
List of Slides

1 Topic: Recursion
2 Section 1: Introduction
3 What is a recursive definition?
4 Using a recursive definition
5 Could that calculation have gone on forever?
6 Okay, why does it ‘work’ for all positive n?
7 Recursive method
8 Factorial method
9 Recursion versus iteration

10 Coming up
11 Section 2: Lecture attendance count
12 Lecture attendance count
13 Lecture attendance count: instructions
14 Would it work?
15 Could we have done it iteratively?
16 Section 3: The sum of the agesof my descendents

0-0

17 Another human example
18 Sum of ages of descendents
19 Ooops – that’s not quite right!
20 Section 4: Factorial
21 Running factorial
22 Factorial code
23 Why does it work?
24 Can factorial be implemented iteratively?
25 Section 5: Fibonacci
26 What is Fibonacci?
27 Running Fibonacci
28 Fibonacci code
29 Can Fibonacci be implemented iteratively?
30 Section 6: Countdown
31 What is Countdown?
32 Designing a recursive algorithm
33 Running countDown
34 The key to the countDown solution

0-1

35 Output from countDown method
36 Countdown code
39 Running countDown, looking at the code
40 Can countDown be implemented iteratively?
41 Section 7: Dice combinations
42 Dice combinations
43 The key to the dice combinations solution
44 Dice code
47 Can printDiceCombinations be implemented iteratively?
48 Section 8: Vowel movement
49 Vowel movement
50 The key to the vowel movements solution
51 Vowel movement code
55 Can outputVowelMovements be implemented iteratively?
56 Section 9: Towers of Hanoi: another puzzle
57 Towers of Hanoi
58 The key to the towers solution
59 Tower code

0-2

63 Towers code
68 Running it again
69 Can Towers of Hanoi be implemented iteratively?
70 Section 10: Summary
71 Recursion summary

0-3

Topic

Recursion

April 28, 2005 CS1092 - John Latham Page 1(0/0)

Section 1

Introduction

April 28, 2005 CS1092 - John Latham Page 2(0/0)

What is a recursive definition?
� When something is defined in terms of itself, that is a recursive definition.

� It is an old mathematical concept.

� For example, a recursive definition of the factorial function.

Assuming n is a positive whole number.

fact 1 = 1

fact n = n * fact(n - 1)

ˆˆˆˆ ˆˆˆˆ

� In order to define fact we use fact!

April 28, 2005 CS1092 - John Latham Page 3(0/0)

Using a recursive definition
� And so:

fact 4

= 4 * (fact 3)

= 4 * (3 * (fact 2))

= 4 * (3 * (2 * (fact 1)))

= 4 * (3 * (2 * 1))

= 4 * (3 * 2)

= 4 * 6

= 24

April 28, 2005 CS1092 - John Latham Page 4(0/0)

Could that calculation have gone on forever?
� What if the argument is zero or negative?

� E.g:

fact -1

= -1 * (fact -2)

= -1 * (-2 * (fact -3))

= -1 * (-2 * (-3 * (fact -4)))

= -1 * (-2 * (-3 * (-4 * (fact -5))))

...

� Ho, hum. It is only defined (i.e., gets an answer) for positive arguments – but we said that

upfront!

April 28, 2005 CS1092 - John Latham Page 5(0/0)

Okay, why does it ‘work’ for all positive n?
� fact is defined for all positive integer arguments, n.

� n could be 1 – the result is 1.

– fact 1 = 1

� This is known as the base case.

� All other (positive integer) n are bigger than 1, and so we can subtract 1 from n only a

finite number of times before reaching 1.

– fact n = n * fact(n - 1)

� This is known as the recursive case.

April 28, 2005 CS1092 - John Latham Page 6(0/0)

Recursive method
� A recursive method is one which is defined in terms of itself.

� The definition of a method is its body.

� This means the body of a recursive method contains one or more calls to itself.

� To be well defined it must:

– Have a clearly identified range of arguments for which it is meant to work.

– Have at least one base case, which does not cause a call to the same method.

– In all recursive cases the arguments passed to a call of the same method, are nearer to

a base case, than those given; assuming the given ones are among those the method is

meant to work for.

April 28, 2005 CS1092 - John Latham Page 7(0/0)

Factorial method

// n must be positive.

public int factorial(int n)

{

int result;

if (n == 1) // <- Base case.

result = 1;

else

{

int factNMinus1 = factorial(n - 1); // <- Recursive case.

// <- (n - 1) is nearer to 1.

result = n * factNMinus1;

} // else

return result;

} // factorial

April 28, 2005 CS1092 - John Latham Page 8(0/0)

Recursion versus iteration
� At first glance, recursion can look like another form of iteration – execution appears to

‘jump back’ to the start of the method.

– Be warned: that is a dangerously wrong view of what is actually happening!

� Indeed many recursive methods could (and perhaps should) be easily implemented using

a loop instead.

� But many cannot easily be implemented iteratively, as we shall see.

� Recursion is a more powerful, more general tool, than iteration.

� Iteration is in fact merely an optimised implementation of simple uses of recursion,

known as tail recursion.

April 28, 2005 CS1092 - John Latham Page 9(0/0)

Coming up
� Lecture attendance count.

� Sum of ages of descendents.

� Factorial. Recursion demo: factorial-6

� Fibonacci. Recursion demo: fib-8

� Countdown. Recursion demo: countdown-1-2-3-4-5-1

� Dice combinations. Combining 6 dice

� Vowel movement. Input word is ‘El*z*b*th’

� Towers of Hanoi. Towers 5 blocks big

April 28, 2005 CS1092 - John Latham Page 10(0/0)

Section 2

Lecture attendance count

April 28, 2005 CS1092 - John Latham Page 11(0/0)

Lecture attendance count
� An example of a recursive procedure, for humans to follow.

� Suppose, for some arbitrary reason, I wished to know how many students are in this

lecture theatre.

� I would, of course, assume that all those present are cooperative, and can follow simple

instructions.

� I could pass the following instructions to the left-most person in the front row, and wait

for the answer.

April 28, 2005 CS1092 - John Latham Page 12(0/0)

Lecture attendance count: instructions

Stand up.

Count the number of people in your row (including you), and remember it.

If there is a non-empty row behind you then:

Pass these instructions to the left-most person in that row, and wait.

Take the result from that person behind you, add it to your row count,

-- that is your answer.

else

Your row count is your answer.

end-if

Pass your answer to whomever asked you to follow these instructions.

April 28, 2005 CS1092 - John Latham Page 13(0/0)

Would it work?
� Would it work? Maybe we should try it?

� Is it recursive?

� Key points about this algorithm:

– Each person following the instructions has his/her own separate notion of:

� Who ‘called’ him/her.

� His/her row count.

� Who he/she calls, if any.

� The result got back from whomever he/she called.

– The result returned by any person is always the number of people in his/her row, plus

all those in rows behind.

– So the result returned by the first person is the count from all the rows.

April 28, 2005 CS1092 - John Latham Page 14(0/0)

Could we have done it iteratively?
� Could we have used iteration instead of recursion?

� Yes, of course!

� One person could have walked up the rows, one by one.

� It was only (really) tail recursion, and so is easy to implement using iteration.

� On the other hand, how could we simply change our instructions to exploit the parallelism

in the room, to get the answer more quickly?

� Well anyway, concurrent programming is not a topic of CS1092! ;-)

April 28, 2005 CS1092 - John Latham Page 15(0/0)

Section 3

The sum of the ages

of my descendents

April 28, 2005 CS1092 - John Latham Page 16(0/0)

Another human example
� There is an isolated, if a little crowded, island where people live for thousands of years,

because they eat so well and look after themselves.

� One day, a very old, very rich woman wants to give a present to all her descendents, to

mark her retirement from running her gold mine for the past 2000 years.

� She wants to give to each descendent, a piece of gold for each year of his or her age.

� She does not even know how many descendents she has, let alone their ages. She does, of

course, know her own children.

� In order to figure out how many pieces of gold to get out of her safe, she asks her children

for the sum of the ages of their descendents. . . .

� (Oh, by the way, there is never any incest on this island.)

April 28, 2005 CS1092 - John Latham Page 17(0/0)

Sum of ages of descendents
� She simply asks herself to follow these instructions!

� result = 0

for each child you have (if any):

Ask him/her to follow these instructions, wait for the result.

result += result from child.

end-for

result += your age

Pass your result to whomever asked you.

� Would this work? (What if there was some incest, perish the thought?)

� Could this be easily expressed using iteration?

� It is not a simple case of tail recursion.

� In fact it uses multiple recursion.

April 28, 2005 CS1092 - John Latham Page 18(0/0)

Ooops – that’s not quite right!
� She has included herself in the sum of all the ages!

� Maybe these instructions would have been better?

result = 0

for each child you have (if any):

Ask him/her to follow these instructions, wait for the result.

result += result from child.

result += age of that child.

end-for

Pass your result to whomever asked you.

April 28, 2005 CS1092 - John Latham Page 19(0/0)

Section 4

Factorial

April 28, 2005 CS1092 - John Latham Page 20(0/0)

Running factorial
� Let us start with a simple example of a recursive method – factorial.

� Recursion demo: factorial-6

April 28, 2005 CS1092 - John Latham Page 21(0/0)

Factorial code
� Here is the code.

public int factorial(int n)

{

int result;

if (n == 1)

result = 1;

else

{

int factNMinus1 = factorial(n - 1);

result = n * factNMinus1;

} // else

return result;

} // factorial

� Recursion demo: factorial-6-code

April 28, 2005 CS1092 - John Latham Page 22(0/0)

Why does it work?
� Each call to factorial() has its own separate notions of:

– The parameter n.

– The local variable result.

– The local variable factNMinus1.

– Where it was called from (e.g: which instantiation of the method).

– Where it is up to.

� So, for example if n is 6, there will be six local variables called result, etc..

April 28, 2005 CS1092 - John Latham Page 23(0/0)

Can factorial be implemented iteratively?
� Our factorial() method uses simple tail recursion, so it is obvious how to implement

it iteratively.

� No-one would really implement it using recursion, would they?

� On the other hand, the recursive version is more ‘obviously correct’ with respect to the
mathematical definition of factorial. Especially when expressed as follows (removing the

fairy steps).

public int factorial(int n)

{

if (n == 1) return 1;

else return n * factorial(n - 1);

} // factorial

� Write an iterative version of factorial. Compare it with the mathematical definition – is it
‘obviously correct’?

April 28, 2005 CS1092 - John Latham Page 24(0/0)

Section 5

Fibonacci

April 28, 2005 CS1092 - John Latham Page 25(0/0)

What is Fibonacci?
� This is another mathematical function, which can be used to model breeding patterns.

Assuming n is a positive integer.

fib 1 = 1

fib 2 = 1

fib n = fib(n - 1) + fib(n - 2)

� For example, n might be the number of generations, and the result might be the number

of rabbits you will have after that many generations!

April 28, 2005 CS1092 - John Latham Page 26(0/0)

Running Fibonacci
� Let us see Fibonacci running.

� Recursion demo: fib-6

� Recursion demo: fib-8

� Recursion demo: fib-10

April 28, 2005 CS1092 - John Latham Page 27(0/0)

Fibonacci code
� Here is the code.

public int fibonacci(int n)

{

int result;

if (n == 1 || n == 2)

result = 1;

else

{

int fibNMinus1 = fibonacci(n - 1);

int fibNMinus2 = fibonacci(n - 2);

result = fibNMinus1 + fibNMinus2;

} // else

return result;

} // fibonacci

� Recursion demo: fib-6-code

April 28, 2005 CS1092 - John Latham Page 28(0/0)

Can Fibonacci be implemented iteratively?
� Our fibonacci() method does not use simple tail recursion, so it is not obvious how to

implement it iteratively.

� However, after some thought you should be able to find a wholely different way of

implementing it, which has linear time complexity, i.e. the time taken to run is

proportional to n.

� When this is expressed recursively, it does only use tail recursion, and so can easily be

implemented in a loop.

� Find that solution! Is it ‘obviously correct’ with respect to the mathematical definition of

the function?

� Do you want a clue? Recursion demo: fastfib-6

April 28, 2005 CS1092 - John Latham Page 29(0/0)

Section 6

Countdown

April 28, 2005 CS1092 - John Latham Page 30(0/0)

What is Countdown?
� Countdown is a TV show!

� One puzzle involves solving numerical sums. Here we will keep it simple.

– You have five positive whole numbers, separated by question marks.

– There is a sixth number, which is the target.

– The question marks can either be + or / operators.

– Ignore operator precedence, and there are no brackets – just work left to right.

– Find an operator for each question mark, so that the five numbers total the target, if

possible.

� E.g: Solve the following puzzles.

1 ? 2 ? 3 ? 4 ? 5 == 1

24 ? 4 ? 59 ? 5 ? 87 == 100

April 28, 2005 CS1092 - John Latham Page 31(0/0)

Designing a recursive algorithm
� The key to designing a recursive solution to a problem is to identify the base case and

recursive case.

� The base case corresponds to input values for which the solution is ‘easy’.

� The recursive case involves us finding an instance of the same problem, which is

‘smaller’, and such that the solution to the smaller problem helps us solve the given one.

April 28, 2005 CS1092 - John Latham Page 32(0/0)

Running countDown
� Let us see countDown running.

� Recursion demo: countdown-1-2-3-4-5-1

� Recursion demo: countdown-24-4-59-5-87-100

April 28, 2005 CS1092 - John Latham Page 33(0/0)

The key to the countDown solution
� The base case is when we have just one number, instead of five numbers, and that

number does or does not equal the desired target.

� The recursive cases are based on trying to solve a smaller problem, which has one less

number than the given one.

– i.e. to solve

countDown(x1, x2, x3, x4, x5, target)

we try one or both of the following smaller problems:

countDown(0, x1, x2, x3, x4, target - x5)

countDown(0, x1, x2, x3, x4, target * x5)

April 28, 2005 CS1092 - John Latham Page 34(0/0)

Output from countDown method
� countDown(1, 2, 3, 4, 5, 1)

produces

1

+ 2 = 3

/ 3 = 1

+ 4 = 5

/ 5 = 1

April 28, 2005 CS1092 - John Latham Page 35(0/0)

Countdown code
� Here is the code.

// The five numbers are passed in as parameters, x1, x2, x3, x4 and x5.

// The desired result is the sixth parameter.

// For any x, the value zero represents ‘no value’.

// This permits us to have less than five numbers on recursive calls

// by having the first 1, 2, 3 or 4 numbers all being zero.

// If x5 is zero, something has gone wrong!

// If x4 is 0, then x5 is the only number.

public boolean countDown(int x1, int x2, int x3, int x4, int x5,

int desiredResult)

{

if (x5 == 0) // No numbers! Should not happen.

return false;

April 28, 2005 CS1092 - John Latham Page 36(0/0)

Countdown code

else if (x4 == 0) // Only 1 number.

if (desiredResult == x5) // Success!

{

System.out.println(x5);

return true;

} // if

else // Failure.

return false;

April 28, 2005 CS1092 - John Latham Page 37(0/0)

Countdown code

else // Try + between x4 and x5, and if that fails, try / instead.

{

if (countDown(0, x1, x2, x3, x4, desiredResult - x5))

{ // Success with + between x4 and x5.

System.out.println(" + " + x5 + " = " + desiredResult);

return true;

} // if

else if (countDown(0, x1, x2, x3, x4, desiredResult * x5))

{ // Success with / between x4 and x5.

System.out.println(" / " + x5 + " = " + desiredResult);

return true;

} // if

else // Failure

return false;

} // else

} // countDown

April 28, 2005 CS1092 - John Latham Page 38(0/0)

Running countDown, looking at the code
� Now let us watch the code running.

� Recursion demo: countdown-24-4-59-5-87-100-code

� Recursion demo: countdown-1-2-3-4-5-1-code

April 28, 2005 CS1092 - John Latham Page 39(0/0)

Can countDown be implemented iteratively?
� Our countDown() method does not use simple tail recursion, so it is not obvious how to

implement it iteratively.

� Have a go at finding an iterative solution!

April 28, 2005 CS1092 - John Latham Page 40(0/0)

Section 7

Dice combinations

April 28, 2005 CS1092 - John Latham Page 41(0/0)

Dice combinations
� Recall the example of generating all combinations of three dice.

� It used three nested loops, each iterating from 1 to 6.

� What if we wanted four dice? Ten?

� Any number?

April 28, 2005 CS1092 - John Latham Page 42(0/0)

The key to the dice combinations solution
� We work through all the dice, from first to last.

� The base case is when we have reached the end of the list of dice.

� The recursive cases are based on printing out the combinations of all the dice to the right

of the point we are at.

� So, in order to print out all the combinations, we make the first die go through all its

possible numbers, and for each value, recursively find all the combinations of the dice to

the right of it.

April 28, 2005 CS1092 - John Latham Page 43(0/0)

Dice code
� Here is the code.

public class Dice

{

public static void main(String [] args)

{

int noOfDice = Integer.parseInt(args[0]);

diceValues = new int[noOfDice];

printDiceCombinations(0);

} // main

April 28, 2005 CS1092 - John Latham Page 44(0/0)

Dice code

private static int[] diceValues;

private static void printDiceCombinations(int currentDieNumber)

{

if (currentDieNumber == diceValues.length)

{

int sumOfDice = 0;

for (int dieNumber = 0; dieNumber < diceValues.length; dieNumber++)

sumOfDice += diceValues[dieNumber];

System.out.print(sumOfDice + " from");

for (int dieNumber = 0; dieNumber < diceValues.length; dieNumber++)

System.out.print(" " + diceValues[dieNumber]);

System.out.println();

} // if

April 28, 2005 CS1092 - John Latham Page 45(0/0)

Dice code

else

for (diceValues[currentDieNumber] = 1;

diceValues[currentDieNumber] <= 6;

diceValues[currentDieNumber]++)

printDiceCombinations(currentDieNumber + 1);

} // printDiceCombinations

} // class Dice

� Trying it. Combining 2 dice

� Trying it. Combining 6 dice

April 28, 2005 CS1092 - John Latham Page 46(0/0)

Can printDiceCombinations be implemented iteratively?
� Our printDiceCombinations() method does not use simple tail recursion, so it is not

obvious how to implement it iteratively.

� Have a go at finding an iterative solution – not just for a fixed number of dice, like the

nested loops approach. You can do it, if you approach the problem in a wholely different

way. (Hint: base N counting, where N is the number of dice?)

� Is the iterative solution (significantly) more efficient? Is it shorter or longer code? Is it

easier or harder to see that it is correct?

April 28, 2005 CS1092 - John Latham Page 47(0/0)

Section 8

Vowel movement

April 28, 2005 CS1092 - John Latham Page 48(0/0)

Vowel movement
� We have an input string, a word, but with some/all of the vowels replaced by asterisks.

� Output is all possible ‘words’ where each asterisk is replaced by every vowel in turn.

� So, if we have two asterisks in the input, there are 25 ‘words’ in the output.

� Try running it. Input word is ‘J*hn’

� Try running it. Input word is ‘El*z*b*th’

April 28, 2005 CS1092 - John Latham Page 49(0/0)

The key to the vowel movements solution
� It is actually very similar to dice combinations.

� We work through all the characters, from first to last.

� The base case is when we have reached the end of the word – we print it out.

� The recursive cases are based on printing out the combinations of all the characters to

the right of the point we are at, each prepended with what we have so far in the word.

� So, in order to print out all the ‘words’, if the character at the current position is ’*’ we

set it in turn to every vowel, and for each vowel, recursively find all the ‘words’ to the

right of it.

April 28, 2005 CS1092 - John Latham Page 50(0/0)

Vowel movement code

public class VowelMovements

{

public static void main(String [] args)

{

inputStringBuffer = new StringBuffer(args[0]);

outputVowelMovements(0);

} // main

Find out about StringBuffer – it is like String, but we can change the contents of an

instance of it.

April 28, 2005 CS1092 - John Latham Page 51(0/0)

Vowel movement code

private static void outputVowelMovements(int scanPosition)

{

// scanPosition is where we are up to in our scan from

// left to right. If we have reached the end,

// we can print the string and return.

if (scanPosition >= inputStringBuffer.length())

System.out.println(inputStringBuffer);

// If we have not found ’*’ then move on to the next.

else if (inputStringBuffer.charAt(scanPosition) != ’*’)

outputVowelMovements(scanPosition + 1);

April 28, 2005 CS1092 - John Latham Page 52(0/0)

Vowel movement code

// Otherwise change ’*’ to ’a’, ’e’, ’i’, ’o’, ’u’

// and for each move on.

else

{

inputStringBuffer.setCharAt(scanPosition, ’a’);

outputVowelMovements(scanPosition + 1);

inputStringBuffer.setCharAt(scanPosition, ’e’);

outputVowelMovements(scanPosition + 1);

inputStringBuffer.setCharAt(scanPosition, ’i’);

outputVowelMovements(scanPosition + 1);

inputStringBuffer.setCharAt(scanPosition, ’o’);

outputVowelMovements(scanPosition + 1);

inputStringBuffer.setCharAt(scanPosition, ’u’);

outputVowelMovements(scanPosition + 1);

April 28, 2005 CS1092 - John Latham Page 53(0/0)

Vowel movement code

// Put the asterisk back to restore the value,

// and also needed for later recursions past this point.

inputStringBuffer.setCharAt(scanPosition, ’*’);

} // if

} // outputVowelMovements

} // class VowelMovements

April 28, 2005 CS1092 - John Latham Page 54(0/0)

Can outputVowelMovements be implemented iteratively?
� Our outputVowelMovements() method does not use simple tail recursion, so it is not

obvious how to implement it iteratively.

� Have a go at finding an iterative solution! You can do it, if you approach the problem in a

wholely different way – similar to what you did for the dice combinations.

� Is the iterative solution (significantly) more efficient? Is it shorter or longer code? Is it

easier or harder to see that it is correct?

April 28, 2005 CS1092 - John Latham Page 55(0/0)

Section 9

Towers of Hanoi: another puzzle

April 28, 2005 CS1092 - John Latham Page 56(0/0)

Towers of Hanoi
� There are three tall pegs. The leftmost peg holds a tower made from rings of wood, with

the largest ring at the bottom, a slightly smaller one on top of that, another even smaller
one above that, and so on. The rings have a circular hole in them, just a bit bigger than
the pegs. Initially the left peg pokes through all the rings of the tower.

� You have to move the whole tower from the left peg to the right peg, ring by ring, using
the middle peg as a temporary storage space.

� You can only move one ring at a time, and you can never place a big ring on top of a
smaller one!

� Towers 3 blocks big

� Towers 5 blocks big

� Towers 7 blocks big

� Towers 9 blocks big

April 28, 2005 CS1092 - John Latham Page 57(0/0)

The key to the towers solution
� The base case is when we have a tower of size zero to move – the job is done!

� For the recursive case, we identify a smaller problem that can be done recursively, to

help with the whole tower. That smaller problem is the whole tower except its bottom

ring.

� That is, in order to move a tower of N rings from the left peg to the right one, we first

move the tower made from the top N � 1 rings to the middle peg. Then we move the

bottom ring to the right. Then we move the tower from the middle peg to the right peg,

but this time using the left peg as a temporary space.

April 28, 2005 CS1092 - John Latham Page 58(0/0)

Tower code

First the basic stuff: a class to represent a tower.

public class Tower

{

private final int maximumTowerSize;

private final int[] blocks;

private int towerSize;

public Tower(int requiredSize)

{

maximumTowerSize = requiredSize;

blocks = new int[maximumTowerSize];

towerSize = 0;

} // Tower

April 28, 2005 CS1092 - John Latham Page 59(0/0)

Tower code

public void build()

{

for (int block = maximumTowerSize; block >= 1; block--)

addOne(block);

} // build

public int getSize()

{

return towerSize;

} // getSize

April 28, 2005 CS1092 - John Latham Page 60(0/0)

Tower code

public int removeOne()

{

towerSize--;

int result = blocks[towerSize];

blocks[towerSize] = 0; // To assist toString().

return result;

} // removeOne

public void addOne(int block)

{

blocks[towerSize] = block;

towerSize++;

} // addOne

April 28, 2005 CS1092 - John Latham Page 61(0/0)

Tower code

public String toString()

{

... // Code to represent a tower, as a bit of ‘ascii art’.

... // 21 lines of code.

} // toString

} // class Tower

April 28, 2005 CS1092 - John Latham Page 62(0/0)

Towers code

Then the main program.

public class Towers

{

private static Tower left, middle, right;

private static int moveCount = 0;

private static int recursionLevel = 0;

private static void showState()

{

... // Code to show the state of the towers

... // and the recursion level.

... // and have a delay, shorter as recursion level increases.

... // 14 lines of code.

} // showState

April 28, 2005 CS1092 - John Latham Page 63(0/0)

Towers code

private static void moveOne(Tower from, Tower to)

{

int inHand = from.removeOne();

to.addOne(inHand);

moveCount++;

showState();

} // moveOne

private static void move(Tower from, Tower to)

{

Tower spare = left;

if (from == spare || to == spare) spare = middle;

if (from == spare || to == spare) spare = right;

move(from.getSize(), from, to, spare);

} // move

April 28, 2005 CS1092 - John Latham Page 64(0/0)

Towers code

public static void main(String [] args)

{

int towerSize = Integer.parseInt(args[0]);

left = new Tower(towerSize);

middle = new Tower(towerSize);

right = new Tower(towerSize);

left.build();

showState();

move(left, right);

} // main

April 28, 2005 CS1092 - John Latham Page 65(0/0)

Towers code

And finally, the recursive bit...

April 28, 2005 CS1092 - John Latham Page 66(0/0)

Towers code

private static void move(int noOfBlocksToMove,

Tower from, Tower to, Tower spare)

{

recursionLevel++; showState();

if (noOfBlocksToMove > 0)

{

move(noOfBlocksToMove - 1, from, spare, to);

moveOne(from, to);

move(noOfBlocksToMove - 1, spare, to, from);

} // if

recursionLevel--; showState();

} // move

} // class Towers

April 28, 2005 CS1092 - John Latham Page 67(0/0)

Running it again
� Towers 3 blocks big

� Towers 5 blocks big

� Towers 7 blocks big

� Towers 9 blocks big

April 28, 2005 CS1092 - John Latham Page 68(0/0)

Can Towers of Hanoi be implemented iteratively?
� Our move() method does not use simple tail recursion, so it is not obvious how to

implement it iteratively.

� But of course it can be – even if you have to use additional data structures.

� Have a go at finding an iterative solution – if you dare!

April 28, 2005 CS1092 - John Latham Page 69(0/0)

Section 10

Summary

April 28, 2005 CS1092 - John Latham Page 70(0/0)

Recursion summary
� Recursion is a powerful tool.

� Some people shy away from it because it can seem a bit tricky.

� You must strive to get comfortable with it.

� Then you will have the ability to choose whether to use recursion for the right reasons.

� Factorial is really best done using iteration. Fibonacci is best done with the more

efficient algorithm which is easily implemented using iteration.

� However, there are many cases where recursion is the best tool for the job, such as the

other program examples here.

April 28, 2005 CS1092 - John Latham Page 71(0/0)

