List of Slides

Case study 1: Elephantjoketeller
Introduction

Motivation

The final program

The classes and interfaces of the program
Elephant jokes are graph nodes

Elephant joke implementation

Joke code

Methods get Quest i on() and get Answer ()
Class G aphNodeNaneMap

Class G aphNodeNaneMap
Constructor

Methods addNode() and get Node()
Methods nodeNanes() and nodes()
Method r enoveNode()

Method r ecor dDependency()

0-0

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Method pl ant Dependenci es()

Class JokeTel | er

Making the program exit

Interface | nst anceCount er

I nst anceCount er code

JokeTel | er

code (part)

JokeTel | er

code (part)

JokeTel | er

code (part)

JokeTel | er

code (part)

JokeTel | er

code (part)

JokeTel | er

code (part)

El ephant code (part)

El ephant code (part)

Class Fol d
Fol d code
Fol d code
Fol d code

El ephant code (part)

35
36
37
38
39

Fol d code
Fol d code

Class RandonCount er

RandonCount er code
RandonCount er code

(i
ju i

Case study 1

Elephant

joke
teller

CS1092 - John Latham Page 1(0/0)

Introduction

e This handout briefly covers a small case study which is related to graphs.

— An elephant joke telling program: El ephant .

April 28, 2005 CS1092 - John Latham Page 2(0/0)

Motivation

Part of the curious humour of elephant jokes is that they are not funny.

— For example:

Q Wy do el ephants wear sandals in the desert?
A: So they don't sink in the sand.

If there is any humour, it comes from the dependencies between elephant jokes.

— For example:

Q Wiy do osteriches stick their head in the sand?
A. They're | ooking for elephants
that were not wearing sandal s.

Like all humour, nobody can explain why some people find them funny.

But any chance of a laugh is ruined if the jokes are told in the wrong order!

April 28, 2005

CS1092 - John Latham

Page 3(0/0)

The final program

e The program is available in/ opt/t eachi ng/ bi n/ El ephant .

_J——
e Run: M /opt/teaching/bin/Elephant
Click here for “humour’

April 28, 2005 CS1092 - John Latham Page 4(0/0)

The classes and interfaces of the program

Class / Interface Purpose

Elephant The main class.

Fold To fit text into a given width.

GraphNode The full version of the general directed graph.

GraphNodeNameMap | To find graph nodes given their name.
InstanceCounter To keep track of how many joke tellers.

Joke The actual jokes.

JokeTeller A GUI to tell the jokes.

RandomCounter Used in producing random topological orders.

April 28, 2005 CS1092 - John Latham Page 5(0/0)

=

Elephant jokes are graph nodes

A set of elephant jokes is a graph.

There are typically several chains of jokes about one theme that must be told in the
correct order.

Sometimes the themes join up.

And then there are several stand-alone jokes, some of which are red herrings, and some of
which are (almost) funny in their own right.

Graph demo: =4 the-jokes

— Change the order to random!

April 28, 2005 CS1092 - John Latham Page 6(0/0)

i3E

Elephant joke implementation

e S0 an elephant joke is a graph node.

e \We can implement it as a sub-class of G- aphNode.

April 28, 2005 CS1092 - John Latham Page 7(0/0)

Joke code

public class Joke extends G aphNode
{

private String question, answer;

public Joke(String nane, String requiredQuestion,

String requiredAnswer)

super(nane); // \What does this do?
question = requiredQuesti on;
answer = requiredAnswer;

} Il Joke

April 28, 2005 CS1092 - John Latham Page 8(0/0)

- Methods get Quest i on() and get Answer ()

public String getQuestion()
{

return question;
} 1] getQuestion

public String get Answer ()
{

return answer;
} [] get Answer

} Il class Joke

April 28, 2005 CS1092 - John Latham Page 9(0/0)

Lt Class G aphNodeNanmeMap

We need a way to be able to find a graph node from its name.

The file containing the joke data has a name for each joke, followed by its question, its
answer, and then the names of the jokes upon which it depends.

To build the graph of jokes when we load the file we need to be able to find the jokes
from their name so we can add the dependencies between jokes.

The class G aphNodeNaneMap handles this for us, and it is based on a Tr eeMap.

April 28, 2005 CS1092 - John Latham Page 10(0/0)

i1 JE

Class G aphNodeNanmeMap

| nport java.lo.*,;
| mport java.util.*;

public class G aphNodeNameMap

{
[/ Map fromnane to G aphNode.

[l TreeMap neans the names can be retrieved in al phabetic order.
private Map nameMap = new TreeMap();

/| Tenporary store of dependent / dependency pairs.
private ArrayLi st dependents = new ArrayList();
private ArraylLi st dependencies = new ArrayList();

April 28, 2005 CS1092 - John Latham Page 11(0/0)

Constructor

publ i ¢ G aphNodeNameMap()

{
} Il G aphNodeNaneMap

April 28, 2005 CS1092 - John Latham Page 12(0/0)

i3E

Methods addNode() and get Node()

public void addNode(String nane, G aphNode graphNode)

{
nanmeMap. put (nane, graphNode);

} // addNode

publ i ¢ GraphNode get Node(String nane)

{
return (G aphNode) nanmeMap. get (nane);

} I] get Node

April 28, 2005 CS1092 - John Latham Page 13(0/0)

i3E

Methods nodeNanes() and nodes()

public Iterator nodeNames()

{
return nameMap. keySet ().iterator();

} I nodeNanes

public Iterator nodes()

{

return nameMap. val ues().iterator();
} Il nodes

April 28, 2005 CS1092 - John Latham Page 14(0/0)

i3E

Method r enoveNode()

public void remveNode(String nodeNane)

{

naneMap. renove(nodeNane) ;
} Il renove

April 28, 2005 CS1092 - John Latham Page 15(0/0)

R

Method r ecor dDependency()

/| Record a dependency between two nanmed nodes,
[/ to be added to the graph later.
public void recordDependency(String dependent, String dependency)

{
dependent s. add(dependent) ;

dependenci es. add(dependency);
} Il recordDependency

April 28, 2005 CS1092 - John Latham Page 16(0/0)

i1 JE

Method pl ant Dependenci es()

public voi d pl ant Dependenci es()
{

for (int i =0; i < dependents.size(); i++)

{
G aphNode dependent

= (G aphNode) nanmeMap. get (dependents. get(i));

G aphNode dependency
= (G aphNode) nanmeMap. get (dependencies. get(i));
| f (dependent != null && dependency != null)
dependent . addDependency(dependency) ;
} [l for
} [/ plant Dependenci es

} Il class G aphNodeNaneMap

April 28, 2005 CS1092 - John Latham Page 17(0/0)

Class JokeTel | er

We need a user interface in which the user can ask for the next joke, and then ask for its
answer. This is provided by the class JokeTel | er.

A JokeTel | er is given the end joke of the set of jokes. This is the end node of the graph,
and will be the last ‘joke’ told.

The JokeTel | er obtains a topological order of the jokes, from the end joke, and then
presents the jokes in that order when requested by the user. The topological order
processes dependencies of each node in a random order, so the jokes are told in a random
topological order.

A JokeTel | er has a C one button which causes it to make a copy of itself. Each copy
will tell all the jokes, as they each obtain their own topological order from the graph.

The program exits only when all the JokeTel | er instances have been quit.

April 28, 2005 CS1092 - John Latham Page 18(0/0)

=

2

Making the program exit

Prior to Java 1.4, making the program exit when the last window is closed was non-trivial.

Since Java 1.4, if each window is disposed on close, then the GUI event thread should
end when the last one is disposed.

This will cause the program to terminate if there are no other threads left running at that
time.

However, it is worth looking at what was needed prior to Java 1.4. \We needed to manage
the program exit ourselves.

The approach may still be useful in some circumstances (e.g. when there are other
threads running too).

April 28, 2005 CS1092 - John Latham Page 19(0/0)

Interface | nst anceCount er

Something keeps track of the number of instances of JokeTel | er.
Here, this is an | nst anceCount er .

When a JokeTel | er is created, it will be passed a reference to the instance counter. It
will then cause the instance counter to increment the count.

When a JokeTel | er is quit, it will cause the instance counter to decrement the count.

One way of achieving this instance counting is to have it defined as an interface. We
make the main class of the program (El ephant) i npl enent this interface, so it can then
act as the instance counter for all the joke tellers.

The | nst anceCount er mechanism is also used to make each JokeTel | er appear at a
different place on the screen.

April 28, 2005 CS1092 - John Latham Page 20(0/0)

| nst anceCount er code

public interface InstanceCounter

{

public void increment();

public void decrement();

public int getCurrentCount();

} Il interface InstanceCounter

April 28, 2005 CS1092 - John Latham Page 21(0/0)

JokeTel | er code (part)

[l N.B: This uses AWI directly, rather that Sw ng.
| nport java.aw . *;

| mport java.aw.event.*;

| mport java.util.*;

public class JokeTel |l er extends Frane

{

private Panel buttonPanel = new Panel ();

private Joke endJoke;

private InstanceCounter instanceCounter;
private Button askJoke;

private Iterator topol ogical O der;

April 28, 2005 CS1092 - John Latham Page 22(0/0)

JokeTel | er code (part)

public JokeTel | er(Joke requi redEndJoke,
| nst anceCount er requiredl nstanceCount er)

endJoke = requiredEndJoke;
| nst anceCount er = requiredl nstanceCount er;

| nst anceCount er.increnent();

t opol ogi cal Order

= endJoke. t opol ogi cal O der (G aphNode. ORDER_RANDOM
fal se);

April 28, 2005 CS1092 - John Latham

Page 23(0/0)

JokeTel | er code (part)

Button cloneButton = new Button("d one");
but t onPanel . add(cl oneButton);
cl oneButt on
.addAct i onLi st ener
(new ActionLi stener ()
{ public void actionPerformed(ActionEvent e)
{ new JokeTel | er(endJoke, instanceCounter); }

});

set Locat i on(i nstanceCount er. get Current Count () * 40,
| nst anceCount er. get Current Count () * 30);
pack() ;

show) ;
} [] JokeTel |l er

April 28, 2005 CS1092 - John Latham Page 24(0/0)

JokeTel | er code (part)

[/ Called when w ndowCl osing or when Quit button pressed.
private void endThi sJokeTel | er ()

{

di spose();
| nst anceCount er . decrenent () ;
} Il endThi sJokeTel | er

April 28, 2005 CS1092 - John Latham Page 25(0/0)

JokeTel | er code (part)

[l This alternates between null and the current joke.
private Joke currentJoke = null;

[l Called when ask joke / tell answer button pressed.
private void tellJoke()
{
I f (currentJoke == null)
{ 1f (topol ogical Oder.hasNext())
{ currentJoke = (Joke) topol ogical Oder.next();
quest i onText Ar ea. set Text
(Fold.fold(0, 30, currentJoke.getQuestion()));
answer Text Area. set Text ("");
askJoke. set Label (TELL_ANSWER LABEL);
}oILoaf
YLD

April 28, 2005 CS1092 - John Latham Page 26(0/0)

JokeTel | er code (part)

el se

{

answer Text Area. set Text
(Fold.fold(0, 30, currentJoke.getAnswer()));
currentJoke = null;
askJoke. set Label (ASK JOKE LABEL);
} Il else
} [l tellJoke

} [l class JokeTel |l er

April 28, 2005 CS1092 - John Latham Page 27(0/0)

El ephant code (part)

public class Elephant inplenments |nstanceCounter

{

public static void main(String [] args)
{ G aphNodeNaneMap j okeNaneTabl e
= new G aphNodeNanmeMap();
Joke | ast Joke
= new Joke("LAST JOKE",
"How do you know when you have heard"
+ " all the el ephant jokes?",
"There are no nore.");

... Code here to load the jokes from a file, and build the graph, with | ast Joke as the end
node.

| nst anceCounter ic = new El ephant();
new JokeTel | er (| astJoke, ic);
} [l main

April 28, 2005 CS1092 - John Latham Page 28(0/0)

Tt El ephant code (part)

private static int jokeTellerCount = O;

public void increnent()

{

| okeTel | er Count ++;
} Il 1ncrenment

public void decrenent()
{
| okeTel | er Count - -;
| f (] okeTel |l erCount == 0)
Systemexit(0);
} Il decrenent

April 28, 2005 CS1092 - John Latham Page 29(0/0)

B

El ephant code (part)

public int getCurrentCount()
{

return jokeTel |l er Count;
} I1 get Current Count

} Il class El ephant

April 28, 2005 CS1092 - John Latham Page 30(0/0)

Class Fol d

e When displaying the text of a joke question or answer, we need to make it fit in the space
available in the text boxes of the JokeTel | er.

e The class Fol d provides a single static method f ol d() which takes a St ri ng and integer
margin and width arguments, and produces a St r i ng consisting of several lines which
will fit in the given width and margin (i.e. the result has new line characters in it).

April 28, 2005 CS1092 - John Latham Page 31(0/0)

i mport java.util.StringTokeni zer;

public class Fold

{

public static String fold(int margin, int wdth,
String text)

{
StringBuffer marginStringBuffer = new StringBuffer();

while (marginStringBuffer.length() < margin)
mar gi nStri ngBuf fer. append(" ");
String marginString = marginStringBuffer.toString();

April 28, 2005 CS1092 - John Latham

Page 32(0/0)

StringBuffer result = new StringBuffer();
Int currentLineLength = 0;

StringTokeni zer |inesTokeni zer
= new StringTokeni zer(text, "\n", false);

April 28, 2005 CS1092 - John Latham Page 33(0/0)

whi e (l1nesTokeni zer. hasMreTokens())
{
StringTokeni zer wordsTokeni zer
= new StringTokeni zer(|inesTokeni zer. next Token());
whi | e (wor dsTokeni zer. hasMoreTokens())

{

String word = wordsTokeni zer. next Token();
i f (currentLineLength == 0)
{
result.append(mrginString);
current Li neLength = margin;
YLD
el se

April 28, 2005 CS1092 - John Latham Page 34(0/0)

I f (currentLineLength + 1 + word.length() > wdth)
{

result.append("\n");

resul t.append(marginString);

currentLineLength = margin;

YOt
el se
{
resul t.append(" ");
currentLi neLengt h++;
} /] else
} I else

April 28, 2005 CS1092 - John Latham Page 35(0/0)

Fol d code

result. append(word);

currentLi neLength += word. | ength();
} [/ while
} [l while

resul t.append("\n");

return result.toString();
} /] fold

} Il class Fold

April 28, 2005 CS1092 - John Latham

Page 36(0/0)

Class RandontCount er

e The RandonCount er class is used to help make random topological orders. When
creating the topological order, we traverse the dependencies of a node in a random order.

A RandonCount er object is given a positive number, si ze when it is created. Then, each
time its method next () is called, it will return a number between 0 and si ze - 1,
without repetition, but in a random order. If it is called more than si ze times, it returns

- 1 from then on.

To scan the list of dependencies of a graph node in a random order, we simply create a
RandonCount er, giving the size of the dependencies list as the argument, and then call
next () that many times, using the result as the index of the next dependency to consider.

April 28, 2005 CS1092 - John Latham Page 37(0/0)

Lot RandontCount er code

publ i c class RandonCount er

{

private int [] countList;
private int remaini ngCountLi stLength;

[/ Qotains count fromO to size -1, but in random order.
publ i ¢ RandonCounter(int size)
{

remai ni ngCount Li st Length = si ze;

countLi st = new int[size];

for (int i =0; I < size; |++)

countList[i] =1;

} 11 RandonCount er

April 28, 2005 CS1092 - John Latham Page 38(0/0)

Lot RandontCount er code

[l Returns -1 when all the |ist is exhausted.
public int next()
{ if (remainingCountListLength == 0)
return -1,
el se
{ int randon nt

= (int) (Math.randonm() * remaini ngCountLi stLength);

Int result = countList[randonmnt];

r emai ni ngCount Li st Lengt h- -;
count Li st[random nt]
= count Li st [remai ni ngCount Li st Lengt h] ;
return result;
} I else
} Il next

} [] class RandomCount er

April 28, 2005 CS1092 - John Latham

Page 39(0/0)

