
AMULET3 Revealed – April 19th 1999 – 1

AMULET3 . . . Revealed

 have occult operation.

s 20th Century Dictionary

ke;

,

dog,

’s sting,

g,

uble,

bble.

eth Act 4 Scene 1
AMULET
group

amulet (n.) a chARM; a medicine supposed to

Chamber

Fillet of a fenny snake,

In the cauldron boil and ba

Eye of newt and toe of frog

Wool of bat and tongue of

Adder’s fork and blind-worm

Lizard’s leg and owlet’s win

For a charm of powerful tro

Like a hell-broth boil and bu

Macb

AMULET3 Revealed – April 19th 1999 – 2

What is AMULET3?

 set

same

ocess
AMULET
group

❑ An ARM implementation

❍ ARM “level 4” (ARM9) instruction

❍ “Thumb” mode

❑ Fully asynchronous

❍ Low power

❍ Low EMI

❍ Automatic halt mode

❑ High performance (for an ARM)

❍ equal to an ARM9 (?), using the

❍ generic 0.35µm, 3 layer metal pr

Prefetch
IRQ

FIQ

Latch

Architectural features
iction

ycle suppression

oder

 register forwarding

with out-of-order

ard”) bus interface

 precise exceptions
AMULET

Thumb

Decode &
Reg. Rd.

Latch

Latch
FIFO

Register
Write

Data
Memory

Instr
Memory

Data
Interface

Latch

Execute

Reorder
Buffer

Latch

Latch

br
an

ch
 a

dd
re

ss
es

fo
rw

ar
di

ng
in

di
re

ct
 P

C
 lo

ad

memory
skip

store data

addr.

load data

❑ Branch pred

❑ Unwanted c

❑ Thumb dec

❑ Unrestricted

❑ Load/store

completion

❑ Dual (“Harv

❑ Support for
AMULET3 Revealed – April 19th 1999 – 3group

AMULET3 Revealed – April 19th 1999 – 4

Prefetch unit
Asynchronous features

 (skips memory cycle)

 for sequential cycles)

 (skips memory cycle)

ncy)
AMULET
group

❑ Non-deterministic prefetch depth

❑ Branch/Interrupt fetch suppression

❑ Variable cycle time (BTB optimised

❑ Halt

Low power features

❑ Branch/Interrupt fetch suppression

❑ Split BTB (as AMULET2)

❑ “2 for 1” fetches in Thumb mode

Novel features

❑ Interrupts processed here (low late

❑ Indirect branches executed here

NEW

NEW

NEW

NEW

NEW

AMULET3 Revealed – April 19th 1999 – 5

Thumb Decoder

ctions

te

panded into two full
AMULET
group

ARM mode (interrupt/predicted branch/...)

❑ Pass instruction

Thumb mode

❑ Expand 32-bit word into two full instru

❑ Each instruction takes time to genera

❑ Usually two 16-bit instructions are ex
ARM instructions

Asynchronous features

❑ Variable delay

❑ “One in, two out” handshakes

AMULET3 Revealed – April 19th 1999 – 6

Decoding & Execution

Shift

Multiply

Branch addPC Inc

Address out

Linktc
h

La
tc

h

Memory

Reorder

Branch

buffer

La
tc

h

La
tc

h

ALU
AMULET
group

Features

❑ Considerable parallelism

❑ Skewed pipeline latches

❑ Extra buffer for LDM/STM

Immediate

Decode

CAM read

Register read

CAM write

Forward

Decode

Col/CC

La

A
rb

ite
r

La
tc

h

La
tc

h

La
tc

h
La

tc
h

La
tc

h

Iteration
Control

Thumb

Instruction with options
Registers
Branch
Memory

AMULET3 Revealed – April 19th 1999 – 7

Instruction Decoder/Register Read

ultiple and “long”

r speed-up)

 “shadow”

ed

ffer (we believe!)
AMULET
group

Asynchronous features

❑ Multi-cycle operations for load/store m
multiplication

❑ Branch calculation done here (for late

❑ Fast discard of instructions in branch

Low power features

❑ Only required buses/decoders activat

Novel features

❑ First use of asynchronous reorder bu

AMULET3 Revealed – April 19th 1999 – 8

Instruction Decode – example

l) pop registers and return

 register writes

ion fails)

lt back from exec. unit

lel” – lowers latency

erface

ction correct)
AMULET
group

LDMNEIA SP!, {R0..R10,PC} ; (Conditiona

❑ Requires 1 register read (SP) and 13

❑ Decoded into 12 cycles (one if condit

❑ First decode cycle stretched:

❍ to identify first register in list

❍ to allocate two destinations

❍ to handshake condition test resu

❑ First cycle loads R0 and PC in “paral

❍ (also writes back modified SP)

❑ Other cycles only sent to memory int

(Last cycle merely to ensure abort fun

AMULET3 Revealed – April 19th 1999 – 9

Execution unit

 “shadow”

)

 shift
LU)

d when required

ed)

ritten)

 fault
AMULET
group

Asynchronous features

❑ Fast discard of instructions in branch
or condition failure

❑ Operation dependent execution time
(optimised for commonest operations

❑ Extra time inserted when required for
(ARM requires shifter in series with A

❑ Self-timed, iterative multiplier – invoke

❑ Short cycle for branches (precalculat

❑ Short cycle for CMP et al. (no result w

❑ Arbiter allows interruption by memory

AMULET3 Revealed – April 19th 1999 – 10

Memory interface

 any arbitration/

n

Inc.

Latch

‘Instruction’
A

ddress

Latch
AMULET
group

Asynchronous features

❑ Fast bypass for “failing” instructions

❑ Assumes unified, dual-port memory –
sequencing handled externally

Low power features

❑ Semi-autonomous address generatio

❑ Sequential addresses
(good for DRAM optimisation)

Novel features

❑ Out-of-order completion

❑ Support for coprocessor interface

❑ Support for ARM debug interface

AMULET3 Revealed – April 19th 1999 – 11

Performance
These figures are based on a “typical” process and extracted layout

l

r data operations

st/subsequent cycles

tions due to memory)

z on same process)

es are longer than others
AMULET
group

using EPIC Timemil

Instruction timings (& throughput):

❑ MOV 7.5ns (130MHz)

❑ ADD 8.7ns (115MHz)

❑ TST 7.2ns (140MHz)

No dependency penalty (so far) observed afte

❑ LDM ! 9.8/7.7ns (100/130MHz) fir

(Note: these numbers do not include any limita

This compares favourably with ARM9 (120MH

(Almost) all instructions take one cycle –
although some cycl

AMULET3 Revealed – April 19th 1999 – 12

Improvements
The performance improvements over AMULET2e are approximately:

 dual-ported

 be almost 3x faster

design alone

rovement

+10%

t quantified

+80%

+40%

80% (+)
AMULET
group

*The memory system is effectively

We expect AMULET3 on a 0.35µm process to
than the 0.5µm AMULET2e

About a factor of two improvement is from the

Feature Imp

Architecture (CPI)

Architecture (memory*) not ye

Cycle time

Process

Total (approx.): +1

AMULET3 Revealed – April 19th 1999 – 13

Conclusions
AMULET has now caught up with the synchronous ARM

no clock

w!

ac.uk/amulet/AMULET3_uP.html
AMULET
group

❑ Smaller – Certainly

❑ Faster – Maybe

❑ Lower power – Possibly

❑ Lower EMI – Probably

❑ Y2K compliant – no calendar –

❑ Availability – Real Soon No

www.cs.man.

	AMULET3���.�.�.���Revealed
	amulet (n.) a chARM; a medicine supposed to have occult operation.
	Chambers 20th Century Dictionary
	Fillet of a fenny snake, In the cauldron boil and bake; Eye of newt and toe of frog, Wool of bat ...
	Macbeth Act 4 Scene 1

	What is AMULET3?
	An ARM implementation
	ARM “level 4” (ARM9) instruction set
	“Thumb” mode

	Fully asynchronous
	Low power
	Low EMI
	Automatic halt mode

	High performance (for an ARM)
	equal to an ARM9 (?), using the same
	generic 0.35mm, 3 layer metal process

	Architectural features
	Branch prediction
	Unwanted cycle suppression
	Thumb decoder
	Unrestricted register forwarding
	Load/store with out-of-order completion
	Dual (“Harvard”) bus interface
	Support for precise exceptions

	Prefetch unit
	Asynchronous features
	Non-deterministic prefetch depth
	Branch/Interrupt fetch suppression (skips memory cycle)
	Variable cycle time (BTB optimised for sequential cycles)
	Halt

	Low power features
	Branch/Interrupt fetch suppression (skips memory cycle)
	Split BTB (as AMULET2)
	“2 for 1” fetches in Thumb mode

	Novel features
	Interrupts processed here (low latency)
	Indirect branches executed here

	Thumb Decoder
	ARM mode (interrupt/predicted branch/...)
	Pass instruction

	Thumb mode
	Expand 32-bit word into two full instructions
	Each instruction takes time to generate
	Usually two 16-bit instructions are expanded into two full ARM instructions

	Asynchronous features
	Variable delay
	“One in, two out” handshakes

	Decoding & Execution
	Features
	Considerable parallelism
	Skewed pipeline latches
	Extra buffer for LDM/STM

	Instruction Decoder/Register Read
	Asynchronous features
	Multi-cycle operations for load/store multiple and “long” multiplication
	Branch calculation done here (for later speed-up)
	Fast discard of instructions in branch “shadow”

	Low power features
	Only required buses/decoders activated

	Novel features
	First use of asynchronous reorder buffer (we believe!)

	Instruction Decode – example
	LDMNEIA SP!, {R0..R10,PC} ; (Conditional) pop registers and return
	Requires 1 register read (SP) and 13 register writes
	Decoded into 12 cycles (one if condition fails)
	First decode cycle stretched:
	to identify first register in list
	to allocate two destinations
	to handshake condition test result back from exec. unit

	First cycle loads R0 and PC in “parallel” – lowers latency
	(also writes back modified SP)

	Other cycles only sent to memory interface

	(Last cycle merely to ensure abort function correct)

	Execution unit
	Asynchronous features
	Fast discard of instructions in branch “shadow” or condition failure
	Operation dependent execution time (optimised for commonest operations)
	Extra time inserted when required for shift (ARM requires shifter in series with ALU)
	Self-timed, iterative multiplier – invoked when required
	Short cycle for branches (precalculated)
	Short cycle for CMP et al. (no result written)
	Arbiter allows interruption by memory fault

	Memory interface
	Asynchronous features
	Fast bypass for “failing” instructions
	Assumes unified, dual-port memory – any arbitration/ sequencing handled externally

	Low power features
	Semi-autonomous address generation
	Sequential addresses (good for DRAM optimisation)

	Novel features
	Out-of-order completion
	Support for coprocessor interface
	Support for ARM debug interface

	Performance
	These figures are based on a “typical” process and extracted layout using EPIC Timemill
	Instruction timings (& throughput):
	MOV 7.5ns (130MHz)
	ADD 8.7ns (115MHz)
	TST 7.2ns (140MHz)

	No dependency penalty (so far) observed after data operations
	LDM ! 9.8/7.7ns (100/130MHz) first/subsequent cycles

	(Note: these numbers do not include any limitations due to memory)
	This compares favourably with ARM9 (120MHz on same process)
	(Almost) all instructions take one cycle – although some cycles are longer than others

	Improvements
	The performance improvements over AMULET2e are approximately:
	Architecture (CPI)
	+10%
	Architecture (memory*)
	not yet quantified
	Cycle time
	+80%
	Process
	+40%
	Total (approx.):
	+180% (+)

	*The memory system is effectively dual-ported
	We expect AMULET3 on a 0.35mm process to be almost 3x faster than the 0.5mm AMULET2e
	About a factor of two improvement is from the design alone

	Conclusions
	AMULET has now caught up with the synchronous ARM
	Smaller – Certainly
	Faster – Maybe
	Lower power – Possibly
	Lower EMI – Probably
	Y2K compliant – no calendar – no clock
	Availability – Real Soon Now!

	www.cs.man.ac.uk/amulet/AMULET3_uP.html
	NEW
	NEW
	NEW
	NEW
	NEW

