then take it in

turns to play cards onto a discard stack, face up. The card playing is automatic – no user

interaction is required.

� When the top two cards of the stack match, the players can claim a Snap by moving their

hand (image) onto the stack. The first player to get his or her hand on the stack wins the

contents of it – those cards are added to the back of his or her playing queue.

May 3, 2005 CS1092 - John Latham Page 84(0/0)

The game speed
� The whole point of the game is to play as fast possible.

� The speed is regulated by the program.

� If a Human player wins the stack, the game speeds up. Otherwise, whenever there is a

match which is not won by a Human player, the game slows down.

� When two Humans are playing, this means neither was fast enough to claim the stack in

the time allowed.

� When playing against the computer, then either the Human or the computer will always

win the stack whenever there is a match. The computer waits a period of time before

moving its hand, depending on the speed of the game.

May 3, 2005 CS1092 - John Latham Page 85(0/0)

The end of the game
� The game never ends.

� When a player runs out of playing queue, the other takes all the turns.

� Whenever two of the three card piles are empty, both players are dealt an additional new

pack of cards to add to their playing queues.

May 3, 2005 CS1092 - John Latham Page 86(0/0)

Example play
� The game is available in /opt/teaching/bin/Snap

� Run: /opt/teaching/bin/Snap

� When there is a match, you can move your hand to the centre by pressing space.

� For a slower game, you can also use the mouse to drag your hand image to the centre –

good for practising use of the mouse.

� The two person game is selected with the command line option ”2”. Mouse dragging is

not available (obviously) – instead the left player uses the ‘A’ key to move, and the other

uses the return key.

May 3, 2005 CS1092 - John Latham Page 87(0/0)

Classes of the implementation
� These classes are based on approach B to the model of cards.

Class list for Snap program

Class Description

Suit The suits using approach B.

SuitImage Provides images for suits, i.e. a single club, dia-

mond, heart and spade image. A custom subclass of

Component.

Face The faces using approach B.

May 3, 2005 CS1092 - John Latham Page 88(0/0)

Classes of the implementation

Class list for Snap program

Class Description

Card The cards using approach B.

CardImage Images for cards. These produce 13 small suit

images for Kings, etc. rather than a proper pic-

ture. This is a custom subclass of Component.

CardCollection Super class of the card collection classes, pro-

vides shuffle and sort.

May 3, 2005 CS1092 - John Latham Page 89(0/0)

Classes of the implementation

Class list for Snap program

Class Description

CardPack A pack of cards. A subclass of CardCollection.

CardQueue A queue of cards – first in first out. Used for the

playing queues of the two players. A subclass of

CardCollection.

CardQueueImage Images for CardQueue. These show a pile of

cards face down and indicate depth proportional

to the size of the queue.

May 3, 2005 CS1092 - John Latham Page 90(0/0)

Classes of the implementation

Class list for Snap program

Class Description

CardStack A stack of cards – last in first out. Used for the

discard pile between the two players. A subclass

of CardCollection.

CardStackImage Images for CardStack. These show the cards

face up, and randomly disarrayed for effect.

Hand The model of a hand – position, home positions

etc..

HandImage The image of a Hand – colour, size etc..

May 3, 2005 CS1092 - John Latham Page 91(0/0)

Classes of the implementation

Class list for Snap program

Class Description

SpeedController Speed controller for the game, offering a

number of speeds and speed up / down

methods. A particular feature is the ‘bi-

nary chop’ mode which helps to quickly

find a settled speed to suit the player at

the start of the game.

SpeedControllerImage An image and interface for the speed con-

troller.

May 3, 2005 CS1092 - John Latham Page 92(0/0)

Classes of the implementation

Class list for Snap program

Class Description

SnapGame The game play part of the program – an extension of

Panel.

Snap The whole Frame with buttons etc.. It also contains the

main method.

May 3, 2005 CS1092 - John Latham Page 93(0/0)

Section 7

Code management issues

May 3, 2005 CS1092 - John Latham Page 94(0/0)

Installing Snap as a command
� We wish to install the Snap program into /opt/teaching/bin so that people can run it

by simply typing Snap.

� You are used to running a Java program by explicitly invoking java with the name of the

main class whilst in the directory containing the class files.

� So how do we achieve our aim? Here is the way I often do it.

May 3, 2005 CS1092 - John Latham Page 95(0/0)

Installing Snap as a command
� We put all the class files into a jar file called Snap.jar.

� A jar file is similar to a zip or tar file: it is simply a file which contains many other files in

such a way that the right bit of software can retrieve them. Jar files are Java’s format of

such ‘archive’ files.

� Then we copy Snap.jar to /opt/teaching/bin and also make a symbolic link called

/opt/teaching/bin/Snap to a shell script called /opt/teaching/bin/run-jar.

� This shell script figures out the name of the main class from the basename of $0. It also

knows the name of the jar file, by appending .jar onto $0. So it can then start java to

run the program.

May 3, 2005 CS1092 - John Latham Page 96(0/0)

Installing Snap as a command
� This can all be done as follows.

jar -cf Snap.jar *.class

cp Snap.jar /opt/teaching/bin/Snap.jar

cd /opt/teaching/bin

ln -s run-jar Snap

� The file /opt/teaching/bin/run-jar contains

Basename=‘basename $0‘

export CLASSPATH="$0.jar"

exec java $Basename "$@"

� You can use this approach for your programs.

May 3, 2005 CS1092 - John Latham Page 97(0/0)

Makefiles
� Once you get past a handful of Java classes you wish to have some systematic way to

recompile those files which have been altered, without recpmpiling those which have not.

� A makefile (or some similar thing) is what you need. This is used with the program make.

May 3, 2005 CS1092 - John Latham Page 98(0/0)

Makefile for Snap
� The Snap program makefile. (It is quite advanced for a beginner.)

� Note that lines which are offset to the right are started with a tab, not multiple spaces: this
is important (unfortunately).

� You can find out more about makefiles and make by running man make.

JAVAC=javac

JARNAME=Snap.jar

INSTALLPATH=/opt/teaching/bin

JAVA := $(wildcard *.java)

CLASS := $(JAVA:%.java=%.class)

all : ${CLASS} ${JARNAME}

clean:

rm *.class ${JARNAME}

May 3, 2005 CS1092 - John Latham Page 99(0/0)

Makefile for Snap

%.class : %.java

unset CLASSPATH; ${JAVAC} $<

${JARNAME}: ${CLASS}

jar -cf ${JARNAME} *.class

install: all

(test ! -d ${INSTALLPATH} \

&& (mkdir -p ${INSTALLPATH}; \

chmod a+rx ${INSTALLPATH}); \

true)

jar -cf ${INSTALLPATH}/${JARNAME} *.class

chmod a+r ${INSTALLPATH}/${JARNAME}

May 3, 2005 CS1092 - John Latham Page 100(0/0)

Software tools
� The exercises you have done in laboratories have mostly required you to work with only a

small number of classes at once.

� Some of you have discovered various IDE tools to ‘help’. Our view is that these can

actually hinder in the early stages of learning, because they hide the important details.

� However, some of the examples you have seen in the course begin to challenge the limits

of what can comfortably be managed without additional tools.

� Next year you will be introduced to an IDE which you can use for Java code

development, and also for making UML diagrams.

May 3, 2005 CS1092 - John Latham Page 101(0/0)

Make your own software tools
� You have all heard the expression “A poor workman blames his tools.” I always like to

add the corollary “But a good workman can make his own.”

� I invite you to consider the view that you will need software tools to help you build

software. But you should (perhaps ultimately) consider the possibility of building some

of these yourself, rather than always soak up what some other body has decided is good

for you.

� Especially if you are working in a Unix environment, then some really useful tools can be

simple to build. (Arguably, Unix is the best IDE in the world, if you are prepared to

harness its power.)

� Recall the graphs of textual dependence between classes which we have seen. The data

for those graphs was obtained using a simple shell script.

May 3, 2005 CS1092 - John Latham Page 102(0/0)

Make your own software tools
� Here are the requirements for a simple software tool.

“I want a program that takes a string as an argument (e.g. a variable name) and

looks in the current directory for any Java source files containing that string. For

each source file found, I want it to create an xterm running the program less, with

the source file being listed, and the search string already highlighted.”

� Challenge: could you write this shell script?

� How many characters of code would it have?

May 3, 2005 CS1092 - John Latham Page 103(0/0)

Make your own software tools
� Here is the script I use for this.

#!/bin/sh

for i in ‘grep -il $1 *.java‘

do

xterm -T "$i" -e less -I -p $1 "$i" &

done

� I once set this as a challenge at the end of a lecture, just before Christmas. The first person

to meet the challenge had emailed me an answer within an hour of the lecture ending!

May 3, 2005 CS1092 - John Latham Page 104(0/0)

Make your own software tools

I also have a number of useful aliases defined in my $HOME/.my bashrc.all file, as

follows. As a parting challenge, see if you can work out what they do!

function do_suffix ()

{ local command="$1"

local suffix="$2"

shift 2

local i

local args

local opts

May 3, 2005 CS1092 - John Latham Page 105(0/0)

Make your own software tools

for i in "$@"

do

case "$i" in

-*) opts=$opts" ${i}" ;;

*\.$suffix) args=$args" ${i}" ;;

*\.) args=$args" ${i}$suffix" ;;

*) args=$args" ${i}.$suffix" ;;

esac

done

test "$args" == "" && args="*.$suffix"

$command $opts $args

}

May 3, 2005 CS1092 - John Latham Page 106(0/0)

Make your own software tools

function do_nosuffix ()

{ local command="$1"

shift 1

local i

local args

for i in "$@"

do

case "$i" in

*\.) i=‘echo $i | sed "s,\.$,,g"‘

args=$args" ${i}" ;;

*) args=$args" ${i}" ;;

esac

done

$command $args

}

May 3, 2005 CS1092 - John Latham Page 107(0/0)

Make your own software tools

alias ej="do_suffix $EDITOR java"

alias mj="do_suffix less java"

alias lj="do_suffix ls java"

alias llj="do_suffix \"ls -l\" java"

alias cj="do_suffix javac java"

alias wj="do_suffix wc java"

alias rj="do_nosuffix java"

May 3, 2005 CS1092 - John Latham Page 108(0/0)

