
List of Slides

1 Case study 3: ARCADEA small system
2 Why study ARCADE?
3 What is ARCADE for?
4 ARCADE people interaction: myth
5 ARCADE people interaction: reality
6 ARCADE people interaction: desire
7 Brief history of ARCADE
8 Development process
9 Development process

10 A legacy of languages
11 Size of ARCADE
12 What is atypical about ARCADE?
13 Requirements Analyisis
14 Requirements of ARCADE continued
15 ARCADE users
16 ARCADE context dataflow diagram

0-0

17 Command line user interface
18 ARCADE commands
19 ARCADE commands continued
20 ARCADE commands continued
21 ARCADE commands continued
22 ARCADE commands continued
23 ARCADE commands continued
24 Command extensibility
25 Example: send info to other department
26 Example: send info to other department
27 Example: send info to other department
28 Automatic tasks
29 On line help
30 Efficient data entry interface
31 Trusted user GUI
32 Trusted user GUI screen shot
33 GUI specification language
34 Example GUI specification: stud command

0-1

35 Example GUI specification: continued
36 Example GUI specification: continued
37 Example GUI specification: continued
38 Example GUI specification: continued
39 Example GUI specification: continued
40 stud command GUI
41 Standard user remote query service
42 Query service server
43 Query service client
44 Standard user client GUI
45 ARCADE architecture
46 Plan for errors
47 Errors compound
48 Expected error rate
49 The future

0-2

Case study 3

ARCADE

A small system

July 11, 2005 CS1092 - John Latham Page 1(0/0)

Why study ARCADE?
� All the examples you have seen throughout CS1081 and CS1092 have been small single

program applications.

� The programs in the laboratories have mostly been even smaller.

� It is important for you to begin to put your experience into a wider context – real

applications are much bigger, and there are other issues than just code development.

� A system consists of a collection of cooperating programs, persistent data and external

entities such as users and other systems.

� ARCADE is such a system, and because you are already (partly) familiar with it, and

(should have) a vested interest in it, it is a convenient and motivated example!

July 11, 2005 CS1092 - John Latham Page 2(0/0)

What is ARCADE for?
� ARCADE is a management system.

� Managing Human behaviour is typically a challenging area of computer application,

because Humans do not behave predictably.

� Many Human management systems operate on a simple pyramid structure, and the

smooth operation is merely as good as the chain of command.

� Many people thought that managing a year of laboratories would involve such a pyramid

structure.

� However, they were missing something very important from their view which makes the

structure significantly more complicated.

July 11, 2005 CS1092 - John Latham Page 3(0/0)

ARCADE people interaction: myth

Course
Manager

Lab
Manager

Course
Manager

Lab StaffLab StaffLab StaffLab Staff

July 11, 2005 CS1092 - John Latham Page 4(0/0)

ARCADE people interaction: reality

Course
Manager

Lab
Manager

Course
Manager

Lab StaffLab StaffLab StaffLab Staff

Student Student Student Student Student

July 11, 2005 CS1092 - John Latham Page 5(0/0)

ARCADE people interaction: desire

Course
Manager

Lab
Manager

Course
Manager

Lab StaffLab StaffLab StaffLab Staff

Student Student Student Student Student

Lab
Manager

July 11, 2005 CS1092 - John Latham Page 6(0/0)

Brief history of ARCADE
� ARCADE was born in September 1993: I was asked to manage the first year laboratories

under the new semesterised and modularised syllabus.

� A cause of concern was that the second year laboratories already had such a structure,

and had been horribly chaotic for several years.

� The inability to easily manage deadlines in such a fragmented structure meant there was

only one deadline for each course – at the end of it.

� For the first two thirds of the first term, the demonstrators would actually be sat playing

cards and drinking coffee, as there were so few students wanting any help.

� Then for the last few weeks, there would be a mad rush of panic: marking queues more

than 3 hours long and a 40-strong delegation of students invading the head of UG’s office,

demanding that the “too tight” deadlines were extended into the second semester.

July 11, 2005 CS1092 - John Latham Page 7(0/0)

Development process
� As is typical of many systems, ARCADE was developed rapidly at first, slowing to a

trickle later.

� The development process has been incremental, using the spiral model of system

development.

� This approach spirals outwards around a central starting point, going through phases such

as requirements analysis, specification, design, implementation, validation, etc..; at

each cycle getting further away from the central point as the system gets bigger. More

about that in Software Engineering next year.

July 11, 2005 CS1092 - John Latham Page 8(0/0)

Development process
� Features were added to ARCADE in a demand-driven way: the first task was to identify

the philosophical structure (e.g. deadlines with extensions, etc..); then produce software

which could print paper forms so that data could be recorded, then develop a program to

make it easy to record that data, then software to process it, etc..

� Later came software to provide email feedback to students and tutors.

� At first laboratories only happened on dates – times were added later.

� The generation of timetables was a feature added later still.

� The ability to specify dates by semester number, week number and day of the week was

added after a couple of years – this seriously helps with programming a laboratory

structure.

� Much later came the client query software.

� Etc.. This is typical of most real world systems.

July 11, 2005 CS1092 - John Latham Page 9(0/0)

A legacy of languages
� In the beginning ARCADE was developed using the language Pascal together with shell

scripts.

� (Aside: Pascal was chosen rather than the obvious alternative, C, because of personal

preference, but also to prove a point: many people viewed Pascal as a teaching-only

language, and not one suitable for real world programming.)

� The system was developed on Sun equipment, using Sun Pascal.

� To port it to Linux a Pascal compiler was created (based on p2c – a program which

attempts to turn Pascal into C).

� More recently, development has included the language Perl and Java (the latter for the

client query service).

� Such a mixture of languages is typical of real world systems.

July 11, 2005 CS1092 - John Latham Page 10(0/0)

Size of ARCADE
� ARCADE is a small system. (Note: ARCADE does not include labmail, labprint, the

plagiarism detector nor the course choices web form. They are not strictly part of

ARCADE.)

� ARCADE currently comprises

26 Pascal programs 19162 lines of code

28 Pascal modules 15944 lines of code + 1695 in header files

135 shell scripts 11671 lines of code (excluding built-in help

and GUI descriptions)

3 Perl scripts 6262 lines of code

24 Java files 3550 lines of code

3 Makefiles 1195 lines

Total lines of code 59479

July 11, 2005 CS1092 - John Latham Page 11(0/0)

What is atypical about ARCADE?
� There are two main features of ARCADE’s development that are atypical of real world

systems.

– It has been developed by just one person rather than a team of people changing over

time.

– The developer has also been the customer.

� This has made the development of ARCADE much easier than most real world systems.

July 11, 2005 CS1092 - John Latham Page 12(0/0)

Requirements Analyisis
� System development starts with requirements analysis. This can be a lengthy and

complex process, and lack of attention to it has often led to disaster later (e.g. LAS).

� To fully describe requirements of something as simple as ARCADE would need a 30

page document.

� Approx 250 students, approx 7 lab. groups, approx 40 tutorial groups.

� Tut group is often a sub-set of lab group, but does not have to be. (E.g. 2nd year labs have

no relationship to tut group.)

� E.g. lab groups: B=C+D, M=P+Q, W, X, Y, Z.

� Approx 5-10 sessions per course (variable) per group.

� Sessions are associated with exercises, some with deadlines.

� E.g. sessions 1D, 2.1, 2.2D, 3D, etc..

July 11, 2005 CS1092 - John Latham Page 13(0/0)

Requirements of ARCADE continued
� Attendance at sessions is usually monitored.

� Sessions each have scheduled date, time and place for each group.

� For deadline sessions, deadline is at the end of the session, but may usually be extended

to extension deadline, which is usually the start of the next session.

� Deadline sessions have marks associated, marks per deadline per student. They have a

maximum mark, bonus marks, a denominator and a weighting. Weighting may be

optional – i.e. the session does not count if the student does not do the work.

� A deadline session can be a reference to another course – it takes at least a page to

explain this properly!

� And so on. This has barely scratched the surface.

July 11, 2005 CS1092 - John Latham Page 14(0/0)

ARCADE users
� There are currently 3 classes of users involved with ARCADE: trusted users, standard

users and laboratory demonstrators.

� The trusted users are those few people who have full access, and include year laboratory

managers, year tutors, data entry clerk, and so on. These users have various ARCADE

permissions to perform various tasks, but such permissions operate on a cooperative
security scheme. That is, they serve to protect against accident rather than deliberate

abuse; by tailoring the user interface(s) to offer only the tasks interesting to the person.

� The standard users are students, tutors and laboratory supervisors, who are entitled to use

the remote query service. These people have no direct access to ARCADE for obvious

security and privacy reasons.

� The laboratory demonstrators have access to ARCADE only via the paper data sheets.

July 11, 2005 CS1092 - John Latham Page 15(0/0)

ARCADE context dataflow diagram

Exam
System

Lab
Staff

Lab
Manager

Data
Entry

ARCADE

Students

Tutors

July 11, 2005 CS1092 - John Latham Page 16(0/0)

Command line user interface
� ARCADE was developed at first with only a command line interface.

� This reflects a philosophy typically found in the non-commercial Unix world:

concentrate on getting the functionality right before deciding on the user interface.

� Which is in contrast to the philosophy often found in the commercial, especially

Windows, world: make it look posh and attractive, and figure out what it should do later!

:-)

� However, the original ARCADE command line interface did exploit command name
completion to save typing. An ARCADE database is a Unix directory, and all the

ARCADE commands are available as symbolic links in that directory. So the command

name completion facility of ksh, and later bash, meant the names could be long and

meaningful, but still easy to type.

July 11, 2005 CS1092 - John Latham Page 17(0/0)

ARCADE commands
� There are currently about 80 command in ARCADE. Each of these performs a high level

task of the system.

� ARCADE commands are all shell scripts, which call other programs as necessary.

� Many of them are listed here to give you an idea of the wide range of tasks involved.

absence-list.........................show non-attendance details

absence-summary..........................show attendance summary

add-courses......................................add new modules

arcade.................start the ARCADE graphical user interface

attendance.........................send attendance data by email

bad....................................show ’bad’ irregularities

blank..................................show where data is needed

checking................report on or switch data checking status

July 11, 2005 CS1092 - John Latham Page 18(0/0)

ARCADE commands continued

completion-graph...........................show completion graph

config-mail-bad-summaries

..............configure email feedback to students (and tutors)

config-mail-full-stories

.......................configure email full stories to students

config-mail-student.......................configure student mail

course-summary...............show summary statistics of a module

data..enter or browse data

doing.........................show numbers of students on module

due...................................show what needs to be done

edit-privileges........edit user privileges for current database

edit-sheet-details...edit sheet-details describing lab structure

edit-sort-groups-file.........................edit a groups file

email..............send email to a group / selection of students

email-name-check.......................check student email names

excuses......................................show excuse details

July 11, 2005 CS1092 - John Latham Page 19(0/0)

ARCADE commands continued

expected......................................show expected work

fails..............................show students who are failing

final-diffs.....show differences between two sets of final marks

full-story...................show full lab details for a student

group-info

.........show module group, students and staff hours information

help.....get help on ARCADE commands or UNIX commands/facilities

histogram.............................show histogram of a module

licence.................................display end user licence

list-all-modules

............show names of ALL modules taken by 1 or more students

list-arcade-modules..................show names of ARCADE modules

list-table-modules..show names of ARCADE modules having deadlines

mail-bad-summaries

...........send automatic email feedback to students (and tutors)

mail-full-stories.................email students full lab records

July 11, 2005 CS1092 - John Latham Page 20(0/0)

ARCADE commands continued

mail-name-list..................email student details to students

mail-report

.......email a report to the students in it, with an introduction

mail-sessions-table...........email student timetable to students

make-email-script

......make an email script for a module (and group), or selection

make-final-marks

........make final (or predicted) marks for all completed modules

marking...........list sessions which have marking or demo needed

name-list-compare.....compare student details with external files

name-list-edit

...............add new students or edit existing students details

name-list-trace...............trace changes to a student’s record

name-list-update

....create, update or compare student details from external files

omitted......................show where data is (probably) missed

July 11, 2005 CS1092 - John Latham Page 21(0/0)

ARCADE commands continued

out-of-range................list sessions with out-of-range marks

outstanding...............................show oustanding details

picture.....................................show student pictures

print-course-summaries.....................print course summaries

print-full-stories................print students full lab records

print-histograms..........................print module histograms

progress....................report simple overview of all modules

queries.....................list sessions with unanswered queries

read-mail...............................read email from a student

remote-jobs-control....set up jobs to be done remotely by crontab

restore-all-data........................restore data from back-up

scaling..........................show scaling factors for modules

select-and..........................intersect two selection files

select-copy.................................copy a selection file

select-edit.................................edit a selection file

select-group...........................select a group of students

July 11, 2005 CS1092 - John Latham Page 22(0/0)

ARCADE commands continued

select-list............................list an existing selection

select-minus.......................difference two selection files

select-move...............................rename a selection file

select-or...............................union two selection files

select-remove.............................remove a selection file

select-show.........................show names of selection files

select-specific......................make a selection of students

sessions-table.............show sessions timetable and attributes

sheets.......................................print session sheets

stud...show student details

supervisors-report.....show ‘bad’ irregularities for a lab-group

table.................show tables for certain students or modules

unchecked.......................list sessions with unchecked data

July 11, 2005 CS1092 - John Latham Page 23(0/0)

Command extensibility
� Command line interfaces are inherently more easy to extend than any other kind of

interface.

� It can be trivial for the (expert) ARCADE user to create new ARCADE commands by

combining existing ones with standard Unix tools in a shell script.

July 11, 2005 CS1092 - John Latham Page 24(0/0)

Example: send info to other department

#!/bin/sh

COURSES="1581L 1582L 1580E"

MAILTO=<<list of recipients has been deleted from slides>>

(echo "Attendance summary for $COURSES"

echo "==============================="

echo " (/ = present, x = absent, E = excused, ? = data is due)"

echo

./absence-summary -s ABIS -t 100 $COURSES | ./stud - -d -Name

echo

echo

July 11, 2005 CS1092 - John Latham Page 25(0/0)

Example: send info to other department

echo "Marks table for $COURSES"

echo "========================"

echo " (n) is a predicted mark"

echo " E means work is expected in the future"

echo " L means work is late"

echo " - means work has been missed"

echo

./table -s ABIS -d $COURSES

echo

echo

July 11, 2005 CS1092 - John Latham Page 26(0/0)

Example: send info to other department

for course in $COURSES

do

echo "Irregularities for $course"

echo "=========================="

./bad -s ABIS $course | grep -v chived \

| ./stud - -Name \

| ../EXECUTABLES/tidy-report

echo

done

) > TEMP/abis-summary.txt

unix2dos TEMP/abis-summary.txt

mpack -s "ABIS progress" TEMP/abis-summary.txt $MAILTO

July 11, 2005 CS1092 - John Latham Page 27(0/0)

Automatic tasks
� ARCADE has a facility to perform automatic tasks, e.g. nightly at 3am.

� Any Unix commands can be conditionally run, and the output logged in a temporary file.

#Thursdays

?test ‘/bin/date +%w‘ = 4 -o ‘/bin/date +%w‘ = 4

../EXECUTABLES/mail-bad-summaries

?/bin/true

../EXECUTABLES/attendance

../EXECUTABLES/mail-name-list | fgrep -v "same as last time"

../EXECUTABLES/mail-sessions-table | fgrep -v "same as last time"

July 11, 2005 CS1092 - John Latham Page 28(0/0)

On line help
� Commands have user help built into them.

� These are stored in the shell script as shell comments and are pulled out via a help
program. For example the stud command contains:

#!/bin/sh

...

#man

#This program shows extracts from the STUDENT-DATABASE/name-list

#file. It can show a subset of the students, and/or a subset of

#the fields.

#...

#end-man

...

� This approach is convenient, and encourages the help text to be immediately maintained

whenever the command is altered.

July 11, 2005 CS1092 - John Latham Page 29(0/0)

Efficient data entry interface
� One of the early design principles of ARCADE is that it must be reasonably efficient to

run within the available resources.

� A key focus in this respect was on the user interface for the data entry program: all data

from the laboratory sessions was to be hand entered from written sheets.

� This meant designing the data sheets carefully in the first place.

� And providing an economic single-key oriented data entry program.

� This program has a voice prompting facility – it reads out the 3 digit student identifier of

the current student when one is selected. This means a data entry user does not have to

look at the screen to know which student’s data s/he is editting.

� Also, data in the various fields is inferred from data in other fields where possible, so that

typing is minimised.

July 11, 2005 CS1092 - John Latham Page 30(0/0)

Trusted user GUI
� After seven years of not needing one(!), a GUI was developed in 2000, using Perl/Tk.

� The design of this had in mind the non-expert trusted user, but it has turned out to be

useful for the expert trusted users as well.

� E.g. I tend to use the command line interface for doing just one or two things, or the GUI

for doing several things.

� This GUI enables the user to set up many instances of ARCADE commmands and leave

them permanently on his or her ARCADE ‘desktop’. Thus it behaves a little like a

window manager.

� The GUI sits on top of the command line interface.

July 11, 2005 CS1092 - John Latham Page 31(0/0)

Trusted user GUI screen shot

July 11, 2005 CS1092 - John Latham Page 32(0/0)

GUI specification language
� The GUI is extensible. It actually interprets a tailor-made GUI specification language at

run time.

� The GUI specifications are embedded in the shell scripts which make up the ARCADE
commands – as shell comments.

� When it opens a database, the GUI program examines which commands the user is
allowed to run, and places them on the command launching menus as specified in the
source of the commands.

� When it opens a command, the GUI reads the source and builds a command tool
according to the GUI specification in the command.

� This way, it is possible to add new ARCADE commands without needing to alter the GUI
program in any way at all.

� It is even possible for the user to write GUI specifications for the commands he or she has
built from existing ARCADE commands.

July 11, 2005 CS1092 - John Latham Page 33(0/0)

Example GUI specification: stud command

##GUIMENU=Students

##GUISORT=yes

##GUISAVE=yes

##GUIPRINTER=yes

##GUIAUTOUPDATEON=yes

##GUISELECTION=yes

##GUISWITCHSET=yes

##GUISWITCHARG=-a

##GUISWITCHFULLNAME=Expand email addresses

##GUISWITCHTYPE=none

##GUISWITCHVALUE=

##GUISWITCHEXCLUDESSELECTION=no

July 11, 2005 CS1092 - John Latham Page 34(0/0)

Example GUI specification: continued

##GUISWITCHARG=-cs

##GUISWITCHFULLNAME=Create a selection from output

##GUISWITCHTYPE=string

##GUISWITCHVALUE=stud-out

##GUISWITCHEXCLUDESSELECTION=yes

##GUISWITCHARG=-d

##GUISWITCHFULLNAME=Neat display

##GUISWITCHTYPE=none

##GUISWITCHVALUE=

##GUISWITCHEXCLUDESSELECTION=no

July 11, 2005 CS1092 - John Latham Page 35(0/0)

Example GUI specification: continued

##GUISWITCHARG=-l

##GUISWITCHFULLNAME=Include left and unregistered

##GUISWITCHTYPE=none

##GUISWITCHVALUE=

##GUISWITCHEXCLUDESSELECTION=no

##GUISWITCHARG=-i

##GUISWITCHFULLNAME=Case insensitive search

##GUISWITCHTYPE=none

##GUISWITCHVALUE=

##GUISWITCHEXCLUDESSELECTION=no

July 11, 2005 CS1092 - John Latham Page 36(0/0)

Example GUI specification: continued

##GUISWITCHARG=-t

##GUISWITCHFULLNAME=Tab separate single match

##GUISWITCHTYPE=none

##GUISWITCHVALUE=

##GUISWITCHEXCLUDESSELECTION=no

##GUIFIELDNAMES=yes

##GUIFIELDNAME=-StudentId

##GUIFIELDNAME=-Registered

##GUIFIELDNAME=-RegNo

##GUIFIELDNAME=-Degree

##GUIFIELDNAME=-Year

##GUIFIELDNAME=-Owner

##GUIFIELDNAME=-LabGroup

##GUIFIELDNAME=-TutGroup

##GUIFIELDNAME=-Tutor

July 11, 2005 CS1092 - John Latham Page 37(0/0)

Example GUI specification: continued

##GUIFIELDNAME=-Name

##GUIFIELDNAME=-DBSurname

##GUIFIELDNAME=-DBFirstNames

##GUIFIELDNAME=-Email

##GUIFIELDNAME=-Modules

##GUISEARCHSTRING=yes

##GUIMODULESET=yes

##GUIMODULEFILTER=direct

##GUIMODULEPREFIX=\"

##GUIMODULEPOSTFIX=(|$)\"

July 11, 2005 CS1092 - John Latham Page 38(0/0)

Example GUI specification: continued

##GUISTUDENTSET=yes

##GUISTUDENTPREFIX=%

##GUISTUDENTSEPARATOR=\|

##GUISTUDENTPOSTFIX=%

##GUISELECTIONEXCLUSIVEWITHSTUDENT=yes

##GUISUBMISSIONOUTDATESSELECTIONS=yes

July 11, 2005 CS1092 - John Latham Page 39(0/0)

stud command GUI

July 11, 2005 CS1092 - John Latham Page 40(0/0)

Standard user remote query service
� A later development was the remote query service for standard users.

� This is provided by a server program, written in Java, communicating with a client

program, also written in Java.

� This is known as a client-server model. There is one instance of the server program

running somewhere, and many instances of the client program, running on different

computers, talking to the server.

July 11, 2005 CS1092 - John Latham Page 41(0/0)

Query service server
� The server program consists of just over 500 lines of Java code – quite small.

� It sits on top of a shell script which sits on top of (a copy of) ARCADE.

� The server checks authenticity and permissions of the users trying to connect to it.

� The server is multi-threaded so it can serve many transactions at once. It has a

configurable limit to the number of connections at any time.

� The client has to authenticate itself to the server whenever it connects.

� Each connection is for one transaction only, i.e. a single run of a single query from a

client. Why is this good?

July 11, 2005 CS1092 - John Latham Page 42(0/0)

Query service client
� The client program consists of a little more than 2500 lines of Java code – quite large by

comparison. Why?

� It offers various canned queries with arguments.

� Queries and argument profiles are obtained from the server at run time. The server

obtains these from ARCADE, for the user of the client. This means the whole interface is

fully extensible without any need for changing the Java code.

� The client dynamically adjusts the argument lists to match the user’s profile – as the user

selects items, options in other lists are cut down.

� The client can be cloned so the user can run more than one query at once. The client is

multi-threaded so it literally can run more than one query at once.

� (A single-threaded text interface Java client is also available.)

July 11, 2005 CS1092 - John Latham Page 43(0/0)

Standard user client GUI

July 11, 2005 CS1092 - John Latham Page 44(0/0)

ARCADE architecture

Trusted
User

Standard
User

Standard
User

Trusted
User

Standard
User

Standard
User

TUI Client
(Java)

Server
(Java)

GUI Client
(Java)

GUI Client
(Java)

TUI Client
(Java)

Trusted
GUI (Perl/TK)

Trusted
GUI (Perl/TK)

with command line interface

ARCADE

Expert
Trusted User

Expert
Trusted User

with command line interface

Copy of ARCADE

July 11, 2005 CS1092 - John Latham Page 45(0/0)

Plan for errors
� The behaviour being managed by ARCADE is fundamentally chaotic and error prone.

� ARCADE imposes a structure which helps reduce this chaos.

� But we must expect a certain level of Human error.

� ARCADE is designed on the 95-5 principle: 95% of the work of the system will go

smoothly, 5% will need extra interaction.

� Actually it is more like 80%-15%-5%.

July 11, 2005 CS1092 - John Latham Page 46(0/0)

Errors compound
� Once one thing has gone wrong it becomes more likely that others will.

� For example, a student misses a lab through illness.

– The student is now in a (relatively) unsual situation for that lab, and so the error

likelihood increases dramatically.

– The student might tell the lab staff the reason for his or her absence.

– One possible error is that he or she tells a demonstrator rather than the supervisor, and

thinks it is all sorted.

– Or the student tells the supervisor, but the supervsior forgets to write it down. Or the

supervisor writes it in the wrong place.

– Perhaps the student is now a little behind, so his or her work is marked from an earlier

exercise than everyone else at that time. So it is more likely than usual that the mark

might get recorded against the wrong exercise. Etc..

July 11, 2005 CS1092 - John Latham Page 47(0/0)

Expected error rate
� Given the pressure in the labs, and the large number of people involved in the process, it

is reasonable to expect most students will have at least one error made in their data during

the year.

� If a student is ill for a significant period then it is very likely that many errors are made in

sorting out excuses etc..

� This is the nature of errors and exceptional behaviour. Systems need to be able to cope

with this reality, by having checks etc..

� E.g. ARCADE expects students to check their own data

July 11, 2005 CS1092 - John Latham Page 48(0/0)

The future
� Although development is now much slower than in the beginning, ARCADE will

continue to evolve until such time as it is replaced by some other system.

� This is typical of real world systems: software lives forever and continues to develop.

� One of the plans for the near future is to reduce some of the error probabilities – e.g.

on-line mark submission might be in place next year

July 11, 2005 CS1092 - John Latham Page 49(0/0)

