
A Training Course in: ARM System Design

 multi-
e fore-
ncies

which
nager.

, and
ugging
n - the
y

ar just
a pair
ouse
mands

lp sys-
essing

r to
☛Hands-on 1

An Introduction to the ARM Project Manager

Creating a Project using the Development Environment

Start the ARM development environment using the mouse to selectStart->Programs->ARM Developer Stu-
dio v1.01/CodeWarrior for ARM Developer Suite. Create a new project: fromFile menuselectNewand then
chooseProject in the dialogue box. In the dialogue box, explore the options available and then selectARM
Executable Image, enter the Project Name asHelloWorld and the project location asC:\ArmCourse\hellow-
orld. Use the Add Files command from the Project menu to add the file hw.s from theC:\ArmCourse\source
directory which contains all of the source code files supplied for these hands-on sessions.

The Project Window

The project is represented in the project manager as a project window. Although it is possible to have
ple projects open, all menu commands on the project menu apply to the currently selected project (th
ground project window). Examine the contents of this window, it can be used to view source depende
for more complex projects.

Building and Executing The Project

Building the project involves running the assembler, compiler and linker as appropriate. The order in
to run these is governed by the project dependencies and is handled automatically by the Project Ma

Select the project build mode by clicking on Debug, Release or Debugrel in the project window toolbar
then press the make button to build the project. (Debug mode includes additional symbols to aid deb
and is unoptimised). Once the build has completed the program can be executed using the run butto
ARM Debugger (AXD) is then invoked and “Hello World” is displayed in the Console Window (you ma
need to select Processor View->Console to see this). Finally, close the debugger.

The Toolbar and On-line Help

The most frequently used commands from the ARM Project Manager menus are available on the toolb
below the menu-bar. The function of some of these buttons is obvious, such as the cut button showing
of scissors or the file-save button showing a floppy disk. To find the meaning of the others, hold the m
cursor over the button for a few seconds until a message box appears. A more extensive range of com
are available from the menus.

Full details of how to use most of the functions of the Project Manager can be found in the on-line he
tem which is accessed through the help menu. Context specific help, if available can be obtained by pr
the ‘F1’ function key.

The complete set of manuals for using ADS should be installed on your system. You may wish to refe
these in the later exercises, so locate them now.
 Hands-on Session Guide 1 W.J.B 10 March 2003

A Training Course in: ARM System Design

ut is a
uild a

aded

ext. A

gister

he file

h for-

ear the

a of
☛Hands-on 2

ARM Assembly Language

HexOut - A Simple Assembly Language Routine

Use theFile menu to open the supplied hex_out file and then examine the code that it contains. HexO
useful routine for dumping the contents of a register to the display in hexadecimal (base 16) notation. B
project around hex_out. When run, it should display the result 1234ABCD.

Take a copy of the program and modify it to output the contents of r1 in binary format. For the value lo
into r1 in the example program you should get: 00010010001101001010101111001101.

TextOut

It is often useful to be able to output a text string without having to set up a separate data area for the t
call should look like:

BL TextOut
= “Test string”, &0a, &0d, 0
ALIGN
.. ;return to here

The issue here is that the return from the subroutine must not go directly to the value put in the link re
by the call, since this would land the program in the text string. The suppliedtext_out.s file contains the full
code for the TextOut routine and a suitable test harness. Create a project for this program, examine t
and understand how it works. Then build and execute the program.

RegDump

Using code from HexOut and TextOut write a program to dump the ARM registers in hexadecimal wit
matting such as:

r0 = 12345678
r1 = 9ABCDEF0

Try to save the registers you need to work with before they are changed, for instance by saving them n
code using PC-relative addressing.

MemDump

If you still have time to spare, use HexOut as the basis of a program to display the contents of an are
memory. You should make use of the load/store multiple instructions for improved performance.
 Hands-on Session Guide 2 W.J.B 10 March 2003

A Training Course in: ARM System Design

ment.

 may

-
pre-

re the
e pro-

 bench-
 the
☛Hands-on 3

Compiling ARM C Programs

Hello World

HelloWorld is the classic example used as an introduction to a new programming language or environ
Here it will be used as an introduction to writing C programs within the ARM Project Manager.

Start the ARM development environment and create a new project in theC:\ArmCourse\ directory called
HelloWorld. Do not include any files in the project at this stage.

Create a new file (File->New) and then enter the following program code into it.

/*Hello World in C*/
#include <stdio.h>
int main(void)
{

printf(“Hello World\n”);
return(0)

}

Save the file asC:\ArmCourse\hw.c and then add it to the project. Finally compile the file using the Build
command. The compiler will report one error which you should correct and then rebuild. The program
then be run.

Compiler Options

Compilation options can be set throughEdit->DebugRel Settings. Create a project for the dhrystone bench
mark. Include the dhry_1.c, dhry_2.c and dhry.h files from the source directory in the project. Add the C
processor definition MSC_CLOCK using the compiler settings window then explore the other ARM C
compiler options and switch on the warnings if they are disabled. Explore the warning options. Compa
effects of the possible compiler optimization settings (Space versus Time) on the size of the object cod
duced by the compiler, and the execution time of the program (i.e. the performance of the Dhrystone
mark). Repeat this for both Debug and Release modes of the compiler, and fill in your observations in
table below. (Use a number of iterations of the order of 10k to 100k).

Project Type Optimisation Code Size #DhryStones

Debug
Space

Time

Release
Space

Time
 Hands-on Session Guide 3 W.J.B 10 March 2003

A Training Course in: ARM System Design

iron-

g
 be

target
lator

use
e inter-
n step

t line
in the

tion

e pro-

ow. On
tement
ak-
☛Hands-on 4

Debugging ARM Code

Getting Started

The ARM Debugger can be used to debug programs built in debug mode using the CodeWarrior env
ment. It can be started in two ways:

• Using theDebug command from the Project menu of the Codewarrior Project Manager

• Directly from the operating system by choosingStart->Programs->ARM Developer Suite v1.2->AXD
Debugger.

Four windows are displayed when the debugger is loaded:

• ARM Debugger - The parent window for all other debugger windows

• Execution Window - This displays the currently executing program

• Console Window - This allows interaction between yourself and the executing program. Anythin
printed by the program is displayed in this window and any input required by the program must
entered here.

• RDI LOG - This displays the low-level communication messages between the Debugger and the
processor. Initially this window shows the startup messages of your target processor, the ARMu
here, but it could also be a PIE card or EmbeddedICE.

Executing The Code

ChooseInterleave Disassemblyfrom the context sensitive menu that appears when you click the right mo
button over the execution window. This toggles the display between source code only and source cod
leaved with the disassembly. When interleaved, the machine instructions appear in lighter grey. You ca
through your program using the following commands from theExecute or Context menu (or use the key-
board shortcuts shown on the menus).

• Go - Starts or continues execution of the program, halting at the next breakpoint or watchpoint.

• Step- Moves to the next line of the program. If only the source is displayed Step moves to the nex
of source. If disassembly is interleaved with source, Step moves to the next machine instruction
disassembly.

• Step-In - Follow a function call.

• Step Out - steps from the current function to where it was called from, immediately after the func
call.

Breakpoints

A breakpoint halts the program at a specified location. To set a breakpoint, move to the location in th
gram where you wish to set the breakpoint and click at that position, and then chooseToggle Breakpoint
from the Execute menu.

When you have created a breakpoint it appears as a red marker on the left pane of the Execute wind
the right pane, a red marker appears somewhere on the line. If you set the breakpoint on the wrong sta
simply chooseToggle Breakpoint again to remove the breakpoint. Note: if you reload the image, the bre
points will be retained.
 Hands-on Session Guide 4 W.J.B 10 March 2003

A Training Course in: ARM System Design

ecified

m to

oints

en, for

ction

e set by

tch-

int.

ables
Complex breakpoints, where the breakpoint only comes into force after the program has passed the sp
point a set number of times, can be set by using theWatch/Breakpoint command from theExecutemenu.
This allows you to set a count and/or expression to determine when the breakpoint causes the progra
halt.

To view the current breakpoints, chooseBreakpointsfrom theProcessor Viewmenu. A list of breakpoints is
displayed showing the filename and the location of the breakpoints within that file. You can edit breakp
by double clicking on the breakpoint location.

Watchpoints

A watchpoint halts the program when a specified register or variable changes. To set a watchpoint wh
example, a specified local variable changes, chooseVariables from theProcessor View menu, highlight the
variable value on which you wish to set a watchpoint and chooseSet Watchpoint from the Execute menu.
NOTE: If you set a watchpoint on a local variable, the watchpoint is lost as soon as you leave the fun
which uses the local variable.

Complex watchpoints which act when a specified variable or expression reaches a given value can b
usingWatch/Breakpoint from theExecutemenu, and then using theSet or Edit Watchpoint command.

Viewing Variables, Registers and Backtraces

To view the contents of a variable or register, use the commands on theProcessor Viewmenu. Choosing the
Backtrace command from the Processor Views menu when the program has halted at a breakpoint or wa
point will give you a stack trace showing all of the currently active procedures.

Exercises

Basic Exercise

• Load an executable of Dhrystone into the debugger, and view the main function.

• Set a breakpoint at the start of the Proc_1 function.

• Set a watchpoint on the variable Microseconds.

• Choose Go.

• When execution halts in at the breakpoint, step out of the function and then delete the breakpo

• When execution halts at the watchpoint towards the end of the main program, examine the vari
used in the calculation of Dhystones_Per_Second and step through the calculation.

Advanced Exercises

Use the debugger to debug the string-sort program in the file sorts.c
 Hands-on Session Guide 5 W.J.B 10 March 2003

A Training Course in: ARM System Design

hosted
re not
llow it
ction to

 final
lated,

out-
ieved
truc-
to out-
usual

 An

is ini-
own

trap
ust

tory.

 What
☛Hands-on 5

System Software: Writing a SWI Handler

The ARM assembly programs that you have written in the earlier exercises have all used Angel semi
SWIs to perform text output to the console and to terminate the programs execution. The Angel SWIs a
executed by the armulator’s model of the ARM processor, but instead are trapped by the armulator to a
to then call the necessary target routine. In the environment here, that means a call to a windows fun
perform the requested function, e.g. outputting characters to the display.

When you create a product using an ARM processor core, you may include a version of Angel in the
product or you may use a more complex RTOS. In either case, the SWI handlers will no longer be emu
but will be real ARM code, that is executed in supervisor mode.

In this exercise you will learn how to write and install a SWI handler. The SWI handler is to perform the
put of a text string declared inline with the code, immediately after the SWI instruction. This can be ach
by modifying the TextOut routine from earlier so that it is entered via a SWI, not a branch-and-link ins
tion. Note that this exercise requires you to perform the rather unusual act of calling a SWI (to Angel
put a character) from within a SWI handler. A skeleton source file to get you started can be found in the
source directory as swi.s.

Installing a SWI handler

When a SWI instruction is executed, the processor fetches from address 0x8 (SWI ‘vector’ address).
instruction must then be present at this address, that jumps to the SWI handler.

A typical exception handler initialisation routine is provided as vectors.s. Understand how address 0x8
tialised and what happens when a SWI instruction is executed. Then use this example to install your
SWI handler.

Writing a SWI handler

Recall that the SWI instruction includes the SWI number in its least significant bits. Your handler should
swi number 0xff and ignore all others (or pass them on to any chained SWI handler). Your handler m
therefore:

• check the SWI number on entry to your handler, returning if it’s not 0xff;

• preserve the user mode registers;

• preserve the supervisor mode stack pointer;

• return to user mode after handling the SWI instruction.

Testing your SWI handler

A test harness for checking your SWI handler is provided in the switest.s file in the usual source direc

Going further

In a real environment, your SWI handler should be rentrant and chained with the Angel SWI handler.
changes would this imply for your code?
 Hands-on Session Guide 6 W.J.B 10 March 2003

A Training Course in: ARM System Design

of the
ction
.s con-

on set
 all.
ch the

ARM
 be gen-

 of r0

lowing

nvoked

file

s.

ction

s cor-
☛Hands-on 6

Writing Simple Thumb Assembly Programs

Converting HelloWorld to Thumb

Examine the hw.s file used in the first exercise as an introduction to the ARM Project Manager. Most
instructions used in this file have direct Thumb equivalents, however some do not. The load byte instru
does not support auto-indexing and the supervisor call cannot be conditionally executed. The file hwt
tains the Thumb code equivalent of hw.s.

The two additional instruction required to compensate for the features absent from the Thumb instructi
are marked with ‘**T’. The ARM code size is six instructions plus 14 bytes of data making 38 bytes in
The Thumb code size is eight instructions plus 14 bytes of data (ignoring the preamble required to swit
processor to executing Thumb instructions), making 30 bytes in all.

The key points to bear in mind when writing Thumb code which are illustrated in this example are:

• The CODE32 and CODE16 are assembler directives that instruct the compiler when to produce
code and when to produce Thumb code. These directives do not themselves cause any code to
erated.

• The ‘BX r0’ instruction instructs the processor to switch from executing ARM code to executing
Thumb code, provided that r0 has been initialised properly. Note particularly that the bottom bit
is set to cause the processor to execute Thumb instructions at the branch target.

• ADR can only generate word-aligned addresses, and so there is no guarantee that a location fol
an arbitrary number of (16 bit, half-word) Thumb instructions will be word aligned. Therefore the
example program has an explicit ALIGN before the text string.

Building A Thumb Executable

In order to assemble and run Thumb code, an assembler which can generate Thumb code must be i
and the ARMulator must emulate a ‘Thumb-aware’ processor core. Create a new project of typeTHUMB
Executable Imagearound the hwt.s file. This automatically sets the compiler/assembler toTCC/TASM and
the target processor to ARM7TDMI. Changes to the tool configuration can be made on a per-source-
basis by selecting the source file in the project window and then using theSettingoption from theEdit menu.
The procedure to assemble and test the Thumb code is the same as for ARM code from here onward

Thumb Code Exercises

Convert the hex_out.s and text_out.s programs from exercise 1 to thumb and check that they still fun
correctly.

Convert the RegDump program that you created in exercise 1 to thumb and check that it still function
rectly.
 Hands-on Session Guide 7 W.J.B 10 March 2003

A Training Course in: ARM System Design

at you
ress
n a
the
cribed

proc-
r cycles

oint for

t.
e
 crea-

ent)

 com-
ode.
☛Hands-on 7

Thumb C and Cycle Counting

In order to compile your C code as Thumb, it is not necessary to make any changes to it, providing th
have written it in a portable manner and not hardcoded the size of the instructions in any of your add
(pointer) calculations (instead, make good use of the C sizeof() operator). All that is required to obtai
thumb executable image is to use a compiler which can generate Thumb code must be invoked and
ARMUlator must emulate a ‘Thumb-aware’ processor core. These can be selected as previously des
when the project is created, or on a per-file basis.

Using the ARMulator and Debugger to View Cycle Counts

A number of counts are maintained by the ARMulator including the numbers of the different types of
essor cycles (non-sequential memory cycles, sequential memory cycles, internal cycles, co-processo
and total cycles), and the number of interrupts and the number of instructions executed.

To view the running totals of these values, when the program execution has been stopped, at a breakp
example, selectSystem View->Debugger Internalsto bring up the Debugger Internals window, and then
select thestatistics tab. The values displayed are the totals so-far for the code executed up to this poin
By selectingAdd New Reference Pointfrom the context sensitive menu (right click over statistics), a new lin
of statistics will be displayed with all counts zeroed and the statistics accumulated since the windows
tion will be displayed at subsequent breaks in the program execution.

Example using Dhrystone

Examine the cycle counts for the three stages of the dhrystone program:

• Initialisation (the main procedure up to the /*Start Timer*/ comment)

• Main Loop (between the /*Start Timer*/ and /*Stop Timer*/ comments in the source code)

• Result Calculation and Display (remainder of the main procedure after the /*Stop Timer*/ comm

Compare the effects of using ARM versus Thumb code and record your results below. Don’t forget to
pare the code size and the number of Dhrystones per second for the ARM code versus the Thumb c

Project
Code
Type

Program
Region

Sequential
Cycles

Non-
Sequential

Cycles

Internal
Cycles

Co-
processor

Cycles

Instructions
Executed

Dhrystone

ARM

Initialisation

Main Loop

Results

Full Program

Dhrystone

Thumb

Initialisation

Main Loop

Results

Full Program
 Hands-on Session Guide 8 W.J.B 10 March 2003

A Training Course in: ARM System Design

two-
uding

direc-
tains
op has
dly stop

stand

n it
ch
h is
rts

 if it
take a
s no

s

SR

 rea-
☛Hands-on 8

System Software: Interrupts and preemptive Schedulers

In this exercise you will write and install an interrupt handler and use this in a simple interrupt driven
process preemptive scheduler. The ARMulator contains models of the ARM reference peripherals incl
a timer and an interrupt controller that together will provide a regular source of interrupts.

Scheduler Structure

The basic scheduler consists of three files:

• sched.s - the scheduler code including the process suspend and resume functions

• timer.s - configuration of the timer and interrupt controller reference peripherals

• irq.s - skeleton for you to fill in with an interrupt handler and code to install it

Construct a project for the scheduler, copy these files from the usual source directory to your project
tory along with the simpleproc.s files. and include the four files in the project. The simpleproc.s file con
two simple processes - each is a loop that never terminates, keeping a count of how many times the lo
been executed. When you have completed the code as described below, run the program and repeate
and start the execution. You should see that both processes 0 and 1 get a share of the CPU time.

The code in the sched.s file is similar to that presented earlier in the lecture notes, ensure you under
what this code does before proceeding further.

The code in the timer.s file enables the interrupt controller to generate interrupts on the IRQ line whe
receives interrupts from the timer. The timer counts down from TIMECNT until it reaches zero, at whi
point it generates an interrupt. The interrupt can be cleared by writing to the timer clear register, whic
mapped into memory at address TIMERBASE+0xC. The timer then resets back to TIMECNT and sta
counting down again.

Writing the Interrupt Handler

An interrupt handler is similar in structure to a SWI handler, and where the SWI handler had to check
could handle the SWI number, the interrupt handler may have to check the source of the interrupt and
different action for each possible source. In this example there is only one interrupt source, so there i
need for the added complexity of chaining handlers. Your interrupt handler should therefore:

• update a count of how many interrupts have occurred since the active process was scheduled

• clear the source of the interrupt by writing to the timer clear register

• if count>IRQRST then reset the count and call the NXTPROC routine to schedule a new proces

• return from interrupt

Remember that your interrupt handler must preserve the contents of the user mode registers and CP

Installing the Interrupt Handler

Installation of the interrupt handler is a similar operation to installing a SWI handler. For performance
sons, you may want to consider using a branch rather than a vector!
 Hands-on Session Guide 9 W.J.B 10 March 2003

A Training Course in: ARM System Design

r core.
he con-
 the
ct cre-
appens

ss at

mined
king at

interfere
is
wap-

he
hap-
☛Hands-on 9

System Software: Using SWP to implement a Semaphore

The use of a preemptive scheduler allows multiple processes to be timesliced onto a single processo
The nature of peripherals is usually such that they should only be allocated to one process at once. T
sole is a good example If the two processes are both allowed to write to it whenever they desire, then
results are unpredictable. To illustrate this point, remove the simpleproc.s file from the scheduler proje
ated in the earlier exercise and replace it with the swapproc.s file. Rebuild the project and see what h
when you run it. Can you explain what’s happening?

Semaphores

To fix the problem shown above, the resource (the console here) must be allocated to only one proce
once, a task usually performed by the operating system, possibly using a semaphore mechanism.

A semaphore is a flag that indicates when the resource is in use. Its key property is that it can be exa
and set in one atomic operation. This is essential to avoid the process being swapped out between loo
the flag and changing its value. The ARM SWP instruction performs this function.

Text Output Example

To use a semaphore to ensure that both of the user processes in our simple scheduler system do not
with one another’s use of the console, the textout routine must be modified so that only one process
allowed to enter the critical region (the loop outputting the string) at once. Add this functionality to the s
proc.s file and check that the program functions as expected.

Achieving similar results using a SWI system call

Add your swi handler code the scheduler by including the swi.s file in the project. Uncomment the
BL INITSWI line to call your swi handler installation subroutine. Now replace the BL TextOut lines in t
swapproc.s file with SWI 0xff to call your SWI handler instead. Do you get the behaviour you expect to
pen when you run the program.
 Hands-on Session Guide 10 W.J.B 10 March 2003

A Training Course in: ARM System Design

at run
order
lts can

ard that

gisters.
e 5th,

regis-

stack

ce.

use
add,

arness

g, but
☛ Hands-on 10

Interfacing ‘C’ and Assembly Language

Overview

The ARM toolkit provides a comprehensive environment for developing and debugging applications th
on a variety of ARM processors. Programs can be a mixture of ‘C’ and ARM assembler modules. In
that different modules may coexist, a calling convention must be followed so that parameters and resu
be passed between functions in different modules. In this exercise, you are going to explore the stand
ARM has established, APCS, by interfacing an assembly language module to the main ‘C’ program.

APCS

Under the ARM Procedure Call Standard, up to four argument words can be passed to a function in re
a1-a4(r0-r3). This mechanism is particularly fast and efficient. If more arguments are needed, then th
6th, etc., words are passed on the stack (incurring the cost of anSTRin the calling function and anLDR in
the called function for each extra parameter. Results are passed either directly, or by a pointer, back in
tera1 (r0).

Registersa1-a4are free to be overwritten by the called routine, as are registersip (r12) andlr (r14) if safe.
Registersfp, sb, sl (r9-r11)may also be available. Other registers must be preserved (by storing on the
if they are required by the routine).

APCS allows a choice as to whether or not stack frames are used; if they are, registerfp (r11) is used as a
frame pointer and sufficient information is stacked on procedure entry to maintain a full stack backtra

Add64

Double-length arithmetic subroutines written in ‘C’ are inefficient because of the inability to specify the
of the carry flag. In this exercise you should write an assembler module to perform a double-length
returning the state of the carry flag as an integer result (0 or 1). Create a project and add the ‘C’ test h
(tstadd64.c) to call the routine, and the template for the assembly language module (add64.s). Write the
module and verify its correct behaviour. The main point of this exercise is to explore parameter passin
you could also consider how to use theldm/stm instructions to make the routine as efficient as possible.

The prototype of the add64 function is defined by:

typedef struct int64_struct {
 unsigned int lo;
 unsigned int hi;
} int64;

int add64(int64 *dest, int64 *src1, int64 *src2)

The algorithm to use is simple:

add lower 32-bits of src1 and src2 setting flags
add-with-carry upper 32-bits of src1 and src2
transfer carry flag to result register.
 Hands-on Session Guide 11 W.J.B 10 March 2003

A Training Course in: ARM System Design

struct

ct
er out-
.o is
varia-
ith the

ode pro-
An example of the same routine coded in ‘C’ is given in the fileCadd64.c

Returning Structures

This is an example of how struct-valued functions are dealt with. The pointer to the location where the
result is stored is passed in registera1, the first argument is passed in registera2, the second in registera3
and so on. Consider the following code:

typedef struct two_ch_struct
{ char ch1;
 char ch2;
} two_ch;

two_ch max(two_ch a, two_ch b)
{
 return (a.ch1>b.ch1) ? a : b;
}

This is available within the filetwo_ch.c(which also contains code to call the function). Create a proje
around this file and add the -S flag to the compiler options. Build the project and examine the assembl
put in two_ch.c.s, ignoring any spurious error message in the project window which may say “two_ch
not an object or library file”. The example illustrates parameter and result passing and also how local
bles are stored on the stack. Trace through the code (by hand) and fill-in the occupancy of the stack w
various variables and registers using the sheet on the next page. Ensure that you understand the c
duced (you will probably need to consult the online manuals here) and then write your own functionmy_max
in a separate assembler module that implements:

two_ch my_max(two_ch a, two_ch b)
{
 return (a.ch1>b.ch2) ? a : b;
}

Write a suitable test harness in ‘C’ and build and test your subroutine.
 Hands-on Session Guide 12 D.A.E 10 March 2003

A Training Course in: ARM System Design
Stack Usage

Hi Mem

sp

Lo Mem
 Hands-on Session Guide 13 D.A.E 10 March 2003

A Training Course in: ARM System Design

uring a
dels

sed in
or pro-
of the

.

o all)

com-

ode can
other
d the

all other
 in the
e

re the
the

pro-
about
☛Hands-on 11

System Software: Memory Protection

The ARM architecture defines the system coprocessor, number 15, as the usual mechanism for config
cache and MMU or protection unit if these are present in an ARM system. The ARMulator includes mo
of these features. In this exercise you will add support for memory protection to the simple scheduler u
the earlier exercises. The lectures have discussed the merits of both the MMU and the Protection unit f
viding memory protection, and have shown the complexity of the former. Here we will use the model
ARM740T which includes a simple protection unit.

Programming ARM 740T Protection Unit

The programming interface for the protection unit was presented in the lecture notes. In summary:

• regions are set up using cp15 register c6 with the region as an argument to the MCR instruction

• protection permissions are set up using cp15 register c5

• memory protection is enabled by setting bit 0 of cp15 register c1

You should set up two regions:

• region 0 covering the entire address space with privileges set to 0b01 (no user mode access)

• region 1 starting at address range 0x10000 of size 4Kb with privileges set to 0b11 (full access t

Use the code skeleton in the prot.s file in the usual source directory to get you started.

Including the protection code in the project

Add the prot.s file to the scheduler project you created earlier, and activate the protection code by un
menting the BL INITPROT line near the beginning of the file.

Since we have set region 1 starting at address 0x10000 as the only area of memory that user mode c
access, the linker must be instructed to locate the contents of our swpproc.s or simpleproc.s (or any
user code) at this address. The load.txt file in the usual source directory will configure the linker to loa
sched.s, prot.s, irq.s, swi.s and timer.s files in the protected memory starting at address 0x8000 and
files starting at address 0x10000. To use this file to control the linker, select Edit->DebugRel Settings
Codewarrior Development Environment. Then click on ARM Linker in the linker section of the dialogu
box. then select the scattered link radio button and enter the path to the load.txt file.

Testing the memory protection

Build the program and execute it under the ARMulator. It should work as before. Remember to configu
ARMulator to use an ARM740T by selecting Options->Configure target in the AXD and then clicking on
middle entry, pressing configure and choosing the processor type.

Once your program runs correctly, add a load instruction to one of the user processes to load from a
tected region of memory, e.g. try to load one of the exception vectors. You should get an error message
an unhandled abort exception.
 Hands-on Session Guide 14 D.A.E 10 March 2003

A Training Course in: ARM System Design

d by
infor-

er-

ows
r by
rents.

ensur-
toggled

g

will
☛Hands-on 12

Code Profiling

The ARM profiler, armprof displays an execution profile of a program from a profile data file generate
the debugger. The profiler displays one of two types of execution profile depending on the content of
mation present in the profile data:

• If only PC-sampling information is present, the profiler can display only a flat profile giving the p
centage time spent in each function itself, excluding time spent in any of its children.

• If function call count information is present, the profiler can display a call graph profile which sh
not only the percentage time spent in each function, but also the percentage time accounted fo
calls to all children of each function, and the percentage time allocated to calls from different pa

No special options are required at compile or link time to allow profile data to be generated, other than
ing that the program image contains symbols, as is the linker default. Profile data generation can be
usingOptions->Profiling->Toggle Profiling and the generation of function call count information can be
enabled from the Image Propertieswindow accessed by right-clicking on the ‘image pane’. After gatherin
the data it must be written to a file usingOptions->Profiling->Write to file.

The profiler is a command-line tool, run as armprof datafile. Running the profiler without any arguments
display a list of the command line options. The non-sort related options are:

Use the profiler and debugger to profile the Dhrystone program and answer the following:

What cumulative % of time was spent in each of main, Proc_1, Proc_6 ?

What percentage of time in Func_2 was spent in its descendents ?

-parent Displays information about the parents of each func-
tion in the profile listing. This gives information
about how much time spent in each function servicing
calls from each of its parents

-child Displays information about the children of each func-
tion. The profiler displays the amount of time spent
by each child performing services on behalf of the
parent.

-noparent Turns off the parent listing

-nochild Turns off the child listing
 Hands-on Session Guide 15 W.J.B 10 March 2003

A Training Course in: ARM System Design

cycle-
ura-

.map
onfig-

d-
m that
equent

y a /

by a /

el was
iddle
Mula-

r

☛Hands-on 13

The ARMulator

The ‘back-end’ of the ARM Toolkit Debugger that you have been using in the previous exercises is a
accurate model of the ARM processors, known as the ARMulator. This exercise will explore its config
tion.

Specifying a Memory Map and obtaining Performance Estimates

The default memory model used in the ARMulator is a 4GB flat model. However if a file called armsd
exists in the current directory when the ARMulator is started, the contents of this file will be used to c
ure a memory map. The format of each line of the map file is:

start size name width access read-times write-times

where:

• start is the address of the memory region in hexadecimal

• size is the size of the memory region in hexadecimal

• name is a single word used to identify the region when displaying memory access statistics

• width is the width of the data bus in bytes

• access describes the type of access allowed for this region, r is for read, w is for write, rw for rea
write, - for no access. An asterisk (*) may be appended to this to describe a thumb based syste
uses a 32-bit data bus, but which has a 16-bit latch to latch the upper 16-bits of data so that subs
16-bit sequential accesses may be fetched directly out of the latch

• read-times describes the non-sequential and sequential read times in nanoseconds separated b

• write-times describes the non-sequential and sequential write times in nanoseconds separated

Example

Create the memory map: 00000000 80000000 RAM 4 RW 135/85 135/85

Then build the dhrystone program and load it into the debugger. Check that the correct memory mod
loaded. If not, change the default map file using Options->Configure Target, selecting ARMUL (the m
target environment) and then configure. You should also set the debugger configuration to use the AR
tor with a clock speed of 20MHz and then restart the debugger. Finally, run the dhrystone program fo
100,000 loops. What estimated performance do you get?
 Hands-on Session Guide 16 W.J.B 10 March 2003

A Training Course in: ARM System Design

els of
cises is

ents
ve any
☛Hands-on 14

Advanced Configuration - Adding your own models to the ARMulator

The ARMulator environment consists of five parts:

• Remote Debug Interface - the interface between the ARMulator and its host debugger

• ARM Core Model - the model of the ARM itself

• Memory Model

• Coprocessor Model

• Operating System or Debug Monitor model

Source code is supplied with the ADS for the last three parts, allowing you to modify or add new mod
any of these components. The default memory model that you have been using for most of these exer
in armflat.c and the model that used memory maps as described above is in armmap.c.

Further details of the configuration files and how to modify the ARMulator are available from the comm
within the source code and the online documentation files. Please feel free to explore these if you ha
time remaining.

Neat Tricks
 Hands-on Session Guide 17 W.J.B 10 March 2003

A Training Course in: ARM System Design

f code.
f vary-

ill use
 the

ly in

h are

ry mis-
ained in
iler is
☛Hands-on 15

Cache Modelling

In this session you will the ARMulator to generate an address trace during the execution of a piece o
This will be used with a cache modelling tool called Cheetah to analyse the performance of caches o
ing size and associativity.

Generating an Address Trace

The ARMulator contains a memory model that can be used to generate trace information. Here, we w
it to provide only a memory address trace, although other trace types are available. Further details of
ARMulator and its configuration are given in session 6.

To switch on tracing within the tracer memory model, set the RDI Log Level to 0x10 in theSystem Viewwin-
dow before execution of the program to be traced. This will cause a log file to be written to disk (probab
the directory containing the executable file).

How to Use Cheetah

Run Cheetah’s executableC:\ArmCourse\Tools\WinCheetah and then:

• Load an address trace

• Select the parameters required for the analysis - the parameters that can be specified to cheeta
fairly self explanatory, but you must ensure that theAddress Trace Contents is set tounified for the
analyses performed here.

• Press the Analyse button.

• Press the View Results button to display the results of the analysis in Notepad (a text editor)

NOTE: Many analyses may be performed upon an address trace without needing to reload it.

Example

Follow the procedure above with the following settings:

• Cache Replacement Algorithm = LRU

• Cache Associativity = Fully Associative

• Log2(Line Size) = 4

• Cache Size Interval = 512

• Maximum Cache Size=8000

• Max Trace Length=100000000

For the executable, use thestcompiler binary and supply a command line argument ofqsort.c using. Com-
mand line arguments can be set by activating theControl Monitorview from theSystem Viewmenu of the
ARM Debugger and then right clicking and selectingproperties from the context sensitive menu.

It is necessary to use a large program such as stcompiler since small programs (e.g Dhrystone) give ve
leading results when used to produce cache address traces as the whole of the program can be cont
the cache with very little cache replacement occurring. We are not really interested in what the stcomp
 Hands-on Session Guide 18 W.J.B 10 March 2003

A Training Course in: ARM System Design

ts 68k
rms a
ss trace

 the cur-
l

ternal
size is

ep the
nd
doing, only that it is a reasonably substantial task. The stcompiler is in fact a cross-compiler that targe
platforms, and qsort.c is a program which randomises the data in a region of memory and then perfo
quick-sort on that data. The compilation executes almost 700000 instructions and generates an addre
of around 1 million addresses.

Interpreting Cheetah’s Output

The output from Cheetah shows a table of the cache miss rate over the range of caches simulated in
rent run. The lower the miss-rate, the faster a program will run since it will not have to wait for externa
memory as often. This has consequences in terms of power consumption also, since accesses to ex
memory burn significant amounts of power. Be careful when comparing caches since the actual cache
given by: Cache Size = Line Length * Number of Lines per Set * Number of Sets

Exercises

Repeat the cache simulations using different cache configurations - this requires a little thought to ke
parameters to Cheetah sensible. Compare the results that you obtain (use the graph paper below), a
observe which caches give the best performance
 Hands-on Session Guide 19 W.J.B 10 March 2003

A Training Course in: ARM System Design
☛Hands-on Answers/Code

Macro Definitions

MACRO
$l Exit ;Angel SWI to terminate execution
$l MOV r0, #0x18 ;AngelSWIreason_ReportException(0x18)

LDR r1, =0x20026 ;report ADP_Stopped_ApplicationExit
SWI SWI_ANGEL ;ARM semihosting SWI
MEND

MACRO
$l WriteC ;Angel SWI call to output char in[r1]
$l MOV r0, #0x3 ;select Angel SYS_WRITEC

SWI SWI_ANGEL ;
MEND ;

HexOut

AREA Hex_Out,CODE,READONLY
SWI_ANGEL EQU 0x123456 ;SWI number for Angel semihosting

ENTRY ;code entry point
LDR r2, VALUE ;get value to print
BL HexOut ;call hexadecimal output
Exit ;finish

VALUE DCD &1234abcd ;test value
HexOut MOV r3, #8 ;nibble count = 8

ADR r1, CHAROUT
LOOP MOV r0, r2, LSR #28 ;get top nibble

CMP r0, #9 ;0-9 or A-F
ADDGT r0, r0, #”A”-10 ;ASCII alphabetic
ADDLE r0, r0, #”0” ;ASCII numeric
STRB r0, [r1] ;store character to print
WriteC ;print character
MOV r2, r2, LSL #4 ;shift left one nibble
SUBS r3, r3, #1 ;decrement nibble count
BNE LOOP ;if more do next nibble
MOV pc, r14 ;return

CHAROUT DCD 0

END
 Hands-on Session Guide 20 W.J.B 10 March 2003

A Training Course in: ARM System Design
TextOut

AREA Text_Out, CODE, READONLY
SWI_ANGEL EQU 0x123456;SWI number for Angel semihosting

ENTRY ;code entry point
BL TextOut ;print following string
= “Test string”, &0a, &0d, 0
ALIGN
Exit ;finish

TextOut ;output string starting at [r14]
MOV r0, #0x3 ;select Angel SYS_WRITEC function

NxtTxt LDRB r1, [r14], #1 ;get next character
CMP r1, #0 ;test for end mark
SUBNE r1, r14, #1 ;setup r1 for call to SWI
SWINE SWI_ANGEL ;if not end, print..
BNE NxtTxt ; ..and loop
ADD r14, r14, #3 ;pass next word boundary
BIC r14, r14, #3 ;round back to boundary
MOV pc, r14 ;return
END

RegDump

AREA reg_dump,CODE,READONLY

SWI_ANGEL EQU 0x123456 ;SWI number for Angel semihosting

ENTRY ;code entry point
MOV r0, #0
MOV r1, #1
MOV r2, #2
MOV r3, #3
MOV r4, #4
MOV r5, #5
MOV r6, #6
MOV r7, #7
MOV r8, #8
MOV r9, #9
MOV r10, #10
MOV r11, #11
MOV r12, #12
MOV r13, #13
MOV r14, #14
BL RegDump
Exit ;finish
 Hands-on Session Guide 21 W.J.B 10 March 2003

A Training Course in: ARM System Design
RegDump
STR r14, r14tmp
ADR r14, RegStore
STMIA r14!, {r0-r13}
LDR r12, r14tmp
STR r12, [r14]
ADR r12, RegStore
MOV r4, #14 ;loop count

NxtReg RSB r3, r4, #14
CMP r3, #9 ;0-9 or A-F
ADDGT r0, r3, #”A”-10 ;ASCII alphabetic
ADDLE r0, r3, #”0” ;ASCII numeric
STRB r0, RegTxt+1 ;store character to print
BL TextOut

RegTxt = “rX = “,0
ALIGN
LDR r2, [r12, r3,lsl #2]
BL HexOut
BL TextOut
= &0a, &0d, 0
SUBS r4, r4, #1
BGE NxtReg
ADR r14, RegStore
LDMIA r14, {r0-r13,r15}

r14tmp DCD 0
RegStore % 68 ; Define space
RegEnd
CHAROUT DCD 0

TextOut ;output string starting at [r14]
MOV r0, #0x3 ;select Angel SYS_WRITEC function

NxtTxt LDRB r1, [r14], #1 ;get next character
CMP r1, #0 ;test for end mark
SUBNE r1, r14, #1 ;setup r1 for call to SWI
SWINE SWI_ANGEL ;if not end, print..
BNE NxtTxt ; ..and loop
ADD r14, r14, #3 ;pass next word boundary
BIC r14, r14, #3 ;round back to boundary
MOV pc, r14 ;return

END
 Hands-on Session Guide 22 W.J.B 10 March 2003

A Training Course in: ARM System Design
Compiling ARM C Programs

Debugging ARM Code

Condition ?????

SWI Handler

AREA swi, CODE, READWRITE
EXPORT INITSWI
;install a swi handler for SWI 0xff to print string
;inline in the source code
;the handler must be chained to avoid interfering with other
;SWI handlers

SWI_ANGEL EQU 0x123456 ;SWI number for Angel semihosting

INITSWI
MOV r0, #0x8 ;address of SWI vector
LDR r1, [r0] ;load old SWI vector
STR r1, OLDVECTOR ;save old SWI vector
ADR r1, Handler ;get address of new handler
SUB r1, r1, #16 ;pc relative branch offset from 0x8
AND r1, r1, #0x03ffffff ;mask off top 6 bits
MOV r1, r1, lsr #2 ;number of words offset
ORR r1, r1, #0xea000000 ;make a branch instruction
STR r1, [r0] ;install new vector
MOV pc, lr

Handler STR r13, r13tmp ;save r13
LDR r13, [r14, #-4] ;get swi instruction
BIC r13, r13, #0xff000000 ;extract swi number
CMP r13, #0xff ;this swi ?
LDRNE r13, r13tmp ;restore r13
LDRNE pc, OLDVECTOR ;load old vector if not for me

Project Type Optimisation Code Size #DhryStones

Debug
Space

Time

Release
Space

Time
 Hands-on Session Guide 23 W.J.B 10 March 2003

A Training Course in: ARM System Design
;save r0 and r1, could use a stack here
ADR r13, r0tmp ;set up tmp store pointer
STMIA r13, {r0,r1} ;save r0,r1

;;;;;;;;;;;;;start of TextOut routine from earlier exercise;;;;;;;;;
TextOut ;output string starting at [r14]

MOV r0, #0x3 ;select Angel SYS_WRITEC function
NxtTxt LDRB r1, [r14], #1 ;get next character

CMP r1, #0 ;test for end mark
SUBNE r1, r14, #1 ;setup r1 for call to SWI
SWINE SWI_ANGEL ;if not end, print..
BNE NxtTxt ; ..and loop
ADD r14, r14, #3 ;pass next word boundary
BIC r14, r14, #3 ;round back to boundary

;;;;;;;;;;;;;end of textout routine from earlier exercise;;;;;;;;;;;

;restore r0,r1,r13
LDMIA r13, {r0,r1} ;restore r0,r1
LDR r13, r13tmp ;restore r13
MOVS pc, r14 ;return to user mode code

r0tmp DCD 0
r1tmp DCD 0
r13tmp DCD 0
OLDVECTOR DCD 0

END

Thumb HelloWorld

AREA HelloWT,CODE,READONLY
SWI_ANGEL EQU 0x123456 ;SWI number for Angel semihosting from ARM code
SWI_TANGELEQU 0xAB ;SWI number for Thumb Angel semihosting

MACRO
$l TExit ;Angel SWI call to terminate execu-
tion
$l MOV r0, #0x18 ;Angel
SWIreason_ReportException(0x18)

LDR r1, =0x20026 ;report ADP_Stopped_ApplicationExit
SWI SWI_TANGEL ;THUMB semihosting SWI
MEND

MACRO
$l TWriteC ;Angel SWI call to output char [r1]
$l MOV r0, #0x3 ;select Angel SYS_WRITEC function

SWI SWI_TANGEL ;THUMB semihosting SWI
MEND

ENTRY ;code entry point
CODE32 ;enter in ARM state
ADR r0, START+1 ;get Thumb entry address
BX r0 ;enter Thumb area
CODE16
 Hands-on Session Guide 24 W.J.B 10 March 2003

A Training Course in: ARM System Design
START ADR r1, TEXT ;r1->”Hello World”
MOV r0, #0x3 ;select Angel SYS_WRITEC

LOOP LDRB r2, [r1] ;get next byte
CMP r2, #0 ;check for text end
BEQ DONE ;finished? **T
SWI SWI_TANGEL ;if not end print...
ADD r1, r1, #1 ;increment pointer **T
B LOOP ;..and loop back

DONE TExit ;end of execution
ALIGN ;to ensure ADR works

TEXT DATA
= “Hello World”,&a,&d,0
END ;end of program source

Thumb HexOut

Thumb TextOut

Thumb RegDump

Thumb C and Cycle Counting

Sched.s

AREA Sched,CODE,READWRITE
EXTERN PROC0
EXTERN PROC1

Project
Code
Type

Program
Region

Sequential
Cycles

Non-
Sequential

Cycles

Internal
Cycles

Co-
processor

Cycles

Instructions
Executed

Dhrystone

ARM

Initialisation

Main Loop

Results

Full Program

Dhrystone

Thumb

Initialisation

Main Loop

Results

Full Program
 Hands-on Session Guide 25 W.J.B 10 March 2003

A Training Course in: ARM System Design
EXTERN INITPROT
EXTERN INITIRQ
EXTERN INITTIMER
EXTERN INITSWI
EXPORT NXTPROC

ENTRY ;code entry point
main

;program protection unit through CP15
BL INITPROT
;program interrupt controller and timer1 as irq source
BL INITTIMER
;install interrupt handler
BL INITIRQ
;install swi handler
BL INITSWI
;enable interrupts & switch to user mode
MRS r0, CPSR
BIC r0, r0, #0x9F
MSR SPSR_c, r0
ADR r13, PCB0
LDMIA r13, {pc}^

;process swap code - called from irq handler to swap process
NXTPROC ;save process

SUB r14, r14, #4 ;calculate return address from IRQ
STR r14, r14tmp ;save r14 return address in tmp store
LDR r13, RUNNING
ADR r14, PROCTAB
LDR r14, [r14,r13,lsl #2] ;r14->pcb
LDR r13, r14tmp ;retrieve r14_irq
STR r13, [r14], #4 ;save user prog return address
MRS r13, SPSR ;r13=SPSR
STR r13, [r14], #4 ;save user CPSR
STMIA r14, {r0-r14}^ ;store user registers
NOP ;noop after force user
;select process
LDR r13, RUNNING ;retrieve current process id
EOR r13, r13, #1 ;change process
STR r13, RUNNING ;write new process id
;restore process
ADR r14, PROCTAB
LDR r13, [r14,r13,lsl #2]
LDR r14, [r13,#4]! ;retrieve saved cpsr
MSR SPSR_fsxc, r14 ;spsr=saved cpsr
LDMIB r13, {r0-r14}^ ;restore user regs
NOP ;noop after force user
LDMDB r13, {pc}^ ;restore CPSR and pc

RUNNING DCD 0
PROCTAB DCD PCB0

DCD PCB1>
r14tmp DCD 0
 Hands-on Session Guide 26 W.J.B 10 March 2003

A Training Course in: ARM System Design
;process control block for process 0
PCB0 DCD PROC0 ;restart address

DCD 0 ;cpsr
% 60 ;r0-r14
;process control block for process 1

PCB1 DCD PROC1 ;restart address
DCD 0 ;cpsr
% 60 ;r0-r14
END

Timer.s

AREA Timer, CODE, READWRITE
EXPORT INTBASE
EXPORT TIMERBASE
EXPORT INITTIMER

INTBASE EQU 0x0a000000
TIMERBASE EQU 0x0a800000

INITTIMER
;initialise interrupt controller
LDR r0, =INTBASE
MOV r1, #0x10
STR r1, [r0,#0x8] ;initialise timer
LDR r0, =TIMERBASE
LDR r1, TIMECNT
STR r1, [r0]
MOV r1, #0xC0 ;enable timer, periodic mode
STR r1, [r0,#0x8]
LDR r0, =TIMERBASE
STR r0, [r0,#0xc]
;return
MOV pc, lr

TIMECNT DCD 0xff ;timer initial value
END

Irq.s

AREA IRQ_setup, CODE, READWRITE
EXTERN NXTPROC
EXTERN TIMERBASE
EXPORT INITIRQ
;install interrupt handler

INITIRQ
MOV r1, #0x18
ADR r0, IRQ
SUB r0, r0, #0x18+8 ;pc relative offset from irq vector
AND r0, r0, #0x03ffffff
MOV r0, r0, lsr #2
ORR r0, r0, #0xea000000 ;build branch instruction to handler
STR r0, [r1]
MOV pc, lr
;handler counts number of IRQs (caused by timer)
;and calls nxtproc every IRQCNT interrupts
 Hands-on Session Guide 27 W.J.B 10 March 2003

A Training Course in: ARM System Design
IRQ LDR r13, IRQCNT ;r13=count
SUBS r13, r13, #1 ;count--
LDREQ r13, IRQRST ;if(!count) reset count
STR r13, IRQCNT ;store count
LDR r12, =TIMERBASE ;r13->timer ctrl register
STR r12, [r12,#0xc] ;reset timer/clear interrupt source
BEQ NXTPROC ;process switch
SUBS pc, lr, #4 ;return from interrupt

IRQCNT DCD 0x80 ;current count value
IRQRST DCD 0x80 ;reset value

END

SimpleProc.s

AREA SimpleProc,CODE,READONLY
EXPORT PROC0
EXPORT PROC1

PROC0 mov r1, #0 ;process 0
; ldr r0, [r1] ;uncomment this to generate aborts
l0 add r1, r1, #2

b l0
PROC1 mov r4, #0 ;process 1
l1 add r4, r4, #1

b l1
END

SwapProc.s

AREA SwpProc,CODE,READONLY
EXPORT PROC0
EXPORT PROC1

SWI_ANGEL EQU 0x123456 ;SWI number for Angel semihosting

;textout routine callable from either process
TextOut ;output string starting at [r14]

ADR r0, SEMAPHORE ;r0->semaphore
MOV r1, #1 ;r1:=1

SPIN SWP r2, r1, [r0] ;r2:=mem[r0], mem[r0]=r1
CMP r2, #0 ;if r2!=0 retry grabbing semaphore
BNE SPIN ;could use an os call suspend process
;we now have the semaphore
;;;;;;;start atomic region;;;;;;;;;;;;;;;;
MOV r0, #0x3 ;select Angel SYS_WRITEC function

NxtTxt LDRB r1, [r14], #1 ;get next character
MOV r2, #0xff

Delay SUBS r2, r2, #1
BNE Delay
CMP r1, #0 ;test for end mark
SUBNE r1, r14, #1 ;setup r1 for call to SWI
SWINE SWI_ANGEL ;if not end, print..
BNE NxtTxt ; ..and loop
ADD r14, r14, #3 ;pass next word boundary
 Hands-on Session Guide 28 W.J.B 10 March 2003

A Training Course in: ARM System Design
BIC r14, r14, #3 ;round back to boundary
;;;;;;;end atomic region;;;;;;;;;;;;;;;;;;
;release semaphore
MOV r0, #0
STR r0, SEMAPHORE
MOV pc, r14 ;return

;process 0
PROC0 MOV r4, #0xff
l0 SUBS r4, r4, #1

BNE l0
BL TextOut
= “Process 0, 0123456789”, &0a, &0d, 0
B PROC0

;process 1
PROC1 MOV r4, #0xff
l1 SUBS r4, r4, #1

BNE l1
BL TextOut
= “Process 1, 9876543210”, &0a, &0d, 0
B PROC1

SEMAPHORE DCD 0
END

Interfacing C and Assembly Language

Cache Modelling

Memory Protection - Prot.s

AREA Prot_unit,CODE,READWRITE
EXPORT INITPROT

;program protection unit through CP15
INITPROT

MOV r1, #0x3f ;region 0 (other code) ->all of memory
MCR p15, 0, r1, c6, c0, 0 ;set up region 0
MOV r1, #0x10000 ;region 1 (user code) ->set base addr
BIC r1, r1, #0xff
ORR r1, r1, #0x17 ;region 1 ->set size=4kb and enable
MCR p15, 0, r1, c6, c1, 0 ;set up region 1
MOV r1, #0xd ;
MCR p15, 0, r1, c5, c0, 0 ;set up protection register
MOV r1, #1
MCR p15, 0, r1, c1, c0, 0 ;enable protection
MOV pc, lr ;return
END
 Hands-on Session Guide 29 W.J.B 10 March 2003

	*Hands-on 1
	An Introduction to the ARM Project Manager
	Creating a Project using the Development Environment
	The Project Window
	Building and Executing The Project
	The Toolbar and On-line Help

	*Hands-on 2
	ARM Assembly Language
	HexOut - A Simple Assembly Language Routine
	TextOut
	RegDump
	MemDump

	*Hands-on 3
	Compiling ARM C Programs
	Hello World
	Compiler Options

	*Hands-on 4
	Debugging ARM Code
	Getting Started
	Executing The Code
	Breakpoints
	Watchpoints
	Viewing Variables, Registers and Backtraces
	Exercises
	Basic Exercise
	Advanced Exercises

	*Hands-on 5
	System Software: Writing a SWI Handler
	Installing a SWI handler
	Writing a SWI handler
	Testing your SWI handler
	Going further

	*Hands-on 6
	Writing Simple Thumb Assembly Programs
	Converting HelloWorld to Thumb
	Building A Thumb Executable
	Thumb Code Exercises

	*Hands-on 7
	Thumb C and Cycle Counting
	Using the ARMulator and Debugger to View Cycle Counts
	Example using Dhrystone

	*Hands-on 8
	System Software: Interrupts and preemptive Schedulers
	Scheduler Structure
	Writing the Interrupt Handler
	Installing the Interrupt Handler

	*Hands-on 9
	System Software: Using SWP to implement a Semaphore
	Semaphores
	Text Output Example
	Achieving similar results using a SWI system call

	* Hands-on 10
	Interfacing ‘C’ and Assembly Language
	Overview
	APCS
	Add64
	Returning Structures

	Stack Usage

	*Hands-on 11
	System Software: Memory Protection
	Programming ARM 740T Protection Unit
	Including the protection code in the project
	Testing the memory protection

	*Hands-on 12
	Code Profiling

	*Hands-on 13
	The ARMulator
	Specifying a Memory Map and obtaining Performance Estimates
	Example

	*Hands-on 14
	Advanced Configuration - Adding your own models to the ARMulator
	Neat Tricks

	*Hands-on 15
	Cache Modelling
	Generating an Address Trace
	How to Use Cheetah
	Example
	Interpreting Cheetah’s Output
	Exercises

	*Hands-on Answers/Code
	Macro Definitions
	HexOut
	TextOut
	RegDump
	Compiling ARM C Programs
	Debugging ARM Code
	SWI Handler
	Thumb HelloWorld
	Thumb HexOut
	Thumb TextOut
	Thumb RegDump
	Thumb C and Cycle Counting
	Sched.s
	Timer.s
	Irq.s
	SimpleProc.s
	SwapProc.s
	Interfacing C and Assembly Language
	Cache Modelling
	Memory Protection - Prot.s

