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Supporting and Background Material

e Copies of key slides (already handed out)

e Chapter 17 of the JTL book (follows this presentation) —
lecture notes

e Recommended reading books for course

e Chapter 8 (8.2) of Savitch “JAVA: An introduction to
Computer Science and Programming”, 3rd Edition

e Chapter 13 (13.2, 13.5, 13.7) of Liang “Introduction to JAVA
Programming”, International Edition
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Brief Recap

Run-time errors are instances of the Exception class

Exceptions can be captured by try ... catch ...
statement blocks

There can be multiple catch blocks

Exceptions can be explicitly thrown by the throw statement
Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

Methods declare exceptions that are not handled within the
method

The invoking method of a method that declares an exception
is thrown must either declare the exception or handle it
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The RuntimeException Class

e Apart from IOException, the exceptions we've shown before
are subclasses of the RuntimeException class

e Which itself is a subclass of the Exception class

e What's special about the RuntimeException class?

Programs do NOT need to catch such exceptions

What about I0Exception? What happens there?
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Throwable objects

The Exception class is a subclass of the Throwable class, itself a
subclass of Object

The Exception class has a very large number of subclasses.
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Some of the Exception Class Hierarchy

55 subclasses of Exception!
InterruptedException
Exception TOException

RuntimeException
Object Throwable :

Error
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More of the Exception Class Hierarchy

ArithmeticException
Run.timeException ClaslsCastException 9 subclasses of IllegalArgument...

lllcéalArgumcntchcption < Nurilbcrl*‘nrmatchcption

IndéxOutOfBoundsException

NuliPointerException

29 subclasses of RuntimeException
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The Error class is also a subclass of the Throwable class.
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The Error class

The Error class is also a subclass of the Throwable class.
Errors can also be caught via a try ... catch ... block.

What's the difference between an Error and an Exception?
Errors, e.g. NoSuchMethodError or OutOfMemoryError, are
typically beyond rectification by the program
Hence, instances of the Error class do not need to be caught
— rather like RuntimeException
However, if an Error is caught, it should be re-thrown and
allowed to propagate out
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Exception Classes

Custom Exceptions

Outline
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Defining your own Exceptions

e Java API defines a very large number of exceptions
e BUT the programmer can still define her own
e How and when?

o typically, for explicit throws of exceptions that don't
appropriately relate to any of the API defined exception classes
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The Date class revisited

Recall the re-usable Date class (chapter 14.7)

The constructor was modified to throw an exception for illegal
dates

The exception object was an instance of class Exception

Better practice to create a special DateException and then throw
an object of that class.

Question: Should we force the exception to be handled?

l.e., should DateException be a subclass of:
Exception or of RuntimeException?



Exception Classes

0000

00000

000@e000
0000000000000 000
(e}

The DateException class

public class DateException extends RuntimeException {

public DateException() {
super () ;

}

public DateException(String message) {
super (message) ;

}
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The DateException class

public class DateException extends RuntimeException {

public DateException() {
super () ;

}

public DateException(String message) {
super (message) ;

}

Note: we have not overridden the superclass methods, getMessage(), etc.
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Other required changes

The Date class is then modified by replacing
all occurrences of Exception

by DateException
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Other required changes

The Date class is then modified by replacing
all occurrences of Exception

by DateException

Well, that's not quite right. There's one occurrence that should
become a RuntimeException. Can you find it?
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The DateDifference Program

public class DateDifference {
public static void main(String [] args) {
Date datel, date2;
try {
datel = new Date(args[0]);
date2 = new Date(args[1]);
System.out.println("From " + datel + " to " + date2
+ " is " + datel.daysFrom(date2) + " days");
Y // try
catch (ArrayIndexOutOfBoundsException exception)
{ System.out.println("Please supply two dates");
System.err.println(exception); }
catch (DateException exception)
{ System.out.println(exception.getMessage());
System.err.println(exception); }
} // main } // class DateDifference
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And the difference is ...

Now we obtain:

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
DateException: Day 30 must be from 1 to 29 for 2/2004

$ _
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And the difference is ...

Now we obtain:

$ java DateDifference 16/12/2004 30/2/2004

Day 30 must be from 1 to 29 for 2/2004

DateException: Day 30 must be from 1 to 29 for 2/2004
$ _

instead of previously

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
java.lang.Exception: Day 30 must be from 1 to 29 for 2/2004

$ _
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Exception Classes

The Notional Lottery with Exceptions
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An Exceptional Notional Lottery

Chapter 16 presented the Notional Lottery case study.
It's prime purpose has been to demonstrate inheritance.

We can revisit a part, to add exceptions,
and define exceptions as subclasses of other user-defined
exceptions.

We will focus on the abstract class BallContainer
and one its subclasses, the Machine class.



Exception Classes

0000

00000

0000000
00@0000000000000
(e}

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.



Exception Classes

0000

00000

0000000
00@0000000000000
(e}

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?



Exception Classes

0000

00000

0000000
00@0000000000000
(e}

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?

Sensible to ensure the container can hold at least one ball.



Exception Classes

00000000000

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?
Sensible to ensure the container can hold at least one ball.

What should we do if the required maximum size is less than one?



tion Classes

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?
Sensible to ensure the container can hold at least one ball.
What should we do if the required maximum size is less than one?

Throw an exception! - A BallContainerException
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The BallContainer constructor

public BallContainer (String requiredName,
int requiredMaximumSize)

name = requiredName;

balls = new Ball[requiredMaximumSize];
no0fBalls = O;
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The BallContainer constructor

public BallContainer (String requiredName,

int requiredMaximumSize)

if (requiredMaximumSize < 1)
throw new BallContainerException
("Size must be at least 1");
name = requiredName;
balls = new Ball[requiredMaximumSize];
no0fBalls = O;
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The BallContainer constructor

public BallContainer (String requiredName,

int requiredMaximumSize)
throws BallContainerException

if (requiredMaximumSize < 1)
throw new BallContainerException
("Size must be at least 1");
name = requiredName;
balls = new Ball[requiredMaximumSize];
no0fBalls = O;
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The BallContainerException class

public class BallContainerException extends RuntimeException
{
public BallContainerException()
{
super() ;

}

public BallContainerException(String message)
{
super (message) ;
}
}
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Modification to other methods in the BallContainer
class

The methods

getBall — there may be no balls in the container
addBall — there may be no room in the container
removeBall — there may be no ball to remove

swapBalls — the specified balls may not exist

all require attention.
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The original SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{
if (1 >= 0 && i < noOfBalls &% j >= O &% j < noOfBalls)

{
Ball 0ldBallAtI = balls[i];
balls[i] = balls([j];
balls[j] = o0ldBallAtI;

}

}
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The original SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{
if (1 >= 0 && i < noOfBalls && j >= 0 &% j < noOfBalls)

{
Ball 0ldBallAtI = balls[i];
balls[i] = balls([j];
balls[j] = o0ldBallAtI;

}

}
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The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{

Ball oldBallAtI = balls[il;
balls[il = balls[j];
balls[j] = oldBallAtI;

}
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The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException
{
if (noOfBalls == 0)

throw new BallContainerException("Cannot swap balls: is empty");

Ball oldBallAtI = balls[i];
balls[i] = balls[j];
balls[j] = oldBallAtI;

}
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The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException
{
if (noOfBalls == 0)
throw new BallContainerException("Cannot swap balls: is empty");

if (1 < 0 || 1 >= noOfBalls)
throw new BallContainerException("Swap ball at " + i
+ ": not in range 0.." + (noOfBalls - 1));

Ball oldBallAtI = balls[il;
balls[il = balls[j];
balls[j] = oldBallAtI;

}
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The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{
if (noOfBalls == 0)
throw new BallContainerException("Cannot swap balls: is empty");

if (i < 0 || i >= noOfBalls)
throw new BallContainerException("Swap ball at " + i

+ ": not in range 0.." + (noOfBalls - 1));
if (j < 0 || j >= noOfBalls)
throw new BallContainerException("Swap ball at " + j
+ ": not in range 0.." + (noOfBalls - 1));

Ball oldBallAtI = balls[il;
balls[il = balls[j];
balls[j] = oldBallAtI;
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And now for the Machine

Again, is there a minimum size for a machine.

Sensible for it to hold at least two balls.
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The Machine constructor

public Machine(String requiredName,
int requiredMaximumSize)

super (requiredName, requiredMaximumSize);
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The Machine constructor

public Machine(String requiredName,
int requiredMaximumSize)
throws BallContainerException

super (requiredName, requiredMaximumSize);
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The Machine constructor

public Machine(String requiredName,
int requiredMaximumSize)
throws BallContainerException

super (requiredName, requiredMaximumSize);

if (requiredMaximumSize < 2)
throw new MachineException("Size must be at least 2");
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The MachineException class

MachineException should be a subclass of
BallContainerException
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The MachineException class

MachineException should be a subclass of
BallContainerException

public class MachineException extends BallContainerException
{
public MachineException()
{
super () ;

}

public MachineException(String message)
{
super (message) ;
}
}
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The ejectBall method of the Machine class

public Ball ejectBall() throws MachineException
{
try
{
int ejectedBallIndex = (int) (Math.random() * getNoOfBalls());

Ball ejectedBall = getBall(ejectedBalllndex);

swapBalls(ejectedBallIndex, getNoOfBalls() - 1);
removeBall();

return ejectedBall;
}
catch (BallContainerException exception){
throw new MachineException("Cannot eject ball: is empty");
}
}
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Testing - |

public class TestMachineExceptions

{

public static void main(String [] args)

{

int
int
int
int
int
int
int
int

machineSize
fillCount =
findIndex =
removeCount
swapIndex1
swapIndex2
removeCount
ejectCount

1

2

= Integer.parselnt(args[0]);
Integer.parselnt(args[1]);
Integer.parselnt (args[2]);
= Integer.parselnt(args[3]);
Integer.parselnt(args[4]);
Integer.parselnt(args[5]);
= Integer.parselnt(args[6]);
Integer.parselnt(args[7]);
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try {
System.out.println("Creating machine sized " + machineSize);
Machine machine = new Machine("Test4U", machineSize);

System.out.println("Filling with " + fillCount + " balls");
for (int i = 1; i <= fillCount; i++)
machine.addBall(new Ball(i, Color.red));

System.out.println("Finding ball at " + findIndex);
machine.getBall (findIndex) ;

System.out.println("Adding another ball");
machine.addBall(new Ball(fillCount + 1, Color.red));

System.out.println("Removing " + removeCountl + " balls");
for (int i = 1; i <= removeCountl; i++)
machine.removeBall();
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}

Testing -

System.out.println("Swapping balls at " + swapIndexl
+ " and " + swapIndex2);
machine.swapBalls(swapIndexl, swapIndex2);

System.out.println("Removing " + removeCount2 + " balls");
for (int i = 1; i <= removeCount2; i++)
machine.removeBall();

System.out.println("Ejecting " + ejectCount + " balls");

for (int i = 1; i <= ejectCount; i++)
machine.ejectBall();

// try

catch (Exception exception) {

}

System.out.println("Got exception " + exception);
// catch

} // main

} // class TestMachineExceptions
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Testing - Some Results

OK, let's try it out ....

machine fill find remove swap swap remove eject expected
Size Count Index Countl Index1 Index2 Count2 Count result
0 -1 -1 -1 -1 -1 -1 -1 Size at least 1
5 5 5 -1 -1 -1 -1 -1 Get Ball at 5: not in range 0..4
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Summary

Quick review of exception handling

Large inheritance structure underneath the Throwable class

Can create custom exception classes
Rule of thumb:
1. try to find suitable an existing exception classes
2. none appropriate, create your own
3. use inheritance as appropriate
4. provide two constructors, without and with a message
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