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amulet  (n.) a chARM; a medicine supposed to

Chamber

Fillet of a fenny snake,

In the cauldron boil and ba

Eye of newt and toe of frog

Wool of bat and tongue of 
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For a charm of powerful tro
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What is AMULET3?
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❑ An ARM implementation

❍ ARM “level 4” (ARM9) instruction

❍ “Thumb” mode

❑ Fully asynchronous

❍ Low power

❍ Low EMI

❍ Automatic halt mode

❑ High performance (for an ARM)

❍ equal to an ARM9 (?), using the 

❍ generic 0.35µm, 3 layer metal pr
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Prefetch unit
Asynchronous features
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❑ Non-deterministic prefetch depth

❑ Branch/Interrupt fetch suppression

❑ Variable cycle time (BTB optimised

❑ Halt

Low power features

❑ Branch/Interrupt fetch suppression

❑ Split BTB (as AMULET2)

❑ “2 for 1” fetches in Thumb mode

Novel features

❑ Interrupts processed here (low late

❑ Indirect branches executed here

NEW

NEW

NEW

NEW

NEW
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Thumb Decoder
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ARM mode (interrupt/predicted branch/...)

❑ Pass instruction

Thumb mode

❑ Expand 32-bit word into two full instru

❑ Each instruction takes time to genera

❑ Usually two 16-bit instructions are ex
ARM instructions

Asynchronous features

❑ Variable delay

❑ “One in, two out” handshakes
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Decoding & Execution

Shift

Multiply

Branch addPC Inc

Address out

Linktc
h

La
tc

h

Memory

Reorder

Branch

buffer

La
tc

h

La
tc

h

ALU
AMULET
group

Features

❑ Considerable parallelism

❑ Skewed pipeline latches

❑ Extra buffer for LDM/STM
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Instruction Decoder/Register Read
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Asynchronous features

❑ Multi-cycle operations for load/store m
multiplication

❑ Branch calculation done here (for late

❑ Fast discard of instructions in branch

Low power features

❑ Only required buses/decoders activat

Novel features

❑ First use of asynchronous reorder bu
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Instruction Decode – example
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LDMNEIA SP!, {R0..R10,PC} ; (Conditiona

❑ Requires 1 register read (SP) and 13

❑ Decoded into 12 cycles (one if condit

❑ First decode cycle stretched:

❍ to identify first register in list

❍ to allocate two destinations

❍ to handshake condition test resu

❑ First cycle loads R0 and PC in “paral

❍ (also writes back modified SP)

❑ Other cycles only sent to memory int

(Last cycle merely to ensure abort fun
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Execution unit
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Asynchronous features

❑ Fast discard of instructions in branch
or condition failure

❑ Operation dependent execution time
(optimised for commonest operations

❑ Extra time inserted when required for
(ARM requires shifter in series with A

❑ Self-timed, iterative multiplier – invoke

❑ Short cycle for branches (precalculat

❑ Short cycle for CMP et al. (no result w

❑ Arbiter allows interruption by memory
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Asynchronous features

❑ Fast bypass for “failing” instructions

❑ Assumes unified, dual-port memory –
sequencing handled externally

Low power features

❑ Semi-autonomous address generatio

❑ Sequential addresses
(good for DRAM optimisation)

Novel features

❑ Out-of-order completion

❑ Support for coprocessor interface

❑ Support for ARM debug interface
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Performance
These figures are based on a “typical” process and extracted layout
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using EPIC Timemil

Instruction timings (& throughput):

❑ MOV 7.5ns (130MHz)

❑ ADD 8.7ns (115MHz)

❑ TST 7.2ns (140MHz)

No dependency penalty (so far) observed afte

❑ LDM ! 9.8/7.7ns (100/130MHz) fir

(Note: these numbers do not include any limita

This compares favourably with ARM9 (120MH

(Almost) all instructions take one cycle –
although some cycl
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Improvements
The performance improvements over AMULET2e are approximately:

 dual-ported

 be almost 3x faster

design alone

rovement

+10%

t quantified

+80%

+40%

80% (+)
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*The memory system is effectively

We expect AMULET3 on a 0.35µm process to
than the 0.5µm AMULET2e

About a factor of two improvement is from the 

Feature Imp

Architecture (CPI)

Architecture (memory*) not ye

Cycle time

Process

Total (approx.): +1
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Conclusions
AMULET has now caught up with the synchronous ARM

no clock
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❑ Smaller – Certainly

❑ Faster – Maybe

❑ Lower power – Possibly

❑ Lower EMI – Probably

❑ Y2K compliant – no calendar – 

❑ Availability – Real Soon No

www.cs.man.
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