
(More) Graphical User Interfaces

CS1092

Sean Bechhofer

seanb@cs.man.ac.uk

2CS1092 Graphical User Interfaces

Topics

• Topics to cover in the next four lectures:
• More Widgets

– More sophisticated menus, menu bars, check boxes, radio buttons
etc.

• More Listeners
• Separating Model from View
• Applets

– Java programs that can be included in web pages
• Graphics

– Drawing objects on the screen
– Custom Components/Building your own widgets.

3CS1092 Graphical User Interfaces

Supporting Materials

• These lectures won’t tell you everything you need to know.
• This is not a comprehensive description of all the details.
• There are many aspects of the Swing library classes that you

should discover for yourselves.
• Liang

– Chapters 10, 11, 12.
• Savitch

– Chapters 16, 17, 18.
• Sun’s Java Tutorial

– http://java.sun.com/docs/books/tutorial
• Java API documentation

– http://www.cs.man.ac.uk/campusonly/jdk1.4/docs/api/index.html

4CS1092 Graphical User Interfaces

Case Study: Diary

• Throughout the next few lectures we will use a case study as
motivation and to supply examples of the concepts being
introduced.

• The case study will be a Diary application that allows us to
keep track of entries occurring at particular times and dates.

• The Diary has a Graphical User Interface that allows us to
view entries, add and remove them, save them to files and so
on.
– The GUI offers different views on the data (month/week/day etc).

5CS1092 Graphical User Interfaces

6CS1092 Graphical User Interfaces

The Diary Model

• The Diary has a rather simple data model.
• A Diary is made up of a number of instances of DiaryEntry
• Each DiaryEntry has a description, a category and a date

associated with it.
• Entries may be be either considered as “all day” entries, in

which case they have no time, or can be considered as
occuring at a particular time.
– Of course, for a real diary application we’d expect to be able to

add things like end times/durations, repeating entries etc.
– However, this particular model will be sufficient to allow us to

demonstrate the GUI concepts that we’re introducing without
complicating matters too much with.

7CS1092 Graphical User Interfaces

The Diary Model

• We specify our basic Diary and DiaryEntry objects through the
use of two interfaces.

• Recall that an interface specifies a collection of operations or
methods that we expect a class to provide, but says nothing
about how that implementation is to be achieved.

• It provides a signature of the methods
– Result type
– Name
– Argument types

8CS1092 Graphical User Interfaces

/** A diary is a collection of entries. The diary can be queried to
 find out entries occurring within particular timeframes. A diary can
 be observed: observers will be informed of any changes that occur
 (e.g. addition or deletion of entries). */

public interface Diary {
 /** Return all entries that occur between the given dates
 (inclusive). */
 public Iterator getEntries(Calendar from,
 Calendar to);

 /** Return all entries in the diary. Returns an Iterator over
 a collection of Diaryentries. */
 public Iterator getAllEEntries();

 /** Return all the categories currently in use */
 public Iterator getCategories();

Diary interface

9CS1092 Graphical User Interfaces

 /** Remove a specific entry.
 @returns true if the entry was removed */
 public boolean removeEntry(DiaryEntry entry);

 /** Add an entry to the diary
 @ returns the entry being added */
 public DiaryEntry addEntry(Calendar date,
 String description,
 String category,
 boolean allDay);

 /** Write the diary. */
 public void write(Writer writer) throws IOException;

 /** Read the diary */
 public void read(Reader reader) throws IOException;

 /** Add an observer that wishes to be informed of any changes to
 the diary. */
 public void addObserver(Observer o);

 /** Remove an observer */
 public void deleteObserver(Observer o);

}

Diary interface

10CS1092 Graphical User Interfaces

 /** Represents an entry occurring in a diary. Events are associated
 with a date/time, and have a textual description. Some entries are
 marked as all day entries, in which case their time is
 immaterial. Events can be ordered, based on their dates. Untimed
 entries are considered to occur before timed ones. */

public interface DiaryEntry extends Comparable {
 /** The date that this entry occurs at. Uses Calendar
 class rather than Date. */
 public Calendar getDate();

 /** The Description applying to this entry */
 public String getDescription();

 /** The category of the entry */
 public String getCategory();

 /** Whether the entry occurs all day */
 public boolean allDay();
}

DiaryEntry interface

11CS1092 Graphical User Interfaces

The Diary Model

• Note that the Diary interface says nothing
about the way that we might expect the diary
to be displayed or presented to the user.

• Also, the interfaces say nothing about how
we might implement the model
– All our GUI code will be be written using

these interfaces
– Allows us to swap in alternative

implementations of Diary and DiaryEntry
without impact on the GUI code.

• We have a clean separation of
responsibility. Diary

Implementation

Diary
Interfaces

GUI

12CS1092 Graphical User Interfaces

Packages

• You will also note from the sample code that we have begun to
split our implementation into a number of different packages:
– model: the interfaces for the diary
– gui: the GUI classes.
– impl: an Implementation of the diary

• Using packages in this way helps to maintain the separation
between the various responsibilities.

13CS1092 Graphical User Interfaces

Basic Components of the Diary GUI

• Our Diary GUI will be built up from some basic windows.
• Main Window

– Main entry point to the program. Controls operations such as
reading and writing a diary, general user preferences etc.

• Month View
– Shows a month’s worth of entries.

• Week View
– Shows a week’s worth of entries.

• Day View
– Shows the entries occuring on a particular day, and allows addition

and deletion of entries for that day.

14CS1092 Graphical User Interfaces

Menus

• Menus are often seen in windowing applications and provide a
convenient and space-saving way of providing access to a
number of functionalities or options.
– For example, Mozillas’s menu bar offers around 50 different

options and operations.

15CS1092 Graphical User Interfaces

What exactly is a menu?

• A menu is essentially a list of items, some of which may be
associated with some functionality such as
– executing some application code,
– setting options;
– opening another window.

• Menus may also be hierarchical, containing nested menus
– Again, this can help save space if there are a large number of

options that are available.
• Swing provides some basic classes that can support all of the

above.
– JMenu represents a menu
– JMenuItem (and subclasses) represent menu items

16CS1092 Graphical User Interfaces

What’s a menu bar?

• A menu bar is an area, usually at the top of an application
window that contains a number of menus.

• The menu items are usually “hidden” and drop down when the
user clicks on the menu.

• Swing provides a class for representing menu bars on GUI
application windows:
– JMenuBar

17CS1092 Graphical User Interfaces

Adding a menu bar and menus to a frame

• Consider the creation method of DiaryGUI (a subclass of
JFrame). Within that method, we create a new (empty) menu
bar and add it to the frame as follows:

• We now have an empty menu bar to which we can add menus.

• This will create a new empty menu with the title “File”.
• Next we need to add some menu items to the menu.

– Note that as with the components that we saw in CS1081 the order
in which we add things is not important. We can add the menu bar
to the frame before adding the menu items or afterwards.

JMenuBar menuBar = new JMenuBar();
this.setJMenuBar(menuBar);

JMenu fileMenu = new JMenu("File");
menuBar.add(fileMenu);

18CS1092 Graphical User Interfaces

Buttons and ActionListeners (Recap)

• In CS1081, we (hopefully!) learnt how to use a JButton in a
Swing user interface
1. An ActionListener is added as a listener to the JButton.
2. When the JButton is pressed, an ActionEvent is passed to each

listener that the JButton has.
3. The listeners then perform some appropriate action.

• Recall our simple StopClock application example.
– The StopClock had a button that would start and stop the clock.
– The StopClock object registered as an action listener with the

button.
– When the button is pressed, the StopClock did the appropriate

thing.

19CS1092 Graphical User Interfaces

StopClock Sources and Listeners (Recap)

• What happens in the stop clock?

startStopJButton theStopClock

evt

Press
Button

Generate
event

Event passed
to listener

startStopJButton.addActionListener(this)

• When the button is pressed, a new ActionEvent object is
created and passed to the StopClock object. The
actionPerformed() method is then invoked with the event
as argument.

actionPerformed(evt)

20CS1092 Graphical User Interfaces

Menus and MenuItems

• A JMenuItem is very like a JButton
– In fact they share a common abstract superclass JAbstractButton.
– When a menu item is selected, it’s like pressing the button.

• So, in order to perform an action when a menu item is selected,
we must add an ActionListener to the JMenuItem.
– Just like with the JButton.

21CS1092 Graphical User Interfaces

Creating and adding menu items

• Creating a new JMenuItem is also similar to creating a JButton.
We can supply a label which will be used to display the item in
the menu.

•

• We then add the menu item to the menu. Items will appear in
the order in which they are added.

• We can also add separators between the items.

JMenuItem openItem = new JMenuItem("Open...");
fileMenu.add(openItem);

JMenuItem saveItem = new JMenuItem("Save...");
fileMenu.add(saveItem);

fileMenu.addSeparator();

JMenuItem quitItem = new JMenuItem("Quit");
fileMenu.add(quitItem);

22CS1092 Graphical User Interfaces

Look and Feel

• The way in which things GUI components appear depends on
the platform.
– For example, menu separators appear under Windows as a line

drawn between the menu items.
– On other platforms, e.g. MacOS X, the separators appear as some

blank space between the items.
– Similarly, buttons may appear differently.

• This is known as Look and Feel.
• We can set the Look and Feel either programmatically or via

options passed to the JVM.
• If we leave the responsibility for the Look and Feel to the

default implementation, it can help to ensure that our
applications “fit in” with the underlying operating system.
– Users like consistency……

23CS1092 Graphical User Interfaces

Hierarchical Menus

• Menus can be hierarchical
– A menu item may be a menu itself
– By default, nested menus appear as “pull-right” menus.

• The organisation of the menu items only impacts on the way in
which the menu appears.

24CS1092 Graphical User Interfaces

Listeners

• ActionListeners are responsible for responding to action events
such as button presses and (as we’ve just seen) menu
selections.

• So far we’ve seen two approaches:
– The GUI/JFrame itself implements ActionListener and provides the

actionPerformed() method.
– Another named class implements ActionListener -- recall the log

book example from the end of CS1081.
• There is another approach which we can use when supplying

listeners: so-called Anonymous Classes.

25CS1092 Graphical User Interfaces

Anonymous Classes

• Anonymous classes allow us to produce “one-time”
implementations of interfaces without explicitly introducing a
new named class

• Anonymous classes are often used if we only need one
instance of the class, and the class definition is short.
– ActionListener is often an example of this.
– It’s usually the case that each button is going to do something

different, so we might expect to have to provide different listeners
for each button.

26CS1092 Graphical User Interfaces

Anonymous Listeners

• Here’s an example of the use of an anonymous ActionListener,
taken from the DiaryGUI class.

• When the menu item is selected, the openMonthView() method
is called.

• Note that we don’t need to worry about checking what the event
source was -- we know it’ll be menu item that we’ve just created.
– Compare with our StopClock example.

JMenuItem monthView = new JMenuItem(”New Month View");
monthView.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {
 openNewMonthView();
}

 });
viewMenu.add(monthView);

27CS1092 Graphical User Interfaces

Anonymous Listeners

• Similarly, we can use anonymous listeners with JButtons
• As we’ve already seen, JButtons and JMenuItems are very

similar to JButtons.

JButton addEvent = new JButton(”Add Event");
addEvent.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {
 openAddEvent();
}

 });
buttons.add(addEvent);

28CS1092 Graphical User Interfaces

More Buttons

• So far we’ve seen simple Action buttons (and menu items).
• We can press/select them and an action is performed.
• Other kinds of buttons are available in Swing.

29CS1092 Graphical User Interfaces

Check Box

• A checkbox is a special kind of button that has some state -- it
can be on or off.

• Clicking the button toggles the state.
– We can find out which state the button is in via the method

• Clicking the button also fires an ActionEvent, so we can add
ActionListeners to checkboxes in exactly the same way as with
buttons.

public boolean isSelected();

30CS1092 Graphical User Interfaces

CheckBox Example (DiaryGUI)

• A Check box is added to the GUI.

• If the check box is selected when an update occurs, then we
perform some operation.

• Note here we don’t use an ActionListener -- we’re only
interested in the state of the checkbox.

autoSave = new JCheckBox("Auto Save");
autoSave.setSelected(false);
buttons.add(autoSave);

if (autoSave.isSelected()) {
 changesMade++;
 if ((changesMade % AUTO_SAVE_COUNT) == 0) {
 autoSave();
 changesMade = 0;
 }
}

31CS1092 Graphical User Interfaces

Radio Buttons

• Radios have buttons for selecting
stations or wavebands.
– Each button selects a band.
– Only one can be selected at a

time
– Selecting one “toggles” the

others to off.
• Radio buttons in java apply the

same philosophy
– Buttons are grouped together.
– Only one button in a group can

be on at one time.
• This can be useful when selecting

mutually exclusive options.

32CS1092 Graphical User Interfaces

Radio Buttons

• When we create a JRadioButton, we can add it to a
ButtonGroup.

• All the buttons in a given ButtonGroup group are linked together
– When one is selected, the others will be deselected.
– Note, however, that only the button that is selected will fire an

Action Event.
– The buttons don’t have to be in the same place.

• By default, all the buttons in a group are initially unselected.
• Once a button in a group is selected, one button will always be

selected in the group.

33CS1092 Graphical User Interfaces

Radio Button Example (RadioTimeChooser)
 /* Create a new TimeChooser */
 public RadioTimeChooser() {

ButtonGroup group = new ButtonGroup();
setLayout(new GridLayout(0, 4));
JRadioButton timeRadioButton =
 new JRadioButton("No Time");
add(timeRadioButton);
timeRadioButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {
 selectedTime = "";
}

 });
timeRadioButton.setSelected(true);
group.add(timeRadioButton);

for (int time = START_TIME;
 time <= END_TIME;
 time++) {
 String displayTime = time + ":00";
 timeRadioButton =

new JRadioButton(displayTime);
 add(timeRadioButton);
 group.add(timeRadioButton);
 timeRadioButton.addActionListener(this);
}

 }

34CS1092 Graphical User Interfaces

Radio Button Example

• Here we’re using the getActionCommand() method on action
events.
– This returns the command string associated with the event.
– By default, this is the text that is on the button that has been

pressed.
• You may notice that JRadioButton and JCheckBox share a

common abstract super class: JToggleButton
– This represents those buttons that can toggle between two states.

public void actionPerformed(ActionEvent evt) {
/* Use the action command, e.g. the string associate with the
 button */
selectedTime = evt.getActionCommand();

 }

35CS1092 Graphical User Interfaces

Other Listeners

• So far we’ve seen a number of examples of ActionListener
– An action listener responds to a single Action Event raised by a

component such as a Button.
• There are many other kinds of events that may occur
? What might these be?

36CS1092 Graphical User Interfaces

Other Listeners

• KeyEvents
– A key is pressed, released or typed.

• MouseEvents
– The mouse is clicked, moved or dragged.

• WindowEvents
– A window is opened, closed or iconified

• Each of these events has its own listener class.

37CS1092 Graphical User Interfaces

KeyListener

• KeyListeners allow us to listen for events associated with keys
being pressed.

• The KeyListener interface has three methods:

? Why might we want to have separate methods for press,
release and type?

public void keyPressed(KeyEvent e);

public void keyReleased(KeyEvent e);

public void keyTyped(KeyEvent e);

38CS1092 Graphical User Interfaces

KeyListener Example (AddEvent)

• This adds a KeyListener to the text field that “listens” for the
return key.
– If the Return key is pressed, some action is performed.

• We’re using an anonymous listener, but have to provide more
method implementations.

description = new JTextField(20);

description.addKeyListener(new KeyListener() {
 public void keyPressed(KeyEvent evt) {
 if (evt.getKeyCode() == KeyEvent.VK_ENTER) {

addEvent();
setVisible(false);
dispose();

 }
 }
 /* Don't care about these.*/
 public void keyTyped(KeyEvent evt) {
 }
 public void keyReleased(KeyEvent evt) {
 }
});

39CS1092 Graphical User Interfaces

Adapters

• In the previous example, we had to implement all the methods
specified in the KeyListener interface.

• However, we were only really interested in one of them.
– This means a lot of work just to supply a bunch of empty method

implementations.
• Consider a situation where we had an interface with twenty

methods in it and we only wanted/needed to implement one.
– This could involve a lot of unnecessary “empty” code.

• Listener Adapters are a solution to this problem
– An Adapter provides empty implementations of the methods

specified in an interface.
– To use the adapter class, we extend and override only the method

implementations we need.

40CS1092 Graphical User Interfaces

KeyAdapter Example (AddEvent)

• Note that we don’t now need to supply the implementation of
the two listening methods that we’re not interested in.

• You’ll find that adapters are particularly useful when creating
anonymous listeners.

• Adapters are available for (among others) MouseListener,
KeyListener, WindowListener.

? Why is there no adapter for ActionListener?
? Why do we have Listeners -- why not just have Adapters?

description = new JTextField(20);

description.addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent evt) {
 if (evt.getKeyCode() == KeyEvent.VK_ENTER) {

addEvent();
setVisible(false);
dispose();

 }
 }
});

41CS1092 Graphical User Interfaces

MouseListener

• A mouse listener listens for mouse events.

? Why might we want to distinguish between pressing and
clicking?

public void mouseClicked(KeyEvent e);

public void mouseEntered(KeyEvent e);

public void mouseExited(KeyEvent e);

public void mousePressed(KeyEvent e);

public void mouseReleased(KeyEvent e);

42CS1092 Graphical User Interfaces

MouseListener Example (WeekView)

• In this example, we listen for a double click of the mouse, and
then execute some action

• Again, note the use of an Adapter class, which saves us from
having to supply empty implementations for the four
MouseListener methods that we’re not really interested in.

displayLists[days].addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent evt) {
 if (evt.getClickCount() == 2) {
 /* Open up a new day view on the selected
 date. */
 DayView view =
 new DayView(getDiary(),
 displayDates[fdays]);
 view.setVisible(true);
 }
 }
});

43CS1092 Graphical User Interfaces

JList

• A JList allows us to display a list of things.
• Items can be selected/unselected
• The list offers a number of functions that allow us to query

which items are selected.
• We give the list a collection of objects that should be displayed.

display = new JList();

...
Vector v = new Vector();
/* Add the entries */
Calendar dayEnd = (Calendar) day.clone();
DiaryUtils.dayEnd(dayEnd);
for (Iterator it = getDiary().getEntries(day,

 dayEnd);
 it.hasNext();) {
 DiaryEntry entry = (DiaryEntry) it.next();
 v.add(entry);
}
display.setListData(v);

44CS1092 Graphical User Interfaces

JList

• We can add listeners to the list that will perform some operation
based on user actions.

• Here, we add a key listener that listens for the delete key, and
then deletes the currently selected entry.

• The basic JList machinery takes care of selection and
deselection of list items.

if (!readOnly()) {
 display.addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent evt) {
 if (evt.getKeyCode() == KeyEvent.VK_DELETE ||
 evt.getKeyCode() == KeyEvent.VK_BACK_SPACE) {
 DiaryEntry deletee =
 (DiaryEntry) display.getSelectedValue();
 deleteEntry(deletee);
 }
 }
 });
}

45CS1092 Graphical User Interfaces

JComboBox

• A JComboBox is a drop down widget that allows the user to
select one of a number of options.

• It’s like a mixture of a menu and a list.
• Unlike a list or a collection of radio buttons, however, the

combo box can allow the user to enter a new option if the
selections provided aren’t appropriate.
– We do this by setting the JComboBox to be editable.

46CS1092 Graphical User Interfaces

JComboBox Example (AddEntry)

• In the AddEntry window, we allow the user to select the
category that the entry is in.

• The list offers all the categories that are currently in use.
– If the user want a new one, they can type it in.

• Just like JList, we can get the selection from the JComboBox.

Vector cats = new Vector();
for (Iterator catIt = diary.getCategories();
 catIt.hasNext();) {
 String category = (String) catIt.next();
 cats.add(category);
}
categoryChooser = new JComboBox(cats);
categoryChooser.setEditable(true);

descriptionPanel.add(categoryChooser);

String category = (String) categoryChooser.getSelectedItem();

47CS1092 Graphical User Interfaces

Widgets and toString()

• Widgets like JList and JComboBox don’t really know anything
about the things that are in the list -- they’re just Objects.
– When we get things out of the list, we may need to cast them to an

appropriate type.
• If we add an object to a JList or a JComboBox, how will it

appear on the interface?
– For example, in the DayView window, we simply add a collection

of DiaryEntry instances to the list
• By default, if we don’t say anything, the widget will use the

object’s toString() method to provide a string that will appear in
the list.
– It is also possible to supply a “custom renderer” that will apply

some alternative mechanism for working out how to display objects
in the list.

48CS1092 Graphical User Interfaces

Dialogs

• Dialogs are common in Graphical User Interfaces
• They are used to inform the user of situations such as errors.
• They are used to confirm user actions that may not be undo-

able such as deletion.
• They are used to obtain user input such as

– Locations of files/resources
– Simple form-filling.

• Swing provides a component JDialog that supports dialogs

49CS1092 Graphical User Interfaces

JOptionPane

• Swing also provides a class called JOptionPane that has a
number of convenience methods that make it easy to pop up
standard dialog boxes.
– ConfirmDialog. Asks a confirming question, like yes/no/cancel.
– InputDialog. Prompt for some input.
– MessageDialog. Tell the user about something that has happened.

• The dialogs produced by JOptionPane are modal
– This means that we have to finish dealing with the dialog box

before we can do anything else with the GUI.

50CS1092 Graphical User Interfaces

JOptionPane Example (DayView)

• This example pops up a dialog with a message checking that
the user really wants to delete the given event.

• Note the use of static variables to indicate the possible options
available and the returned value.

private void deleteEvent(DiaryEntry deletee) {
 if (deletee!=null) {
 /* Pop up a dialog to confirm */
 String message = "Really Delete: " + deletee + "?";
 int confirm =
 JOptionPane.showConfirmDialog(this,
 message,
 "Confirm Delete",
 JOptionPane.YES_NO_OPTION);
 if (confirm == JOptionPane.YES_OPTION) {
 getDiary().removeEvent(deletee);
 }
 }
}

51CS1092 Graphical User Interfaces

JDialog

• We can also extend JDialog if we want to provide some more
sophisticated dialog interfaces.

/** Allows addition of entries. */
public class AddEvent extends JDialog {

...

 /** Create a new Dialog allowing addition of an entry. */
 public AddEvent(Diary aDiary,
 Calendar aDate,
 boolean fixedDate) {
 /* Creates a modal dialog, e.g. blocking. */
 super((Frame) null, true);
 /* Use the diary passed in */
 diary = aDiary;
 ...
 }
...
}

52CS1092 Graphical User Interfaces

JFileChooser

• It’s often the case that in a GUI we want to read and write from
files.

• JFileChooser gives us a basic component that allows selection
of a file.

• The class deals with all the unpleasant details of interacting
with the underlying filesystem.

53CS1092 Graphical User Interfaces

JFileChooser

• Creates a file chooser that looks for particular kinds of file.
• Note again the use of an anonymous class to provide the

FileFilter

fileChooser = new JFileChooser();
FileFilter filter = new FileFilter() {
 public boolean accept(File f) {
 return f.getName().endsWith(".dry");
 }
 public String getDescription() {
 return "Diary Files";
 }
};
fileChooser.setFileFilter(filter);

int returnVal = fileChooser.showOpenDialog(this);
if(returnVal == JFileChooser.APPROVE_OPTION) {
 try {
 diary.read(new FileReader(fileChooser.getSelectedFile()));
 } catch (IOException ex) {
 ex.printStackTrace();
 }
}

54CS1092 Graphical User Interfaces

WindowListener

• As another example of a listener class, a WindowListener will
listen for Window events such as windows being opened,
closed, or iconified.

• As with other listeners, an adapter class (WindowAdapter) is
provided.

• Be careful to distinguish between the different methods called
when windows are closed:
– windowClosing() is called when the user attempts to close a

window
– windowClosed() is called when the window has been closed and

disposed of.

public void windowActivated(WindowEvent e);
public void windowClosed(WindowEvent e);
public void windowClosing(WindowEvent e);
public void windowDeactivated(WindowEvent e);
public void windowDeiconified(WindowEvent e);
public void windowIconified(WindowEvent e);
public void windowOpened(WindowEvent e);

55CS1092 Graphical User Interfaces

WindowListener example (DiaryGUI)

• A simple example of a window listener is one that checks to see
if the application is in a sensible state to quit.

• The windowClosing() method is called when the user attempts
to close the window.

• If the program doesn’t explicitly hide and dispose of the window
when this is called, the close is cancelled.

• The attemptQuit() method checks the state, checks with the
user, and closes down if everything’s ok.

/* Use our own window listener to handle closing */
this.setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);

addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent event) {
 attemptQuit();
 }
 });

56CS1092 Graphical User Interfaces

Separating Model from View

• In our early user interface programs, a single object
(StopClock) was responsible for both holding the state of the
application and for the display of the GUI that was displayed.

• Instead, we often wish to separate out
1. The application logic (the things that we are representing along

with the operations for maniputing them).
2. The display of the interface -- buttons and widgets.
3. The control of interactions with the interface -- e.g. interpreting

mouse clicks
• 1 is often referred to as the model, while 2 is the view and 3

the controller.
• This so-called Model-View-Controller paradigm dates back to

research at Xerox in the late 70’s and a language called
Smalltalk.

57CS1092 Graphical User Interfaces

MVC

• The Model represents the data of the application.
• The View is the visual representation of that data.
• A Controller takes user input on the view and translates that to

changes in the model.

58CS1092 Graphical User Interfaces

MVC in Swing

• In Swing, the View and Controller have been collapsed to a
single object (UI Object)

• However, there is still a strong separation between the model
and the components responsible for display and interpretation
of user actions.

59CS1092 Graphical User Interfaces

The Diary Model

• As we’ve already hinted at, our Diary and
DiaryEntry interfaces comprise the Model in
our application.

• The GUI classes provide the View and
Controller.

• This separation has a number of nice
consequences. In particular, it makes it
easier for us to provide multiple views over
the same data.

Diary
Interfaces

GUI

Diary
Interfaces

GUI GUI

60CS1092 Graphical User Interfaces

Update

• This is all very well, but introduces some
interesting questions.

• For example, if I add a new entry to my
diary, how do I make sure that these
changes are displayed in my interface?

• This is particularly important if I have more
than one view open on the model at the
same time.

Diary
Interfaces

GUI GUI

61CS1092 Graphical User Interfaces

Observers and Observables

• We can solve this in part through use of the
Observer/Observable pattern.

• An Observable is an object that can be observed to see if it
changes.

• An Observable object can have a number of Observers.
• Whenever the Observable object changes, it notifies its

Observers. They can then decide whether to perform some
appropriate action.

• Java provides a class and interface in the java.util package that
make it easy for us to implement Observer/Observable pairs.

62CS1092 Graphical User Interfaces

Observable

• Observable is a class that keeps a list of Observers.
• It provides a number of methods for adding and removing

observers, and for notifying the observers of any changes.

public class java.util.Observable extends java.lang.Object{
 public java.util.Observable();
 public synchronized void addObserver(java.util.Observer);
 public synchronized void deleteObserver(java.util.Observer);
 public void notifyObservers();
 public void notifyObservers(java.lang.Object);
 public synchronized void deleteObservers();
 protected synchronized void setChanged();
 protected synchronized void clearChanged();
 public synchronized boolean hasChanged();
 public synchronized int countObservers();
}

63CS1092 Graphical User Interfaces

Observer

• Observer is an interface with a single method.
• It is this method that’s called when the Observer is being

notified.
interface java.util.Observer{
 public abstract void update(java.util.Observable,java.lang.Object);
}

64CS1092 Graphical User Interfaces

Observer and Observable in the Diary

• Recall the Diary interface definition
• We have methods that allow us to add and remove observers.

 /** Write the diary. */
 public void write(Writer writer) throws IOException;

 /** Read the diary */
 public void read(Reader reader) throws IOException;

 /** Add an observer that wishes to be informed of any changes to
 the diary. */
 public void addObserver(Observer o);

 /** Remove an observer */
 public void deleteObserver(Observer o);

}

65CS1092 Graphical User Interfaces

Diary Implementation

• Our implementation of the Diary interface class extends
Observable.

• This provides us with the necessary implementations of the
addObserver() and removeObserver() methods.

• Within our implementation, we need to make sure that
whenever we make a change to the state of the Diary we notify
the observers.
– Again, methods from Observable allows us to do this.

public boolean removeEvent(DiaryEntry entry) {
 if (entries.remove(entry)) {
 setChanged();
 notifyObservers(this);
 return true;
 }
 return false;
}

66CS1092 Graphical User Interfaces

DiaryView

• DiaryView is an abstract class providing basic functionality
required in one of our diary GUI views.
– The basic views (Day, Week and Month) extend this class.

• It extends JFrame (providing windowing functionality) and also
implements the Observer interface.

• The idea here is that when we create instances of the view, we
add them to the Diary’s Observer collection.

• When changes are made to the Diary’s internal state, the Diary
will then notify all its observers, allowing the views to update
themselves and maintain a consistent view.

67CS1092 Graphical User Interfaces

Swing Widgets

• Many of the Swing widgets apply this philosophy as well.
• For example, JList has a JListModel that handles the internal

data of the list. The model responds to actions enacted on the
GUI widget and changes its internal state.
– For example, when the mouse is clicked, an item may be selected.

• The JList GUI component may then update its appearance to
reflect the change in the internal state.
– Highlighting the selected item.

68CS1092 Graphical User Interfaces

Applets

• Java is a language intended from the start to be used in the
context of the Internet/World Wide Web.

• An Applet is a Java program that can be included in an HTML
page.

• When a Java-enabled browser is used to view the page, the
code for the applet is downloaded to your machine and
executed by the JVM.

• Programs can be divided (roughly) into two classes:
– Applications: Basic Java programs
– Applets: Programs that are intended to be run across the Internet.

If it’s not an applet, it’s an application.

69CS1092 Graphical User Interfaces

Applets

• Applets are like “little applications”
– Although there is no actual restriction on the size of an applet.

• Applets are very similar to Swing GUIs.
– Most of the simple GUI programs that you wrote last semester

could be implemented as applets.
• Applets differ from applications though in that they are not run

using a main() method.
– Instead, the applet implements methods that initialise, start or

display the applet.
– The creation of the applet instance and calling the appropriate

methods is then handled by the applet viewer or web browser.

70CS1092 Graphical User Interfaces

JApplet

• Applets are implemented using the JApplet class.
• A JApplet is a top level container.

– Just like a JFrame, it has a contentPane that we can put things
into and a menubar where we can add menu items.

• Rather than popping up a new window though, the applet
window will appear in the browser, embedded in the HTML
page.

71CS1092 Graphical User Interfaces

Key Applet Methods

• init()
– Performs some initialisation. This is a good place to put code that

would usually be called in the constructor.
• start()

– Starts the applet running
• stop()

– Stops the applet running, say when the user quits the browser.
• destroy()

– Performs a final cleanup

72CS1092 Graphical User Interfaces

Applet Example: DiaryApplet

• As an example, we provide an applet that provides a read-only
view on a diary.

• The applet uses the same basic code for displaying a month,
but wraps it up as a JApplet rather than a JFrame.

73CS1092 Graphical User Interfaces

Applet Example: DiaryApplet

74CS1092 Graphical User Interfaces

public class DiaryApplet extends JApplet implements Observer {
...
 /** Initialise the Diary Applet */
 public void init() {

/* Initialise to today */
monthStart = DiaryUtils.getMonthStart(new GregorianCalendar());
Container contents = getContentPane();
contents.setLayout(new BorderLayout());

JPanel prevNextPanel = new JPanel(new BorderLayout());
JButton previous = new JButton("Prev");
previous.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {
 previous();
}

 });
prevNextPanel.add(previous, BorderLayout.WEST);

...
diary = new SimpleDiaryImpl();

...
 }

75CS1092 Graphical User Interfaces

Embedding Applets

• Applets are embedded in HTML pages using the <APPLET>
tag.

• This is understood by most modern browsers.
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html><head>
<title>Diary</title>
</head>

<body>
<h1>Diary</h1>

<applet code="gui.DiaryApplet"
 codebase="."
 width="400" height="300">
 <param name="diary.file" value="diary.dry">
Your browser is completely ignoring the <APPLET> tag!
</applet>

</body>
</html>

76CS1092 Graphical User Interfaces

Finding Class files

• With a Java application, we compile our java source code to
produce class files.

• When we run an application, the JVM reads those class files.
? How does it know where to find them?

Diary.java Diary.classjavac

java

77CS1092 Graphical User Interfaces

Code Locations

• So far, your applications have been compiled and run in the
same directory

• All the .java files and the .class files are in that directory.
• By default (if you don’t tell it otherwise), the JVM will look for the

class files in the directory that you run it from.
? Why might this not be a good thing?

78CS1092 Graphical User Interfaces

Classpath

• The CLASSPATH is a list of places that tells the JVM where it
can find the .class files that it needs in order to run the
application.

• As we’ve seen, by default the CLASSPATH is simply the
current directory.

• The CLASSPATH is also used by the compiler
– If I’m compiling a class B that uses a class A, the compiler needs

to know about class A in order to check whether it has the
methods being used.

79CS1092 Graphical User Interfaces

Classpaths

• We can change the CLASSPATH in one of two ways:
• There is an environment variable CLASSPATH. If this is set,

then this is the value that the JVM (and compiler) will use.
• We can explicitly pass a value for the CLASSPATH to the JVM

(or compiler) using the -classpath option.

80CS1092 Graphical User Interfaces

Classpaths and Applets

• In our Applet example, the codebase attribute tells us where to
look for the classes. The appletviewer will expect the .class files
to be available at that location and will download them when
necessary.

<applet code="gui.DiaryApplet"
 codebase="."
 width="400" height="300">
 <param name="diary.file" value="diary.dry">
Your browser is completely ignoring the <APPLET> tag!
</applet>

81CS1092 Graphical User Interfaces

Jar Files

• The CLASSPATH gives us a mechanism for pointing at
alternative locations (directories) where .class files may be
found.

• This allows us to use
– Directories other than the one in which the application is being run

from.
– More than one directory.

• However, it’s still the case that the directory has to contain a
.class file for every Java class.

? Why might this be a problem?
? Think applets!

82CS1092 Graphical User Interfaces

Jar Files

• An alternative solution is to provide a mechanism that bundles
all the .class files up into a single file.

• A Jar file is an archive that contains class files and resources
(for example images or configuration files) for a Java application

• Jar files can be added to the CLASSPATH, just like directories.
• When the Jar file is passed to the JVM, the JVM extracts the

necessary files from the archive and then uses them in the
usual way.

• The jar tool allows us to create and unpack jar files
– Jar files actually use the same compression mechanism that zip

files use

83CS1092 Graphical User Interfaces

jar

Usage: jar {ctxu}[vfm0Mi] [jar-file] [manifest-file] [-C dir] files ...
Options:
 -c create new archive
 -t list table of contents for archive
 -x extract named (or all) files from archive
 -u update existing archive
 -v generate verbose output on standard output
 -f specify archive file name
 -m include manifest information from specified manifest file
 -0 store only; use no ZIP compression
 -M do not create a manifest file for the entries
 -i generate index information for the specified jar files
 -C change to the specified directory and include the following file
If any file is a directory then it is processed recursively.
The manifest file name and the archive file name needs to be specified
in the same order the 'm' and 'f' flags are specified.

Example 1: to archive two class files into an archive called classes.jar:
 jar cvf classes.jar Foo.class Bar.class
Example 2: use an existing manifest file 'mymanifest' and archive all the
 files in the foo/ directory into 'classes.jar':
 jar cvfm classes.jar mymanifest -C foo/ .

84CS1092 Graphical User Interfaces

Advantages of Jar Files

• Compression
– Jar files allow compression of files for efficient storage.

• Portability
– The mechanism for handling JAR files is a standard part of the

Java platform's core API.
• Decreased download time:

– Applet code (classes and associated resources such as images)
can be downloaded to the browser in one transaction.

• Security:
– We can digitally sign the contents of a JAR file. Users who

recognize your signature can then optionally grant your software
security privileges it wouldn't otherwise have.

85CS1092 Graphical User Interfaces

Jars and Applets

• In our Applet example, we can supply an archive attribute that
points at a jar archive containing the classes. This has the
advantage that we can pull all the classes over together in a
single HTTP transaction, reducing overhead.

<applet code="gui.DiaryApplet"
 codebase="."
 archive=”cs1092.jar"
 width="400" height="300">
 <param name="diary.file" value="diary.dry">
Your browser is completely ignoring the <APPLET> tag!
</applet>

86CS1092 Graphical User Interfaces

Parameters and Applets

• We can pass parameter values to the Applet via the param tag.
In our example, we pass in a parameter called diary.file which
tells us where to find the source of the diary.
– We can then use the parameter in the init() method.

<applet code="gui.DiaryApplet"
 codebase="."
 width="400" height="300">
 <param name="diary.file" value="diary.dry">
Your browser is completely ignoring the <APPLET> tag!
</applet>

try {
 /* Read the diary from a URL. */

 String diaryFile = getParameter("diary.file");
 URL diaryURL = new URL (getDocumentBase(), diaryFile);
 /* Create a new diary */
 diary.read(new InputStreamReader(diaryURL.openStream()));

 } catch (Exception ex) {
 ex.printStackTrace();
 }

87CS1092 Graphical User Interfaces

Jar Files

• Jar files can also contain information (the manifest) that tells us
extra things about the archive.

• For example, if the jar file contains classes that make up an
application the manifest can tell us which class forms the entry
point for the application
– i.e. which class should have its main() method called?

• The application can then be launched by (for example) double
clicking on the jar file.
– This can be useful when distributing applications.

88CS1092 Graphical User Interfaces

Applets and Security

• An Applet is a piece of code that I download from the web and
run on my machine

• The code may be delivered as a jar file containing only the
compiled classes.

? Is this a safe thing to do?

89CS1092 Graphical User Interfaces

Applets and Security

 Applets cannot load libraries or define native methods.
 Applets can use only their own Java code and the Java API the

applet viewer provides.
 An applet cannot ordinarily read or write files on the host that is

executing it.
 An applet cannot make network connections except to the host

that it came from.
 An applet cannot start any program on the host that is

executing it.
 An applet cannot read certain system properties.

http://java.sun.com/sfaq/

90CS1092 Graphical User Interfaces

Graphics

• The Graphics provides methods for drawing basic shapes and
text on the screen.

• This can allow us to produce more sophisticated GUIs
• In particular, we can provide custom components -- widgets

that have special rendering methods.
• Savitch Chapter 18.
• Liang Chapter 10.

91CS1092 Graphical User Interfaces

Coordinates

• Java uses an (x,y) coordinate system to refer to locations on
the screen.

• The origin is (0,0), which occurs at the top left hand corner of
the are which is being drawn on.

• The x- and y-coordinates are usually positive:
– X-coordinates increase to the right
– Y-coordinates increase in a downward direction.

increasing x

increasing y
(0,0)

92CS1092 Graphical User Interfaces

Coordinates

• The values in (x,y) coordinates refer to pixel values.
• Note that the (x,y) coordinates are usually relative to the

component that we’re drawing on.
– (0,0) is not the top left hand corner of the screen, but the top left

hand corner of the component
– This is important when we consider providing methods that paint

nested components.

(0,0) (0,0)

93CS1092 Graphical User Interfaces

Graphics

• There are a number of basic methods on Graphics for drawing
objects:
– drawLine(int x1, int y1, int x2, int y2)

• Draw a line from the first point to the second.
– drawRect(int x, int y, int width, int height)

• Draw a rectangle with origin (x,y), and given width and height
– fillRect(int x, int y, int width, int height)

• Draw a filled rectangle with origin (x,y), and given width and
height

– drawOval(int x, int y, int width, int height)
• Draw an oval with origin (x,y), and given width and height

– fillOval(int x, int y, int width, int height)
• Draw an filled oval with origin (x,y), and given width and height

– But no drawCircle() or fillCircle()!

94CS1092 Graphical User Interfaces

Graphics

• There are also methods that allow us to draw general shapes:
– drawPolygon(int[] xPoints, int[] yPoints, int nPoints);
– fillPolygon(int[] xPoints, int[] yPoints, int nPoints);
– drawString(String str, int x, int y)

• Put text at the given location.

95CS1092 Graphical User Interfaces

Bounding Boxes

• When drawing objects such as ovals, the objects are positioned
with respect to a bounding box.

• The (x,y) position given is the top left hand corner of the
bounding box (0,0)

(x,y)

width

height

96CS1092 Graphical User Interfaces

Graphics and Colours

• When a drawing method like fillRect() is called, we can think of
the drawing as being done using a pen.

• The colour of the pen will be the current colour of the Graphics
object.

• We can change the current colour through the method:

• Note the US spelling!!!
• Once the colour has been set, all subsequent drawing

commands (fill and draw) will be done using that colour.

public void setColor(Color aColor);

97CS1092 Graphical User Interfaces

Color Class

• The Color class provides a number of static public variables
that represents constants:

• In addition, we can create our own Color objects by passing in
values for the amount of red, green and blue:

• Arguments are integers between 0 and 255.
– Color(0, 0, 0) is black
– Color(255, 255, 255) is white

Color.red
Color.black
Color.blue
...

Color myPurple = new Color(100,
 255,
 0);

98CS1092 Graphical User Interfaces

Painting Graphics

• JFrame has a method called paint().
• This takes a Graphics object as an argument
• Each Swing component has a Graphics object associated with

it.
– The Graphics object contains information specifying where on the

screen the component is, the bounds etc.
– When the paint() method is called, this Graphics object is passed

in to the method.
• The paint() method will then draw the appropriate shapes on

the Graphics object.

99CS1092 Graphical User Interfaces

Painting a JFrame
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Circle extends JFrame {

 public Circle() {
this.setSize(new Dimension(400, 400));
this.setDefaultCloseOperation(EXIT_ON_CLOSE);
this.setVisible(true);

 }

 public void paint(Graphics g) {
super.paint(g);
g.setColor(Color.black);
g.fillOval(100, 100, 200, 200);

 }

 public static void main(String[] args) {
Circle circle = new Circle();

 }

}

100CS1092 Graphical User Interfaces

Painting a JFrame

101CS1092 Graphical User Interfaces

Calling paint()

• We do not usually need to worry about invoking or calling
paint()

• It is called automatically when the components are drawn.
• If we don’t supply a definition for paint(), the default method will

be called.
• This draws the frame border, title and other basic standard

features.
• All the components which are part of this frame (i.e. the

components that we’ve added to the contentPane) will then be
painted.

102CS1092 Graphical User Interfaces

Custom Components

• A custom component is used when we want to have a
component on an interface that has some specialised
appearance.

• This is commonly used when we want an area on a GUI to
display some graphics or text.

• In this case, we can use a JPanel and override the appropriate
methods.
– A JPanel simply provides an “empty” area in a GUI that we can fill

with other components, or draw on.
• As a simple example, we provide a JPanel that has some

circles and squares drawn on it.
– This example may well be useful for you in the lab….

103CS1092 Graphical User Interfaces

Painting Components

• As with the JFrame, the paint() method on JComponent does
the following:
– Paints the component itself -- paintComponent().
– Paints a border -- paintBorder()
– Paints any child components -- paintChildren()

• If we want to change the way that a JComponent looks and
provide a custom painting methods for components of our
interface (e.g. subclasses of JComponent) we should override
the paintComponent() method rather than the paint() method.

• This ensures that borders and child components are drawn
correctly.

104CS1092 Graphical User Interfaces

Circles and Squares
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class CustomExample extends JFrame {

 private static int SIZE = 50;

 public CustomExample() {
Container contents = this.getContentPane();
contents.setLayout(new GridLayout(0, 1));
contents.add(new Circles());
contents.add(new Squares());
this.setDefaultCloseOperation(EXIT_ON_CLOSE);
this.pack();
this.setVisible(true);

 }

 public static void main(String[] args) {
CustomExample ex = new CustomExample();

 }

...

105CS1092 Graphical User Interfaces

Circles and Squares
...
 public class Circles extends JPanel {

public Dimension getPreferredSize() {
 return new Dimension(SIZE*5, SIZE);
}

public void paintComponent(Graphics graphics) {
 super.paintComponent(graphics);
 for (int i = 0; i<5; i++) {

if (i%2 == 0) {
 graphics.fillOval(i*SIZE, 0, SIZE*3/4, SIZE*3/4);
} else {
 graphics.drawOval(i*SIZE, 0, SIZE*3/4, SIZE*3/4);
}

 }
}

 }
...

106CS1092 Graphical User Interfaces

Circles and Squares
...
 public class Squares extends JPanel {

public Dimension getPreferredSize() {
 return new Dimension(SIZE*5, SIZE);
}

public void paintComponent(Graphics graphics) {
 super.paintComponent(graphics);

 for (int i = 0; i<5; i++) {
if (i%2 == 1) {
 graphics.fillRect(i*SIZE, 0, SIZE*3/4, SIZE*3/4);
} else {
 graphics.drawRect(i*SIZE, 0, SIZE*3/4, SIZE*3/4);
}

 }
}

 }
}

107CS1092 Graphical User Interfaces

• The panels contain squares and circles
drawn using the methods from Graphics.

• In this particular example, the way the
panels are drawn is always the same
– We don’t make use of any local instance

variables or methods
• The JPanel subclass might have some

variables or methods that are used to
change the way that the shapes are
drawn.
– For example, we might have instance

variables that tells us how many circles
to draw, or what colour to use.

108CS1092 Graphical User Interfaces

How big is my component?

• When the layout manager is doing the layout, it needs to know
the size of components so that it can allocate the right amount
of space.
– Remember that for example, in a GridLayout, all the grid cells are

the size of the biggest component.
• Methods getMinimumSize(), getPreferredSize() and

getMaximumSize() are used to provide the size of a component.
• getPreferredSize() returns a Dimension object representing the

size that the component would ideally like to be. If possible, the
layout manager will respect the wishes of the component.

• We can override getPreferredSize() in our custom component
in order to get sensible layouts.
– See previous examples.

109CS1092 Graphical User Interfaces

Custom Component Example

• MonthViewPanel in our diary example provides a custom
component that displays a month and the entries in that month

• The paintComponent() method uses a number of calls to
Graphics drawing methods

• For example, here we draw grey boxes with a black border to
pad the month out.

...
 if (days[rows][cols] == null) {
 /* Blank, so fill with grey */
 g.setColor(DiaryGUIPreferences.getGreyColour());
 g.fillRect(currentX, currentY,
 cellX, cellY);
 g.setColor(Color.black);
 g.drawRect(currentX, currentY,
 cellX, cellY);
 } else {
...

110CS1092 Graphical User Interfaces

Repainting

• The way in which the panel is drawn will change depending on
the state of the Diary object that the panel is displaying.
– The appearance of the month panel reflects the underlying entries

in the diary for that month.
• In our diary example, we need to make sure that the panel gets

repainted whenever necessary.
• The library classes will deal with repainting when the window is

resized.
• However, if the diary object changes, the display of the panel

may need to change to reflect this
– An entry may have been added to a day in the displayed month.

• The repaint() method can be called to ensure that components
are repainted.

111CS1092 Graphical User Interfaces

Custom Component Diary Example

• Recall that the update() method in MonthView is responsible for
ensuring that the view updates -- in order to make sure that this
happens, we call repaint().

• Although repaint() is being called on the MonthView object, it
will call paint(), which will then call the paintChildren() method,
ensuring that the MonthViewPanel is updated.

protected void update() {
 /* Update the title */
 this.setTitle(DiaryUtils.formatDate(DiaryUtils.MONTH_AND_YEAR,
 monthStart));
 display.setDate(monthStart);
 /* Make sure everything gets redisplayed. */
 repaint();
}

112CS1092 Graphical User Interfaces

Painting and Repainting

• In general (as with other aspects of the Swing libraries), if we
“do the right thing”, then our interfaces should work as
expected.

• If you want to provide a custom rendering for a component such
as JPanel, override the paintComponent() method.
– Don’t explicitly call the paint() or paintComponent() methods

• If you want to ensure that the component is updated with new
content, call repaint().
– Don’t override the repaint() method.

• If we follow these basic guidelines, then the dependencies
between the various methods should be taken care of.

113CS1092 Graphical User Interfaces

Aside: Swing Components

• With the material that we’ve seen so far, could actually define
our own widgets from scratch. For example, for a button we’d
need to:
– Draw an appropriate shape
– Keep a collection of ActionListeners
– Add a MouseListener that listened for mouse clicks
– Add a KeyListener that listened for key clicks
– When the user clicks or presses send appropriate ActionEvents to

the listeners.

114CS1092 Graphical User Interfaces

More GUIs Summary

• Widgets
– Menus Bars, Menus and

MenuItems
– JCheckBox
– JRadioButton
– JList
– JCheckBox
– JDialog
– JFileChooser

• Listeners
– Anonymous Listeners
– KeyListener
– MouseListener
– WindowListener
– Adapters

• Separating Model and GUI
– Flexibility
– Alternative interfaces
– Update strategies

• Applets
– Applications delivered over the

Web and run in the Browser
– Packaging classes as jars
– Security considerations

• Graphics
– Drawing simple shapes
– Custom components.

