
List of Slides

1 Topic 10: TestingandDebugging
2 Objectives
3 Section 1: Testing
4 Testing
5 Complex Programs and Systems
6 Bottom up versus top down
7 Top down testing
8 Bottom up testing
9 Tests are serious and organised

10 Black box versus white box
11 An example: searching a list
12 Reasonable test cases
13 Test data
14 Equivalence partitioning
15 An example: parsing an integer
16 How many tests?

0-0

17 Input test cases
18 Continued: input test cases
19 Output test cases
20 Test data
21 Combinations of test cases
22 Structural testing
23 Which approach is best?
24 Static verification
25 Section 2: Debugging
26 Debugging
27 Error location
28 Examining test results
29 Example: a change calculator
30 Examining the code
31 Some examples of common errors
32 Example of variable scoping problem
33 Examining the value of variables
34 Error elimination

0-1

35 However...
36 Example: reversing a string
37 Reverse string test results
38 Did you need to see the code?
39 The code

0-2

Topic 10

Testing

and

Debugging

April 28, 2005 CS1092 - John Latham Page 1(0/0)

Objectives
� To explore the important topics of testing and debugging.

� Test data is systematically designed.

� Debugging is a lateral thinking process.

April 28, 2005 CS1092 - John Latham Page 2(0/0)

Section 1

Testing

April 28, 2005 CS1092 - John Latham Page 3(0/0)

Testing
� Testing is executing an implementation with ‘dummy’ data.

� Testing can never show that a program is correct.

� A successful test is one which shows an error.

� Testing is destructive by nature: be Devilish.

� It has a tendancy to fail because nobody wants to destroy their creation.

� Perhaps programs are best tested by somebody other than the programmer?

� On the the other hand, detailed knowledge of the implementation might help.

April 28, 2005 CS1092 - John Latham Page 4(0/0)

Complex Programs and Systems
� Real world programs, and systems, are large.

� It is not possible to test them in one go.

� A system has many packages.

� A package has many classes.

� A class has many methods.

� How do we test them?

– We test the separate parts.

– We test the integration of parts.

April 28, 2005 CS1092 - John Latham Page 5(0/0)

Bottom up versus top down
� Components (e.g. methods, classes, packages) of a system depend on others, which

depend on yet more, etc..

� These often, although not always, form a tree shape.

� Should we do top down testing, or bottom up testing?

April 28, 2005 CS1092 - John Latham Page 6(0/0)

Top down testing
� In top down testing we test each component before we test those it relies on.

� We write stubs for the lower level components.

– Maybe they are interactive with the tester, and the tester supplies the answers.

– Maybe they return arbitrary results.

� Top down testing allows testing to be simultaneous with top down development.

� Design errors might be found early on.

April 28, 2005 CS1092 - John Latham Page 7(0/0)

Bottom up testing
� In bottom up testing we test each component before we test any that rely on it.

� This means we do not have to write stubbs.

� But we cannot test incrementally with top-down development.

April 28, 2005 CS1092 - John Latham Page 8(0/0)

Tests are serious and organised
� Tests are not aribitrary!

� They are not based on ad-hoc input data conjured up as soon as the program first

compiles.

� Ideally much of our test data is designed before, or during, program design.

� We distinguish two aspects of testing.

– test cases are the features we want to test.

– test data is used to test them.

April 28, 2005 CS1092 - John Latham Page 9(0/0)

Black box versus white box
� black box testing is when we look only at the specification of the behaviour for the

component in order to construct test cases and test data.

– Does this suit testing by someone other than the implementor?

� white box testing (or glass box testing) is when we also look at the implementation of

the component when we construct test data.

– Does this suit testing by the implementor?

April 28, 2005 CS1092 - John Latham Page 10(0/0)

An example: searching a list
� Suppose we want to test a method that searches for a given integer in a randomly ordered

array of integers.

� It is supposed to return the position of the number in the list, if it is present, or -1 if it is

not present.

� How many tests should we have?

April 28, 2005 CS1092 - John Latham Page 11(0/0)

Reasonable test cases
� Here is a reasonable set of test cases.

No. List structure Search item found

1 Empty list Not found

2 One element in list Found

3 One element in list Not found

4 Many elements in list Not found

5 Many elements in list First item

6 Many elements in list Last item

7 Many elements in list ‘In middle’

April 28, 2005 CS1092 - John Latham Page 12(0/0)

Test data
� Here is a corresponding set of test data.

No. List Search Expect

1

� �

0 -1

2

�

17

�

17 0

3

�

17

�

10 -1

4

�

17,23,28

�

14 -1

5

�

17,23,28

�

17 0

6

�

17,23,28

�

28 2

7

�

17,23,28

�

23 1

April 28, 2005 CS1092 - John Latham Page 13(0/0)

Equivalence partitioning
� equivalence partitioning is a technique for constructing test data from the specification

(only) of the component.

� We partition the set of all possible input data into classifications with common properties.

� We do the same for the output data.

� We identify these classifications as test cases.

� We choose representative values from the test cases to be used as test data.

– We pay particular attention to edge values as these are often overlooked and so are

most likely to lead to successful tests.

April 28, 2005 CS1092 - John Latham Page 14(0/0)

An example: parsing an integer
� Suppose we want to test a method that claims to convert an input string of characters into

an integer which it returns.

� The input is guaranteed to be in the following form.

�

’ ’

�

[’-’] digit

�

digit

�

That is, zero or more leading spaces, a possible minus sign, a digit then zero or more

digits.

� There is no need to test other formats of data: the implementor of the method assumed

the data format fits the above. (It is a precondition.)

� Suppose the method will return a number which is within plus and minus 32767,

inclusive. If the representation is for a number less than -32767 then -32767 will be

returned. If the representation is for a number greather than 32767 then 32767 will be

returned.

April 28, 2005 CS1092 - John Latham Page 15(0/0)

How many tests?
� Make an estimate of how many tests there will be for this example and write it here.

[]

� Later, write here the actual number of tests. []

April 28, 2005 CS1092 - John Latham Page 16(0/0)

Input test cases

No. Description

C1 No leading space

C2 One leading space

C3 Many leading spaces

C4 Minus sign

C5 No minus sign

C6 One digit

C7 Many digits

C8 No leading zeros

C9 One leading zero

C10 Many leading zeros

April 28, 2005 CS1092 - John Latham Page 17(0/0)

Continued: input test cases

No. Description

C11 Representation � � 32767

C12 Representation � 32767

C13 � 32767 ��� Representation ��� 32767

April 28, 2005 CS1092 - John Latham Page 18(0/0)

Output test cases

No. Description

C14 Result � 0

C15 Result� 0

C16 Result � 0

April 28, 2005 CS1092 - John Latham Page 19(0/0)

Test data

Input Expected result Cases tested

”-1” -1 1,4,6,8,13,14

” -1” -1 2,4,6,8,13,14

” -1” -1 3,4,6,8,13,14

. . .

” -00032768” -32767 3,4,7,10,11,14

. . .

� How many combinations of test cases are there, i.e. how manys tests will there be?

April 28, 2005 CS1092 - John Latham Page 20(0/0)

Combinations of test cases
� Multiplying the sizes of the ‘groups’ of input tests cases, gives us 3� 2� 2� 3� 3� 108

� However, many of these include contradictions, so there is actually ‘only’ 48 tests to be

done!

� These 48 include 5 output tests for: � 32767 � � 1 � 0 � 1 � 32767

April 28, 2005 CS1092 - John Latham Page 21(0/0)

Structural testing
� structural testing is a technique for constructing test data by looking at the

implemementation code.

� Ideally we choose data so that every combination of every path through the code is tried.

� In practise we ensure every part of the code is tried at least once.

� There is a danger of testing the compiler rather then the program, if we let the testing be

driven totally by code rather than the specification as well.

� It is a good technique for checking against many simple run-time errors, since we make

sure every part of the code is run at least once.

April 28, 2005 CS1092 - John Latham Page 22(0/0)

Which approach is best?
� A combination of both is best.

� Perhaps an ideal combination is:

– Equivalence partitioning initially, followed by

– Adding extra cases from structural testing to ensure every part of code is run at least

once.

April 28, 2005 CS1092 - John Latham Page 23(0/0)

Static verification
� Formal, or at least semi-formal, reasoning gives evidence of correctness, whereas testing

can at best give evidence of incorrectness.

� Symbolic (dry) execution can cover all cases.

– A test is a real run that covers one set of data.

– So an infinite number of tests would be needed to cover all data.

– A symbolic execution can cover an infinite number of sets of data.

– So a finite number (e.g. one) of symbolic executions is needed to cover all data.

� Safety critical systems will not be merely tested.

April 28, 2005 CS1092 - John Latham Page 24(0/0)

Section 2

Debugging

April 28, 2005 CS1092 - John Latham Page 25(0/0)

Debugging
� Debugging consists of two parts.

– Error location.

� This is the hard part.

– Error elimination.

� This is the easy part.

� Or, we have to redesign our implementation!

� Perhaps we also have to find a temporary workaround.

April 28, 2005 CS1092 - John Latham Page 26(0/0)

Error location
� Error location appeals directly to lateral thinking processes.

– We have to examine the information available.

– We have to make connections between the pieces of information.

– We have to form a hypothesis and test it.

– We have to ask questions to get new information.

� To get new information, questions are asked in three ways:

– By running the program with test data and examining the results.

– By examining the source code without running the program.

– By running the program and examining the values of variables.

April 28, 2005 CS1092 - John Latham Page 27(0/0)

Examining test results
� In this approach we attempt to diagnose the fault by studying the symptoms.

� Examine the output data and look for patterns.

� Form a hypothesis about the symptoms.

� Attempt to verify the hypothesis by testing with new data.

April 28, 2005 CS1092 - John Latham Page 28(0/0)

Example: a change calculator
� A program is given the price of a purchase and an amount tendered, both in pence. It then

prints a receipt showing this, together with the change, all in pounds and pence.

� When I enter a price of 123 pence, and an amount tendered of 200 pence, I get:

Purchase Price: UKP 1.0

Amount Tendered: UKP 2.0

Your Change is: UKP 1.0

� What is the probable fault? Did you need to see the code?

April 28, 2005 CS1092 - John Latham Page 29(0/0)

Examining the code
� Ideally we look at the source code only after we have formed a hypothesis from the

output behaviour.

� Search the source code for the cause of hypothesised fault – be cynical.

� Look for variables that are given values which are inconsistent with their meaning (c/f

“How to write algorithms” lecture from CS1081).

� Consciously bear in mind common errors: our sub-conscious mind will often ‘correct’

them without us noticing.

April 28, 2005 CS1092 - John Latham Page 30(0/0)

Some examples of common errors
� Implicit type casting problems, especially with numbers and the division operator.

� Starting a counter from 1 instead of 0, or vice versa.

� Failing to update an array index.

� Updating an array index before inserting data instead of after, or vice versa.

� Failing to initialise a variable value (so something works first time, but not after).

� Variable scoping problems: a classic!

April 28, 2005 CS1092 - John Latham Page 31(0/0)

Example of variable scoping problem

public class ScopeProblem

{ public int value; // This holds an important value

public void setValue()

{ int value;

...

value = ...;

...

} // setValue

public void useValue() // WHY DOES THIS METHOD NOT WORK?

{ ...

if (value ...)

...

...

} // useValue

} // class ScopeProblem

April 28, 2005 CS1092 - John Latham Page 32(0/0)

Examining the value of variables
� Ideally the previous examinations will have revealed the bug.

� If not, we resort to collecting more information from the running program, and then

treating it as extra test result information.

– By inserting System.out.println() statements in the code to report carefully

thought about interesting values.

– Or by using an on-line debugging tool.

� We mark all debugging statements with an easy to find comment so they can be removed

later.

� On-line debugging tools can encourage a hacking approach. They make it so easy to ask

the questions that we can get too lazy to think:

– What are good questions to ask?

– What do the answers mean?

April 28, 2005 CS1092 - John Latham Page 33(0/0)

Error elimination
� Most software manufacturers admit that every 1000 bugs, once corrected, create another

100 bugs! These numbers are approximate, sometimes they are much worse than that.

� Do not use anti-bugs to kill existing bugs. Never correct a bug in an early stage of the

program by making an ‘adjustment’ in a later part.

� For example, suppose we find out that some numeric answer is always 1 too low. It is

tempting to just add 1 to the result before returning it.

� There is no such thing as anti-bugs, just bugs. A bug used to offset another might appear

to work in the short term, but really we now have 2 bugs waiting to spring out when some

obscure set of circumstances happens, or at some time in the future when the software is

altered.

� Always fix the original bug. Redesign if necessary.

� Always test again after corrections are made.

April 28, 2005 CS1092 - John Latham Page 34(0/0)

However...
� Sometimes it is appropriate to make a quick fix known as a workaround.

� These typically fix the symptom of the bug, rather than the cause. In that sense they are an

anti-bug.

� It is appropriate when we need the software to work better now, rather than have to wait

for proper debugging.

April 28, 2005 CS1092 - John Latham Page 35(0/0)

Example: reversing a string
� We have a program, Reverse which takes a command line argument and is supposed to

print it out in reverse.

� Suppose you know it works by copying the string into an array, then looping one index

variable upwards from 0, and another downwards from the highest index. At each stage it

swaps over the items at the two indices. The loop stops when the first index gets half way

though the array.

April 28, 2005 CS1092 - John Latham Page 36(0/0)

Reverse string test results

Spot the pattern in the following test results, and suggest the bug.

jtl-) letters="ABCDEFGHIJKLMNOPQRSTUVWXYZ";

for length in ‘seq 1 10‘; do data=$

�

letters:0:$length

�

;

echo "$data -> ‘java Reverse $data‘"; done

A -> A

AB -> AB

ABC -> CBA

ABCD -> DBCA

ABCDE -> EDCBA

ABCDEF -> FECDBA

ABCDEFG -> GFEDCBA

ABCDEFGH -> HGFDECBA

ABCDEFGHI -> IHGFEDCBA

ABCDEFGHIJ -> JIHGEFDCBA

Also, what test has been omitted?

April 28, 2005 CS1092 - John Latham Page 37(0/0)

Did you need to see the code?
� Hopefully, you spotted the pattern and guessed what the bug might be, without needing to

see the code.

� A person with really good debugging skills, that is, someone who is really good at lateral

thinking, would not even have had to know what the algorithm for the reverse is, let alone

see the code!

April 28, 2005 CS1092 - John Latham Page 38(0/0)

The code

private static String reverse(String input)

{

char [] charArray = input.toCharArray();

int leftIndex = 0;

int rightIndex = charArray.length - 1;

while (leftIndex <= charArray.length / 2)

{

char thatWasAtLeftIndex = charArray[leftIndex];

charArray[leftIndex] = charArray[rightIndex];

charArray[rightIndex] = thatWasAtLeftIndex;

leftIndex++;

rightIndex--;

} // while

return new String(charArray);

} // reverse

April 28, 2005 CS1092 - John Latham Page 39(0/0)

