
List of Slides

1 Case study 1: Elephantjoketeller
2 Introduction
3 Motivation
4 The final program
5 The classes and interfaces of the program
6 Elephant jokes are graph nodes
7 Elephant joke implementation
8 Joke code
9 Methods getQuestion() and getAnswer()

10 Class GraphNodeNameMap
11 Class GraphNodeNameMap
12 Constructor
13 Methods addNode() and getNode()
14 Methods nodeNames() and nodes()
15 Method removeNode()
16 Method recordDependency()

0-0



17 Method plantDependencies()
18 Class JokeTeller
19 Making the program exit
20 Interface InstanceCounter
21 InstanceCounter code
22 JokeTeller code (part)
23 JokeTeller code (part)
24 JokeTeller code (part)
25 JokeTeller code (part)
26 JokeTeller code (part)
27 JokeTeller code (part)
28 Elephant code (part)
29 Elephant code (part)
30 Elephant code (part)
31 Class Fold
32 Fold code
33 Fold code
34 Fold code

0-1



35 Fold code
36 Fold code
37 Class RandomCounter
38 RandomCounter code
39 RandomCounter code

0-2



Case study 1

Elephant

joke

teller

April 28, 2005 CS1092 - John Latham Page 1(0/0)



Introduction
� This handout briefly covers a small case study which is related to graphs.

– An elephant joke telling program: Elephant.

April 28, 2005 CS1092 - John Latham Page 2(0/0)



Motivation
� Part of the curious humour of elephant jokes is that they are not funny.

– For example:

Q: Why do elephants wear sandals in the desert?

A: So they don’t sink in the sand.

� If there is any humour, it comes from the dependencies between elephant jokes.

– For example:

Q: Why do osteriches stick their head in the sand?

A: They’re looking for elephants

that were not wearing sandals.

� Like all humour, nobody can explain why some people find them funny.

� But any chance of a laugh is ruined if the jokes are told in the wrong order!

April 28, 2005 CS1092 - John Latham Page 3(0/0)



The final program
� The program is available in /opt/teaching/bin/Elephant.

� Run: /opt/teaching/bin/Elephant

Click here for ‘humour’

April 28, 2005 CS1092 - John Latham Page 4(0/0)



The classes and interfaces of the program

Class / Interface Purpose

Elephant The main class.

Fold To fit text into a given width.

GraphNode The full version of the general directed graph.

GraphNodeNameMap To find graph nodes given their name.

InstanceCounter To keep track of how many joke tellers.

Joke The actual jokes.

JokeTeller A GUI to tell the jokes.

RandomCounter Used in producing random topological orders.

April 28, 2005 CS1092 - John Latham Page 5(0/0)



Elephant jokes are graph nodes
� A set of elephant jokes is a graph.

� There are typically several chains of jokes about one theme that must be told in the

correct order.

� Sometimes the themes join up.

� And then there are several stand-alone jokes, some of which are red herrings, and some of

which are (almost) funny in their own right.

� Graph demo: the-jokes

– Change the order to random!

April 28, 2005 CS1092 - John Latham Page 6(0/0)



Elephant joke implementation
� So an elephant joke is a graph node.

� We can implement it as a sub-class of GraphNode.

April 28, 2005 CS1092 - John Latham Page 7(0/0)



Joke code

public class Joke extends GraphNode

{

private String question, answer;

public Joke(String name, String requiredQuestion,

String requiredAnswer)

{

super(name); // What does this do?

question = requiredQuestion;

answer = requiredAnswer;

} // Joke

April 28, 2005 CS1092 - John Latham Page 8(0/0)



Methods getQuestion() and getAnswer()

public String getQuestion()

{

return question;

} // getQuestion

public String getAnswer()

{

return answer;

} // getAnswer

} // class Joke

April 28, 2005 CS1092 - John Latham Page 9(0/0)



Class GraphNodeNameMap
� We need a way to be able to find a graph node from its name.

� The file containing the joke data has a name for each joke, followed by its question, its

answer, and then the names of the jokes upon which it depends.

� To build the graph of jokes when we load the file we need to be able to find the jokes

from their name so we can add the dependencies between jokes.

� The class GraphNodeNameMap handles this for us, and it is based on a TreeMap.

April 28, 2005 CS1092 - John Latham Page 10(0/0)



Class GraphNodeNameMap

import java.io.*;

import java.util.*;

public class GraphNodeNameMap

{

// Map from name to GraphNode.

// TreeMap means the names can be retrieved in alphabetic order.

private Map nameMap = new TreeMap();

// Temporary store of dependent / dependency pairs.

private ArrayList dependents = new ArrayList();

private ArrayList dependencies = new ArrayList();

April 28, 2005 CS1092 - John Latham Page 11(0/0)



Constructor

public GraphNodeNameMap()

{

} // GraphNodeNameMap

April 28, 2005 CS1092 - John Latham Page 12(0/0)



Methods addNode() and getNode()

public void addNode(String name, GraphNode graphNode)

{

nameMap.put(name, graphNode);

} // addNode

public GraphNode getNode(String name)

{

return (GraphNode) nameMap.get(name);

} // getNode

April 28, 2005 CS1092 - John Latham Page 13(0/0)



Methods nodeNames() and nodes()

public Iterator nodeNames()

{

return nameMap.keySet().iterator();

} // nodeNames

public Iterator nodes()

{

return nameMap.values().iterator();

} // nodes

April 28, 2005 CS1092 - John Latham Page 14(0/0)



Method removeNode()

public void removeNode(String nodeName)

{

nameMap.remove(nodeName);

} // remove

April 28, 2005 CS1092 - John Latham Page 15(0/0)



Method recordDependency()

// Record a dependency between two named nodes,

// to be added to the graph later.

public void recordDependency(String dependent, String dependency)

{

dependents.add(dependent);

dependencies.add(dependency);

} // recordDependency

April 28, 2005 CS1092 - John Latham Page 16(0/0)



Method plantDependencies()

public void plantDependencies()

{

for (int i = 0; i < dependents.size(); i++)

{

GraphNode dependent

= (GraphNode) nameMap.get(dependents.get(i));

GraphNode dependency

= (GraphNode) nameMap.get(dependencies.get(i));

if (dependent != null && dependency != null)

dependent.addDependency(dependency);

} // for

} // plantDependencies

} // class GraphNodeNameMap

April 28, 2005 CS1092 - John Latham Page 17(0/0)



Class JokeTeller
� We need a user interface in which the user can ask for the next joke, and then ask for its

answer. This is provided by the class JokeTeller.

� A JokeTeller is given the end joke of the set of jokes. This is the end node of the graph,

and will be the last ‘joke’ told.

� The JokeTeller obtains a topological order of the jokes, from the end joke, and then

presents the jokes in that order when requested by the user. The topological order

processes dependencies of each node in a random order, so the jokes are told in a random

topological order.

� A JokeTeller has a Clone button which causes it to make a copy of itself. Each copy

will tell all the jokes, as they each obtain their own topological order from the graph.

� The program exits only when all the JokeTeller instances have been quit.

April 28, 2005 CS1092 - John Latham Page 18(0/0)



Making the program exit
� Prior to Java 1.4, making the program exit when the last window is closed was non-trivial.

� Since Java 1.4, if each window is disposed on close, then the GUI event thread should

end when the last one is disposed.

� This will cause the program to terminate if there are no other threads left running at that

time.

� However, it is worth looking at what was needed prior to Java 1.4. We needed to manage

the program exit ourselves.

� The approach may still be useful in some circumstances (e.g. when there are other

threads running too).

April 28, 2005 CS1092 - John Latham Page 19(0/0)



Interface InstanceCounter
� Something keeps track of the number of instances of JokeTeller.

� Here, this is an InstanceCounter.

� When a JokeTeller is created, it will be passed a reference to the instance counter. It

will then cause the instance counter to increment the count.

� When a JokeTeller is quit, it will cause the instance counter to decrement the count.

� One way of achieving this instance counting is to have it defined as an interface. We

make the main class of the program (Elephant) implement this interface, so it can then

act as the instance counter for all the joke tellers.

� The InstanceCounter mechanism is also used to make each JokeTeller appear at a

different place on the screen.

April 28, 2005 CS1092 - John Latham Page 20(0/0)



InstanceCounter code

public interface InstanceCounter

{

public void increment();

public void decrement();

public int getCurrentCount();

} // interface InstanceCounter

April 28, 2005 CS1092 - John Latham Page 21(0/0)



JokeTeller code (part)

// N.B: This uses AWT directly, rather that Swing.

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class JokeTeller extends Frame

{

...

private Panel buttonPanel = new Panel();

private Joke endJoke;

private InstanceCounter instanceCounter;

private Button askJoke;

private Iterator topologicalOrder;

...

April 28, 2005 CS1092 - John Latham Page 22(0/0)



JokeTeller code (part)

public JokeTeller(Joke requiredEndJoke,

InstanceCounter requiredInstanceCounter)

{

endJoke = requiredEndJoke;

instanceCounter = requiredInstanceCounter;

instanceCounter.increment();

topologicalOrder

= endJoke.topologicalOrder(GraphNode.ORDER_RANDOM,

false);

...

April 28, 2005 CS1092 - John Latham Page 23(0/0)



JokeTeller code (part)

Button cloneButton = new Button("Clone");

buttonPanel.add(cloneButton);

cloneButton

.addActionListener

(new ActionListener()

{ public void actionPerformed(ActionEvent e)

{ new JokeTeller(endJoke, instanceCounter); }

});

...

setLocation(instanceCounter.getCurrentCount() * 40,

instanceCounter.getCurrentCount() * 30);

pack();

show();

} // JokeTeller

April 28, 2005 CS1092 - John Latham Page 24(0/0)



JokeTeller code (part)

// Called when windowClosing or when Quit button pressed.

private void endThisJokeTeller()

{

dispose();

instanceCounter.decrement();

} // endThisJokeTeller

April 28, 2005 CS1092 - John Latham Page 25(0/0)



JokeTeller code (part)

// This alternates between null and the current joke.

private Joke currentJoke = null;

// Called when ask joke / tell answer button pressed.

private void tellJoke()

{

if (currentJoke == null)

{ if (topologicalOrder.hasNext())

{ currentJoke = (Joke) topologicalOrder.next();

questionTextArea.setText

(Fold.fold(0, 30, currentJoke.getQuestion()));

answerTextArea.setText("");

askJoke.setLabel(TELL_ANSWER_LABEL);

} // if

} // if

April 28, 2005 CS1092 - John Latham Page 26(0/0)



JokeTeller code (part)

else

{

answerTextArea.setText

(Fold.fold(0, 30, currentJoke.getAnswer()));

currentJoke = null;

askJoke.setLabel(ASK_JOKE_LABEL);

} // else

} // tellJoke

} // class JokeTeller

April 28, 2005 CS1092 - John Latham Page 27(0/0)



Elephant code (part)

public class Elephant implements InstanceCounter

{

public static void main(String [] args)

{ GraphNodeNameMap jokeNameTable

= new GraphNodeNameMap();

Joke lastJoke

= new Joke("LAST_JOKE",

"How do you know when you have heard"

+ " all the elephant jokes?",

"There are no more.");

. . . Code here to load the jokes from a file, and build the graph, with lastJoke as the end
node.

InstanceCounter ic = new Elephant();

new JokeTeller(lastJoke, ic);

} // main

April 28, 2005 CS1092 - John Latham Page 28(0/0)



Elephant code (part)

private static int jokeTellerCount = 0;

public void increment()

{

jokeTellerCount++;

} // increment

public void decrement()

{

jokeTellerCount--;

if (jokeTellerCount == 0)

System.exit(0);

} // decrement

April 28, 2005 CS1092 - John Latham Page 29(0/0)



Elephant code (part)

public int getCurrentCount()

{

return jokeTellerCount;

} // getCurrentCount

} // class Elephant

April 28, 2005 CS1092 - John Latham Page 30(0/0)



Class Fold
� When displaying the text of a joke question or answer, we need to make it fit in the space

available in the text boxes of the JokeTeller.

� The class Fold provides a single static method fold() which takes a String and integer

margin and width arguments, and produces a String consisting of several lines which

will fit in the given width and margin (i.e. the result has new line characters in it).

April 28, 2005 CS1092 - John Latham Page 31(0/0)



Fold code

import java.util.StringTokenizer;

public class Fold

{

public static String fold(int margin, int width,

String text)

{

StringBuffer marginStringBuffer = new StringBuffer();

while (marginStringBuffer.length() < margin)

marginStringBuffer.append(" ");

String marginString = marginStringBuffer.toString();

April 28, 2005 CS1092 - John Latham Page 32(0/0)



Fold code

StringBuffer result = new StringBuffer();

int currentLineLength = 0;

StringTokenizer linesTokenizer

= new StringTokenizer(text, "\n", false);

April 28, 2005 CS1092 - John Latham Page 33(0/0)



Fold code

while (linesTokenizer.hasMoreTokens())

{

StringTokenizer wordsTokenizer

= new StringTokenizer(linesTokenizer.nextToken());

while (wordsTokenizer.hasMoreTokens())

{

String word = wordsTokenizer.nextToken();

if (currentLineLength == 0)

{

result.append(marginString);

currentLineLength = margin;

} // if

else

April 28, 2005 CS1092 - John Latham Page 34(0/0)



Fold code

{

if (currentLineLength + 1 + word.length() > width)

{

result.append("\n");

result.append(marginString);

currentLineLength = margin;

} // if

else

{

result.append(" ");

currentLineLength++;

} // else

} // else

April 28, 2005 CS1092 - John Latham Page 35(0/0)



Fold code

result.append(word);

currentLineLength += word.length();

} // while

} // while

result.append("\n");

return result.toString();

} // fold

} // class Fold

April 28, 2005 CS1092 - John Latham Page 36(0/0)



Class RandomCounter
� The RandomCounter class is used to help make random topological orders. When

creating the topological order, we traverse the dependencies of a node in a random order.

� A RandomCounter object is given a positive number, size when it is created. Then, each

time its method next() is called, it will return a number between 0 and size - 1,

without repetition, but in a random order. If it is called more than size times, it returns

-1 from then on.

� To scan the list of dependencies of a graph node in a random order, we simply create a

RandomCounter, giving the size of the dependencies list as the argument, and then call

next() that many times, using the result as the index of the next dependency to consider.

April 28, 2005 CS1092 - John Latham Page 37(0/0)



RandomCounter code

public class RandomCounter

{

private int [] countList;

private int remainingCountListLength;

// Obtains count from 0 to size -1, but in random order.

public RandomCounter(int size)

{

remainingCountListLength = size;

countList = new int[size];

for (int i = 0; i < size; i++)

countList[i] = i;

} // RandomCounter

April 28, 2005 CS1092 - John Latham Page 38(0/0)



RandomCounter code

// Returns -1 when all the list is exhausted.

public int next()

{ if (remainingCountListLength == 0)

return -1;

else

{ int randomInt

= (int) (Math.random() * remainingCountListLength);

int result = countList[randomInt];

remainingCountListLength--;

countList[randomInt]

= countList[remainingCountListLength];

return result;

} // else

} // next

} // class RandomCounter

April 28, 2005 CS1092 - John Latham Page 39(0/0)


