Exception Classes

0000

00000

0000000
0000000000000 000
(e}

(CS1092: Object-Oriented Programming with Java
More on EXCEPTIONS
Howard Barringer
Room KB2.20/22: email: howard.barringer@manchester.ac.uk

February 2005

Exception Classes

0000

00000

0000000
0000000000000 000
(e}

Supporting and Background Material

e Copies of key slides (already handed out)

e Chapter 17 of the JTL book (follows this presentation) —
lecture notes

e Recommended reading books for course

e Chapter 8 (8.2) of Savitch “JAVA: An introduction to
Computer Science and Programming”, 3rd Edition

e Chapter 13 (13.2, 13.5, 13.7) of Liang “Introduction to JAVA
Programming”, International Edition

Exception Classes

0000

00000

0000000
0000000000000 000
(e}

Supporting and Background Material

e Copies of key slides (already handed out)

e Chapter 17 of the JTL book (follows this presentation) —
lecture notes

e Recommended reading books for course

e Chapter 8 (8.2) of Savitch “JAVA: An introduction to
Computer Science and Programming”, 3rd Edition

e Chapter 13 (13.2, 13.5, 13.7) of Liang “Introduction to JAVA
Programming”, International Edition

Exception Classes

0000

00000

0000000
0000000000000 000
(e}

Supporting and Background Material

o Copies of key slides (already handed out)

o Chapter 17 of the JTL book (follows this presentation) —
lecture notes

e Recommended reading books for course

e Chapter 8 (8.2) of Savitch “JAVA: An introduction to
Computer Science and Programming”, 3rd Edition

e Chapter 13 (13.2, 13.5, 13.7) of Liang “Introduction to JAVA
Programming”, International Edition

Exception Classes

0000

00000

0000000
0000000000000 000
(e}

Outline

Exception Classes
Review
Inheritance in Action
Custom Exceptions
The Notional Lottery with Exceptions
Summary

0000000
0000000000000000
00

Outline

Exception Classes
Review
Inheritance in Action
Custom Exceptions

The Notional Lottery with Exceptions
Summary

«O>r «Fr <

it
it
!
)
0
i)

Exception Classes
000

00000

0000000
0000000000000000
oo

Brief Recap

e Run-time errors are instances of the Exception class

Exception Classes

0e00

00000

0000000
0000000000000 000
(e}

Brief Recap

e Run-time errors are instances of the Exception class

e Exceptions can be captured by try ... catch
statement blocks

Exception Classes

0e00

00000

0000000
0000000000000 000
(e}

Brief Recap

e Run-time errors are instances of the Exception class

e Exceptions can be captured by try ... catch
statement blocks

e There can be multiple catch blocks

Exception Classes

Brief Recap

Run-time errors are instances of the Exception class

e Exceptions can be captured by try ... catch ...
statement blocks

There can be multiple catch blocks

e Exceptions can be explicitly thrown by the throw statement

Exception Classes

0e00

Brief Recap

Run-time errors are instances of the Exception class

Exceptions can be captured by try ... catch ...
statement blocks

There can be multiple catch blocks
Exceptions can be explicitly thrown by the throw statement

Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

Exception Classes

0e00

Brief Recap

Run-time errors are instances of the Exception class

Exceptions can be captured by try ... catch ...
statement blocks

There can be multiple catch blocks

Exceptions can be explicitly thrown by the throw statement
Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

Methods declare exceptions that are not handled within the
method

Exception Classes

0e00

Brief Recap

Run-time errors are instances of the Exception class

Exceptions can be captured by try ... catch ...
statement blocks

There can be multiple catch blocks

Exceptions can be explicitly thrown by the throw statement
Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

Methods declare exceptions that are not handled within the
method

The invoking method of a method that declares an exception
is thrown must either declare the exception or handle it

Exception Classes
00®0

00000

0000000
0000000000000000
oo

Many sorts of Exceptions

Name some exceptions you've seen raised in your programs ...

Exception Classes

[e]e] 6]

00000

0000000
0000000000000 000
(e}

Many sorts of Exceptions

Name some exceptions you've seen raised in your programs ...

® IndexOutOfBoundsException

Exception Classes

[e]e] 6]

00000

0000000
0000000000000 000
(e}

Many sorts of Exceptions

Name some exceptions you've seen raised in your programs ...

® IndexOutOfBoundsException

® NumberFormatException

Exception Classes
00®0

00000

0000

00

Many sorts of Exceptions

Name some exceptions you've seen raised in your programs ...

® IndexOutOfBoundsException
® NumberFormatException

® NullPointerException

Exception Classes
00®0

Many sorts of Exceptions

Name some exceptions you've seen raised in your programs ...

® IndexOutOfBoundsException

® ArithmeticException
® NumberFormatException

® NullPointerException

Exception Classes
00®0

Many sorts of Exceptions

Name some exceptions you've seen raised in your programs ...

® IndexOutOfBoundsException

® ArithmeticException
® NumberFormatException

® NullPointerException o ...

Exception Classes

oooe

00000

0000000
0000000000000 000
(e}

The RuntimeException Class

e Apart from IOException, the exceptions we've shown before
are subclasses of the RuntimeException class

e Which itself is a subclass of the Exception class

Exception Classes

oooe

00000

0000000
0000000000000 000
(e}

The RuntimeException Class

e Apart from IOException, the exceptions we've shown before
are subclasses of the RuntimeException class

e Which itself is a subclass of the Exception class

e What's special about the RuntimeException class?

Exception Classes

oooe

00000

0000000
0000000000000 000
(e}

The RuntimeException Class

e Apart from IOException, the exceptions we've shown before
are subclasses of the RuntimeException class

e Which itself is a subclass of the Exception class

e What's special about the RuntimeException class?

Programs do NOT need to catch such exceptions

Exception Classes

oooe

00000

0000000
000000000000 0000

The RuntimeException Class

e Apart from IOException, the exceptions we've shown before
are subclasses of the RuntimeException class

e Which itself is a subclass of the Exception class

e What's special about the RuntimeException class?

Programs do NOT need to catch such exceptions

What about I0Exception? What happens there?

Exception Classes
0000

©0000

0000000
0000000000000000
oo

Exception Classes

Inheritance in Action

Outline

Exception Classes

0000

0@000

0000000
0000000000000 000
(e}

Throwable objects

The Exception class is a subclass of the Throwable class, itself a
subclass of Object

The Exception class has a very large number of subclasses.

Exception Classes

0000

[e]e] lele}

0000000
0000000000000 000
(e}

Some of the Exception Class Hierarchy

55 subclasses of Exception!
InterruptedException
Exception TOException

RuntimeException
Object Throwable :

Error

Exception Classes

0000
[e]e]e] o}

0000000

0000000000000 000

(e}

More of the Exception Class Hierarchy

ArithmeticException
Run.timeException ClaslsCastException 9 subclasses of IllegalArgument...

lllcéalArgumcntchcption < Nurilbcrl*‘nrmatchcption

IndéxOutOfBoundsException

NuliPointerException

29 subclasses of RuntimeException

Exception Classes
0000

0000e

0000000
0000000000000000
oo

The Error class

The Error class is also a subclass of the Throwable class.

Exception Classes

0000

[e]e]ele] }

0000000
0000000000000 000
(e}

The Error class

The Error class is also a subclass of the Throwable class.

Errors can also be caught via a try ... catch ... block.

Exception Classes

0000

[e]e]ele] }

0000000
0000000000000 000
(e}

The Error class

The Error class is also a subclass of the Throwable class.
Errors can also be caught via a try ... catch ... block.

What's the difference between an Error and an Exception?

Exception Classes

0000

[e]e]ele] }

0000000
0000000000000 000
(e}

The Error class

The Error class is also a subclass of the Throwable class.
Errors can also be caught via a try ... catch ... block.
What's the difference between an Error and an Exception?

Errors, e.g. NoSuchMethodError or OutOfMemoryError, are
typically beyond rectification by the program

Exception Classes

0000

[e]e]ele] }

0000000
0000000000000 000
(e}

The Error class

The Error class is also a subclass of the Throwable class.
Errors can also be caught via a try ... catch ... block.

What's the difference between an Error and an Exception?

Errors, e.g. NoSuchMethodError or OutOfMemoryError, are
typically beyond rectification by the program

Hence, instances of the Error class do not need to be caught
— rather like RuntimeException

Exception Classes

The Error class

The Error class is also a subclass of the Throwable class.
Errors can also be caught via a try ... catch ... block.

What's the difference between an Error and an Exception?
Errors, e.g. NoSuchMethodError or OutOfMemoryError, are
typically beyond rectification by the program
Hence, instances of the Error class do not need to be caught
— rather like RuntimeException
However, if an Error is caught, it should be re-thrown and
allowed to propagate out

Exception Classes
0000

00000

©000000
0000000000000000
oo

Exception Classes

Custom Exceptions

Outline

Exception Classes

Defining your own Exceptions

e Java API defines a very large number of exceptions
e BUT the programmer can still define her own
e How and when?

o typically, for explicit throws of exceptions that don't
appropriately relate to any of the API defined exception classes

tion Classes

The Date class revisited

Recall the re-usable Date class (chapter 14.7)

The constructor was modified to throw an exception for illegal
dates

The exception object was an instance of class Exception

Exception Classes

The Date class revisited

Recall the re-usable Date class (chapter 14.7)

The constructor was modified to throw an exception for illegal
dates

The exception object was an instance of class Exception

Better practice to create a special DateException and then throw
an object of that class.

Exception Classes

The Date class revisited

Recall the re-usable Date class (chapter 14.7)

The constructor was modified to throw an exception for illegal
dates

The exception object was an instance of class Exception

Better practice to create a special DateException and then throw
an object of that class.

Question: Should we force the exception to be handled?

l.e., should DateException be a subclass of:
Exception or of RuntimeException?

Exception Classes

0000

00000

000@e000
0000000000000 000
(e}

The DateException class

public class DateException extends RuntimeException {

public DateException() {
super () ;

}

public DateException(String message) {
super (message) ;

}

tion Classes

The DateException class

public class DateException extends RuntimeException {

public DateException() {
super () ;

}

public DateException(String message) {
super (message) ;

}

Note: we have not overridden the superclass methods, getMessage(), etc.

Exception Classes

0000

00000

0000e00
0000000000000 000
(e}

Other required changes

The Date class is then modified by replacing
all occurrences of Exception

by DateException

Exception Classes

0000

00000

0000e00
0000000000000 000
(e}

Other required changes

The Date class is then modified by replacing
all occurrences of Exception

by DateException

Well, that's not quite right. There's one occurrence that should
become a RuntimeException. Can you find it?

Exception Classes

The DateDifference Program

public class DateDifference {
public static void main(String [] args) {
Date datel, date2;
try {
datel = new Date(args[0]);
date2 = new Date(args[1]);
System.out.println("From " + datel + " to " + date2
+ " is " + datel.daysFrom(date2) + " days");
Y // try
catch (ArrayIndexOutOfBoundsException exception)
{ System.out.println("Please supply two dates");
System.err.println(exception); }
catch (DateException exception)
{ System.out.println(exception.getMessage());
System.err.println(exception); }
} // main } // class DateDifference

Exception Classes

0000

00000

0O00000e
0000000000000 000
(e}

And the difference is ...

Now we obtain:

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
DateException: Day 30 must be from 1 to 29 for 2/2004

$ _

Exception Classes

0000

00000

0O00000e
0000000000000 000
(e}

And the difference is ...

Now we obtain:

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
DateException: Day 30 must be from 1 to 29 for 2/2004

$ _

instead of previously

Exception Classes

0000

00000

0O00000e
0000000000000 000
(e}

And the difference is ...

Now we obtain:

$ java DateDifference 16/12/2004 30/2/2004

Day 30 must be from 1 to 29 for 2/2004

DateException: Day 30 must be from 1 to 29 for 2/2004
$ _

instead of previously

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
java.lang.Exception: Day 30 must be from 1 to 29 for 2/2004

$ _

Exception Classes

0000

00000

0000000
©000000000000000
(e}

Outline

Exception Classes

The Notional Lottery with Exceptions

Exception Classes
0000

00000

0000000
0@00000000000000

An Exceptional Notional Lottery

Chapter 16 presented the Notional Lottery case study.

It's prime purpose has been to demonstrate inheritance.

Exception Classes

0O@00000000000000

An Exceptional Notional Lottery

Chapter 16 presented the Notional Lottery case study.
It's prime purpose has been to demonstrate inheritance.

We can revisit a part, to add exceptions,
and define exceptions as subclasses of other user-defined
exceptions.

Exception Classes

0000000000

An Exceptional Notional Lottery

Chapter 16 presented the Notional Lottery case study.
It's prime purpose has been to demonstrate inheritance.

We can revisit a part, to add exceptions,
and define exceptions as subclasses of other user-defined
exceptions.

We will focus on the abstract class BallContainer
and one its subclasses, the Machine class.

Exception Classes

0000

00000

0000000
00@0000000000000
(e}

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

Exception Classes

0000

00000

0000000
00@0000000000000
(e}

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?

Exception Classes

0000

00000

0000000
00@0000000000000
(e}

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?

Sensible to ensure the container can hold at least one ball.

Exception Classes

00000000000

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?
Sensible to ensure the container can hold at least one ball.

What should we do if the required maximum size is less than one?

tion Classes

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?
Sensible to ensure the container can hold at least one ball.
What should we do if the required maximum size is less than one?

Throw an exception! - A BallContainerException

Exception Classes
0000

00000

0000000
000®000000000000

The BallContainer constructor

public BallContainer (String requiredName,
int requiredMaximumSize)

name = requiredName;

balls = new Ball[requiredMaximumSize];
no0fBalls = O;

Exception Classes

0000
00000

0000000

0O00@000000000000

(e}

The BallContainer constructor

public BallContainer (String requiredName,

int requiredMaximumSize)

if (requiredMaximumSize < 1)
throw new BallContainerException
("Size must be at least 1");
name = requiredName;
balls = new Ball[requiredMaximumSize];
no0fBalls = O;

Exception Classes

0000
00000

0000000

0O00@000000000000

(e}

The BallContainer constructor

public BallContainer (String requiredName,

int requiredMaximumSize)
throws BallContainerException

if (requiredMaximumSize < 1)
throw new BallContainerException
("Size must be at least 1");
name = requiredName;
balls = new Ball[requiredMaximumSize];
no0fBalls = O;

tion Classes

The BallContainerException class

public class BallContainerException extends RuntimeException
{
public BallContainerException()
{
super() ;

}

public BallContainerException(String message)
{
super (message) ;
}
}

Exception Classes

0000

00000

0000000
0O0000e0000000000
(e}

Modification to other methods in the BallContainer
class

The methods

getBall — there may be no balls in the container
addBall — there may be no room in the container
removeBall — there may be no ball to remove

swapBalls — the specified balls may not exist

all require attention.

Exception Classes

0000

00000

0000000
0O00000@000000000
(e}

The original SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{
if (1 >= 0 && i < noOfBalls &% j >= O &% j < noOfBalls)

{
Ball 0ldBallAtI = balls[i];
balls[i] = balls([j];
balls[j] = o0ldBallAtI;

}

}

Exception Classes

0000

00000

0000000
0O00000@000000000
(e}

The original SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{
if (1 >= 0 && i < noOfBalls && j >= 0 &% j < noOfBalls)

{
Ball 0ldBallAtI = balls[i];
balls[i] = balls([j];
balls[j] = o0ldBallAtI;

}

}

Exception Classes

0000

00000

0000000
0000000000000 00
(e}

The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{

Ball oldBallAtI = balls[il;
balls[il = balls[j];
balls[j] = oldBallAtI;

}

Exception Classes

0000

00000

0000000
0000000000000 00
(e}

The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException
{
if (noOfBalls == 0)

throw new BallContainerException("Cannot swap balls: is empty");

Ball oldBallAtI = balls[i];
balls[i] = balls[j];
balls[j] = oldBallAtI;

}

Exception Classes

0000

00000

0000000
0000000000000 00
(e}

The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException
{
if (noOfBalls == 0)
throw new BallContainerException("Cannot swap balls: is empty");

if (1 < 0 || 1 >= noOfBalls)
throw new BallContainerException("Swap ball at " + i
+ ": not in range 0.." + (noOfBalls - 1));

Ball oldBallAtI = balls[il;
balls[il = balls[j];
balls[j] = oldBallAtI;

}

Exception Classes

0000

00000

0000000
0000000000000 00
(e}

The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{
if (noOfBalls == 0)
throw new BallContainerException("Cannot swap balls: is empty");

if (i < 0 || i >= noOfBalls)
throw new BallContainerException("Swap ball at " + i

+ ": not in range 0.." + (noOfBalls - 1));
if (j < 0 || j >= noOfBalls)
throw new BallContainerException("Swap ball at " + j
+ ": not in range 0.." + (noOfBalls - 1));

Ball oldBallAtI = balls[il;
balls[il = balls[j];
balls[j] = oldBallAtI;

Exception Classes

0000

00000

0000000
0O0000000e0000000
(e}

And now for the Machine

Again, is there a minimum size for a machine.

Sensible for it to hold at least two balls.

Exception Classes

0000

00000

0000000
000000000 e000000
(e}

The Machine constructor

public Machine(String requiredName,
int requiredMaximumSize)

super (requiredName, requiredMaximumSize);

tion Classes

00000e000000

The Machine constructor

public Machine(String requiredName,
int requiredMaximumSize)
throws BallContainerException

super (requiredName, requiredMaximumSize);

Exception Classes

000008000000

The Machine constructor

public Machine(String requiredName,
int requiredMaximumSize)
throws BallContainerException

super (requiredName, requiredMaximumSize);

if (requiredMaximumSize < 2)
throw new MachineException("Size must be at least 2");

Exception Classes

0000

00000

0000000
000000000 0e00000
(e}

The MachineException class

MachineException should be a subclass of
BallContainerException

Exception Classes

000000000 0e00000

The MachineException class

MachineException should be a subclass of
BallContainerException

public class MachineException extends BallContainerException
{
public MachineException()
{
super () ;

}

public MachineException(String message)
{
super (message) ;
}
}

Exception Classes

0O000@0000

The ejectBall method of the Machine class

public Ball ejectBall() throws MachineException
{
try
{
int ejectedBallIndex = (int) (Math.random() * getNoOfBalls());

Ball ejectedBall = getBall(ejectedBalllndex);

swapBalls(ejectedBallIndex, getNoOfBalls() - 1);
removeBall();

return ejectedBall;
}
catch (BallContainerException exception){
throw new MachineException("Cannot eject ball: is empty");
}
}

Exception Classes

000000000000 e000

Testing - |

public class TestMachineExceptions

{

public static void main(String [] args)

{

int
int
int
int
int
int
int
int

machineSize
fillCount =
findIndex =
removeCount
swapIndex1
swapIndex2
removeCount
ejectCount

1

2

= Integer.parselnt(args[0]);
Integer.parselnt(args[1]);
Integer.parselnt (args[2]);
= Integer.parselnt(args[3]);
Integer.parselnt(args[4]);
Integer.parselnt(args[5]);
= Integer.parselnt(args[6]);
Integer.parselnt(args[7]);

Exception Classes

0000000000000 e00
Testing - |l

try {
System.out.println("Creating machine sized " + machineSize);
Machine machine = new Machine("Test4U", machineSize);

System.out.println("Filling with " + fillCount + " balls");
for (int i = 1; i <= fillCount; i++)
machine.addBall(new Ball(i, Color.red));

System.out.println("Finding ball at " + findIndex);
machine.getBall (findIndex) ;

System.out.println("Adding another ball");
machine.addBall(new Ball(fillCount + 1, Color.red));

System.out.println("Removing " + removeCountl + " balls");
for (int i = 1; i <= removeCountl; i++)
machine.removeBall();

Exception Classes

0000000000000 0e0

}

Testing -

System.out.println("Swapping balls at " + swapIndexl
+ " and " + swapIndex2);
machine.swapBalls(swapIndexl, swapIndex2);

System.out.println("Removing " + removeCount2 + " balls");
for (int i = 1; i <= removeCount2; i++)
machine.removeBall();

System.out.println("Ejecting " + ejectCount + " balls");

for (int i = 1; i <= ejectCount; i++)
machine.ejectBall();

// try

catch (Exception exception) {

}

System.out.println("Got exception " + exception);
// catch

} // main

} // class TestMachineExceptions

Exception Classes

0000000000000 00e

Testing - Some Results

OK, let's try it out

machine fill find remove swap swap remove eject expected
Size Count Index Countl Index1 Index2 Count2 Count result
0 -1 -1 -1 -1 -1 -1 -1 Size at least 1
5 5 5 -1 -1 -1 -1 -1 Get Ball at 5: not in range 0..4

0000000
0000000000000000
0

Outline

Exception Classes
Review
Inheritance in Action
Custom Exceptions
The Notional Lottery with Exceptions
Summary

«4O0)>» «Fr «Er» « =) = Q>

Exception Classes

oe

Summary

Quick review of exception handling

Large inheritance structure underneath the Throwable class

Can create custom exception classes
Rule of thumb:
1. try to find suitable an existing exception classes
2. none appropriate, create your own
3. use inheritance as appropriate
4. provide two constructors, without and with a message

	Exception Classes
	Review
	Inheritance in Action
	Custom Exceptions
	The Notional Lottery with Exceptions
	Summary

