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Abstract

In landmark-based navigation systems for mobile robots, sensory perceptions (e.g., laser or sonar scans) are used to
identify the robot’s current location or to construct internal representations, maps, of the robot’s environment. Being based
on an external frame of reference (which is not subject to incorrigible drift errors such as those occurring in odometry-based
systems), landmark-based robot navigation systems are now widely used in mobile robot applications.

The problem that has attracted most attention to date in landmark-based navigation research is the question of how to deal
with perceptual aliasing, i.e., perceptual ambiguities. In contrast, what constitutes a good landmark, or how to select landmarks
for mapping, is still an open research topic. The usual method of landmark selection is to map perceptions atregular intervals,
which has the drawback of being inefficient and possibly missing ‘good’ landmarks that lie between sampling points.

In this paper, we present an automatic landmark selection algorithm that allows a mobile robot to select conspicuous
landmarks from a continuous stream of sensory perceptions, without any pre-installed knowledge or human intervention during
the selection process. This algorithm can be used to make mapping mechanisms more efficient and reliable. Experimental
results obtained with two different mobile robots in a range of environments are presented and analysed. © 2001 Published
by Elsevier Science B.V.
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1. Introduction

1.1. General considerations — approach

For mobile robot navigation over realistic distances,
navigation systems based on sensory perceptions or
landmarks are usually used. This is because, unlike
dead-reckoning methods, perception-based systems
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do not suffer from drift error. However, they are prone
to the problem of perceptual aliasing, where a number
of perceptions from different parts of an environment
look similar.

There is another very relevant aspect of landmark-
based navigation that has not yet been solved sat-
isfactorily. This is the question of what constitutes
a ‘good’ landmark, i.e., the question of how land-
marks should be selected. So far, this problem has
largely been ignored by either logging sensory per-
ceptions at regular intervals, or comparing them with
pre-installed models of ‘good’ landmarks supplied
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by a human supervisor. The first method is unsatis-
factory because of its inefficiency, while the latter
has the risk that a human supervisor will either se-
lect landmarks that are not easily recognisable by
the robot, or overlook landmarks that are inconspic-
uous to a human, yet are perfectly recognisable by a
robot.

In this paper, we present an algorithm that addresses
this question of landmark selection, and facilitates the
automatic selection of landmarks, i.e., without any hu-
man supervision. The algorithm allows a mobile robot
to select landmarks for navigation from a continuous
stream of perceptions, without using any external
(user-supplied) feedback. The principal assumption is
that a landmark that is suitable for navigation should
be both conspicuous to the robot’s sensors and reliably
detectable. This paper first describes the landmark
selection algorithm, which selects conspicuous land-
marks. It then introduces performance measures that
evaluate the consistency of landmark selection, and
applies them to the experimental results obtained with
two different mobile robots in a range of real-world
environments.

1.2. Method of landmark selection

In this paper, landmarks are selected by defining
conspicuous landmarks to be those that are unex-
pected, i.e., perceptions that do not conform to an
acquired model of the temporal relationship between
successive sensory perceptions. The landmark se-
lection system described in this paper uses a neural
network to learn a general model of the relationship
between a robot’s successive sensory perceptions, ac-
quired over a range of different environments during
a training phase. This general model is then used to
predict future sensor readings based on current sensor
readings. Any perception where the prediction does
not match the actual reading obtained at the next time
step to some accuracy is selected as a landmark on
the grounds that it differs markedly from the usual
relationship between successive perceptions — it is
conspicuous.

Two methods of selecting those places where the
prediction fails to predict the next perception accu-
rately are proposed, one based on detecting peaks
in the prediction error curve, and the other using a
Kalman filter to maintain a model of the error and

selecting as landmarks those places that fall beyond
the error bounds of the Kalman filter.

1.3. Performance evaluation

A very important feature of a landmark is that it can
beconsistentlydetected on every run, so that the robot
can navigate using the landmarks. For this reason, a
metric is proposed by which the consistency of the
landmark selection can be evaluated and the various
detection techniques compared. This is discussed in
Section 5.

1.4. Key contributions

The experiments discussed in this paper demon-
strate that it is possible to devise algorithms that enable
a mobile robot to select consistent landmarks for navi-
gation automatically. User guidance or pre-installation
of models is not required. One fundamental feature of
the approach presented in this paper is that a model
of the temporal relationship between sensory percep-
tions is used, i.e., the robot isrobot-centred, rather
than environment-centred. This means that the algo-
rithm is able to select landmarks in any environment
— even completely novel ones — after training.

The experiments have been conducted on two
different mobile robots, in a range of different envi-
ronments. The results demonstrate that the algorithm
is not sensitive to hardware aspects, nor properties
of a specific environment. In order to assess the con-
sistency of landmark selection, two measures of per-
formance are introduced: the sum-squared-difference
between prediction errors of different traversals of
the same environment, and the landmark consistency
measure LMC, which evaluates whether the algorithm
selects the same location as a landmark during each
traversal of an environment.

2. Related work

A number of methods of selecting landmarks are
described in the literature. Some systems [3,15] take
sonar scans at regular intervals, such as every 150 cm
of travel in an environment, with every sonar scan be-
ing used as a landmark that is put into the map. This
avoids the problem of ensuring that landmarks should
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be detected consistently, but since in many environ-
ments — such as corridors — a large number of per-
ceptions are almost identical, the map is filled up with
information that does not aid navigation.

Another problem with mapping at regular intervals
is that perceptions that lie between sampling locations
are missed. It may well be that these missed percep-
tions include considerably more distinctive landmarks
than those perceived at the user-defined sampling
locations.

A number of researchers have considered selecting
suitable landmarks for mobile robot navigation. These
can be split into off-line approaches that are not suit-
able for use on the robot as it explores, and systems
that can be used on-line.

In the first category is the technique of asking the
user to define the landmarks before the robot ex-
plores. Humans typically select objects that they find
easy to recognise, such as doors, or line segments
extracted from camera images recorded as the robot
travels [6]. These approaches suffer from the same
problem — the robot’s perceptions of the world are
very different to those of a human, and so features
that the researcher thinks are distinctive may not be
noticeable by the robot.

In contrast to this, Thrun [13] addressed the prob-
lem of Bayesian learning to select an optimal set of
landmarks for performing self-localisation in one spe-
cific environment, where the landmarks consisted of
a projection from the robot’s raw sensory perceptions
(camera images) onto vectors in a lower-dimensional
space. This optimisation was performed by minimising
directly the quantity of interest, namely the robot’s er-
ror in self-localisation. Thrun showed that his method
produced better performance than localisation using
designer-determined landmarks including doors and
ceiling lights. A similar, but computationally cheaper
technique, was developed by Vlassis et al. [14], who
showed that their optimisation method produced bet-
ter results than principal component analysis. Our ap-
proach differs in that we do not carry out any analysis
of the utility of the landmarks selected, but instead use
a self-acquired model of ‘typical’ sequences of per-
ceptions, which is independent of any particular task
or environment.

Neither of the above approaches are suitable for
on-line selection of landmarks, because they rely on
an acquired model of a previously explored environ-

ment. Zimmer [16] considered the problem of select-
ing landmarks in a topological map through a process
of ‘life-long learning’, where the robot’s map was
continuously adapted on-line during exploration. This
approach used global statistical information, based on
comparison of accumulated error statistics at each of
the nodes, to decide where to add and delete nodes in
the map.

A related idea can be found in Bourque and Dudek
[2], who addressed the ‘vacation snapshot’ problem of
deciding in which locations to take camera images in
order to obtain a set of images that best represent an
entire environment. This approach kept running statis-
tics on what is a ‘typical’ perception, together with
backtracking to previously visited locations that were
subsequently found to be ‘atypical’. Our method dif-
fers from these approaches in that we only uselocal
sensory information to decide when to add landmarks
to the map.

Simhon and Dudek [12] also use only local infor-
mation. They addressed the problem of deciding the
best locations in which to create local metric maps,
using a distinctiveness function based on the robot’s
ability to localise itself within such a map. How-
ever, this approach relies heavily on the designer’s
intuition in selecting an appropriate distinctiveness
function.

3. Acquiring a general model of the relationship
between consecutive sensory perceptions

The first part of the proposed system for selecting
landmarks is the general model of the relationship be-
tween consecutive sensory perceptions of the robot.
The perceptions are sampled at regular spatial inter-
vals as the robot travels, using dead reckoning to es-
timate the distance between samples.

One way for the robot to acquire the model is
through the use of a neural network trained on data
collected by the robot during exploration. Since the
model should predict the next perception that the
robot will encounter, a supervised learning technique
is suitable, where each input vector is paired with a
target output (in this case the sensory perception per-
ceived at the next time step), and the weights of the
network adjusted to reduce the error in the prediction,
usually by a gradient descent learning method.
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3.1. The neural network architecture

The most simple supervised network is the per-
ceptron, a single-layer feedforward network [1,11].
The inputs to the network are directly connected to
the outputs by adjustable weights, and the update
rule modifies these weights. More complex networks
have intervening layers of ‘hidden’ units, and the
difference between the network output and the target
is propagated back through the network to adapt the
strength of the connections between the units.

In the current application we do not desire a com-
plex model of the perceptions. Rather, a very simple
model that contains only the most general features
is useful, so that there are environmental features for
which the prediction is not good, since poor predic-
tion is what generates the landmarks. For this reason,
a perceptron is used rather than any more complicated
model. This network calculates the outputok for each
output unitk at the current time using Eq. (1):

ok = f (wk · i), (1)

wherei is the input vector,wk is the weight vector of
output unitk, andf the transfer function. In our exper-
iments this was the sigmoid function given in Eq. (2),

f (x) = 1

1 + e−2x
. (2)

Fig. 1. The neural network architecture of the modified perceptron. All connections are shown. A bias input, permanently set to−1, which
was connected to all output units was also used.

The network weights are updated during training
using Eq. (3):

wk(t + 1) = wk(t) + η(τk − ok)i, (3)

whereτ k is the target value for output unitk, andη is
the learning rate (0.2 in the experiments reported here).

3.1.1. Modifying the connectivity
As the prediction that is being made is of future

sensory perceptions, and the robot is always driving
forwards, the future perceptions of any one sensor de-
pend only on the sensors in front of it. The network
connectivity was chosen to model this fact, so the per-
ceptions of sensors facing forwards are used as inputs
to model rear-mounted sensors, but not vice versa. The
reading of a sensor at the current time is also used in
the prediction of its own next reading. The architec-
ture is shown in Fig. 1 and is referred to in this paper
as the ‘modified perceptron’. In addition to the net-
work inputs shown in the figure, a bias input that is
permanently set to−1 is used.

3.1.2. Adding temporal inputs
The modified perceptron introduced in the previ-

ous sections learns to predict the next reading given
the current one. Another possibility for modelling the
temporal relationship between sensory perceptions
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would be to use information from past perceptions.
Two methods of doing this are investigated in this
paper.

The first is the lagged perceptron, shown in Fig. 2.
This network uses a lagged input vector, so that the
inputs to the perceptron at the current time consist not
just of the current readings, but also the readings ofn
previous time steps.

The second technique, shown in Fig. 3, is the re-
current perceptron. In this network, the inputs to the
network are the outputs at previous time steps (as well
as the current perception), so there is a recurrent map-
ping between the outputs at the current time and the
inputs at the next time.

In both cases, the weight update rule described in
Eq. (3) was used in exactly the same way as before,
and the bias input was still present. For both of these
networks, a value ofn = 1 was used, so that only
one previous time step was considered. Preliminary
investigations showed that this generalised the best
between different environments.

3.2. Sensor signal pre-processing

The sonar readings that are used as inputs to the neu-
ral network are intrinsically very noisy. Typical prob-
lems include cross-talk, where a sonar pulse emitted by
one sensor is received by another and mistaken as its
own, and specular reflection, where a sonar pulse re-
bounds from a surface away from the robot and there-
fore suggests that objects are much further away than
they actually are. This results in a spike in the sonar
readings.

One way to deal with this problem would be to
ignore any sonar response that differs from the pre-
vious one by too much. However, this would be a
problem when the robot went past an open doorway,
when there would, correctly, be a large discontinuity
in the readings. Instead, a median filter can be used.
This filter replaces the value at each timet, with the
median average of the previousk time steps. Since the
door is wide enough to appear on several readings, it
will pass the filter.

In the experiments reported here,k was chosen to
be 5, so that for each sensor input, the median of
the readings for that sensor at timest, t − 1, . . . ,

t −4 replaced the reading at timet. The problem with
using the median filter is that it blurs the edge be-

tween the readings before and after the discontinuity,
delaying the perception of the feature. However, in
the present application this is not a problem, as the
same effect will occur each time the robot passes that
place and so the perception will be the same on each
occasion.

3.3. Network training procedure

One factor that affects neural network performance
is the amount of training that is done. For the type
of behaviour that the model should exhibit, i.e., a
generalised prediction that is not specific to any in-
dividual environment, this is especially important. In
this work, the technique of early stopping [1] was
used to decide how many learning iterations should
be applied. Early stopping monitors the error of the
network, evaluated on an independent validation set,
stopping the training of the network when the pre-
diction error on the validation set stops decreasing.
This suggested that about 20 epochs, or complete runs
through the data, were sufficient with the learning rate
of η = 0.2 that were used. The data that were used
for this purpose were collected from 10 runs through
an environment. Five of the runs were used as train-
ing data and the other five as validation data. Once the
number of epochs required were found, the data were
discarded.

Another important problem is to decide how big the
training set should be, i.e., how many environments
should make up the training set, and how many runs
from each environment should be used. The second
question was not considered to be a problem. A total
of 20 runs were collected in each environment, and
these were split into two sets of 10, with one set for
training and one set for testing. Since the network
should learn a general model of the entire environ-
ment in which the robot will operate, it makes sense
that the network should be trained by using examples
from a large number of the different environments
that the robot can possibly encounter in operation.
For this reason, in the results presented here two
different types of training set were considered. In
the first, data from three different environments in
which data were collected were selected, with dif-
ferent combinations of environments used, while in
the second, data from all of the environments were
used.
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4. Selecting landmarks with the trained network

Once the neural network has been trained, the cur-
rent perceptions can be fed into the model to produce
a prediction of the next perception. This is done by
calculating the output value,o, using Eq. (1). This
output is then used to compute the error,F1, at the
current time, by computing the squared difference be-
tween the predicted output and the actual perception
obtained at timet + 1.

In the landmark selection technique presented here,
the places where the prediction of the general model
is bad — the places where the error is high — are
used as landmarks. The ‘quality criterion’ for suitable
landmarks here is that they are selectedconsistently,
and the hypothesis is that the places where the model
breaks down (resulting in bad predictions) will be the
same on every run. The problem is to detect these
peaks in the error curve that are above the level of
noise in the data. Two ways of doing this are described
below.

4.1. Selection method 1: peak detection

The first method of detecting locations where pre-
diction is bad is to detect peaks in the error curve.
There are a number of ways in which peaks can be
found. The problem is that the error curve is very
noisy, as can be seen in the typical error curve shown
in Fig. 4. Using a perceptron means that the accuracy
of the predictions is never particularly high, so only
peaks that stand out above the residual noise level
should be detected.

The peak detection itself can be done by looking
for zero crossings of the first derivative. This is ap-
proximated by considering points where the sign of

t/
F1 changes, whereF1 is defined as

F1(t) =
∑
j

[oj (t − 1) − ij (t)]
2 (4)

with oj (t − 1) being the output of network unitj at
the previous time step andij (t) the perception of the
equivalent robot sensor at the current time step.

A typical error curve is shown in Fig. 4. It can
be seen that, while there are a number of significant
peaks in the error curve, in addition there are several
very minor peaks within the noise level of the data.

Fig. 4. Typical output error curves over several runs in the same
environment. The way the error occasionally rises above a baseline
can be seen, as can the way the different curves match well at
some points, but less so at others.

These will also be detected by using the peak detec-
tion algorithm, which is undesirable. For this reason,
a number of filtering steps were carried out before the
peak detection. These filters are designed to smooth
the curve, reducing the number of peaks, so that only
those that are significant stand out. The process that is
performed is shown in Fig. 5 and is described below.
More detailed analysis of the effects of the results are
given in [4,9].

• Integration. The current error value,F1(t), was inte-
grated with the previous nine, effectively providing
a mean average of the 10 values.

F2(t) =
9∑

i=0

F1(t − i). (5)

• Median filter. The last nine integrated values were
median filtered in order to remove surface noise
from the curve. This provides a valueF3(t) for each
time t.

• Smoothing. The curve was then smoothed, removing
any remaining small peaks by using a momentum
term from previous time steps (Eq. (6)).

F4(t) = λF3(t) + (1 − λ)F4(t − 1), (6)

where a value ofλ = 0.2 was used. This means
that the filter uses information about the previous
value to smooth out the curve. The drawback of this
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Fig. 5. The filtering mechanism applied before peak detection.

technique is that it also pushes the position of the
peak back, so that the robot does not perceive the
peak in the place where the readings were taken,
but some way further along.

4.2. Selection method 2: Kalman filtering

The filters described in Section 4.1 have the
side-effect of delaying the appearance of peaks in
the data and smearing them across the data. For this
reason, an alternative approach was considered, using
a Kalman filter [5] to maintain a model of the error
curve and look for places where the error did not fit
the model.

The Kalman filter was designed to produce succes-
sively better approximations to the state of a linear
process that is controlled by a difference equation. It
works by maintaining a continuously updated estimate
of the state of the process being measured (here, the
predicted sensory perceptions), including an estimate
of the error in the measurements. By using the filter
to keep a model of the error curve and detecting when
the predictions of the model are beyond error bounds,
outliers to the data at the current time can be detected.
These outliers are suitable candidates for landmarks.
For further details, see [7].

The implementation used in this work is a very
simple Kalman filter. A more complete description
is given in [8]. The Kalman filter maintains an es-
timate of the covariance of the data (in this simple,

one-dimensional case, the variance,v) and uses that to
put error bounds on the predictions, using the Kalman
gain,K. At each time step, a number of equations are
applied. The first, Eq. (7), calculates the Kalman gain
for the new iteration, based on the estimate of the
variance at the previous time step.R is an estimate of
the variance in the measurement error, i.e., the error
that is introduced in the reading of the state. Then, in
Eq. (8), the new estimate of the state of the predicted
sensory perception,y(t), is calculated. This includes
a (noisy) measurement of the predicted sensory per-
ception taken at the current time,x(t). Finally, Eq. (9)
shows how the variance is updated.

K(t) = v(t − 1)

v(t − 1) + R
, (7)

y(t) = K[x(t) − y(t − 1)] + y(t − 1), (8)

v(t) = v(t − 1) − Kv(t − 1). (9)

The value ofR, the variance in the measurement noise,
and the initial value ofv, the variance in the data,
were estimated from the training data that were used to
train the neural network. The Kalman filter was used
to keep a continuously updated estimate of the state of
the error curve. The variancev also suggests bounds
on the error of the prediction. These bounds were used
to define landmarks — a landmark was placed wher-
ever the actual observation differed from the predic-
tion by more than four standard deviations. The value
at which a data point becomes an outlier (here: four
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standard deviations) can be altered to select greater or
fewer landmarks. The four standard deviation values
were chosen through an investigation of the data that
were used for training, with the aim being to select
landmarks approximately every 2 m.

5. Assessing the landmark prediction mechanisms

This work investigates three different neural net-
work architectures (the modified perceptron, the
lagged perceptron and the recurrent perceptron) for
model acquisition, all with and without median fil-
tered inputs, and two methods for selecting landmarks
from the error curves of these networks, peak detec-
tion and the Kalman filter.

In order to be able to evaluate the performance of
all these different methods it is, therefore, necessary to
have some metric so that we can compare them. Two
different assessment methods are introduced in this
section. Both work by comparing pairs of runs in one
environment. Where we have 10 test runs in an envi-
ronment, we compare the 1st run with the 2nd, 3rd and
so on, the 2nd with the 3rd and 4th, etc., so that we ob-
tain 45 pairs for comparison(9+8+7+· · ·+1 = 45).

The first evaluation method investigates how well
two error curves obtained in different runs match, by
calculating the sum-squared difference between the
two curves. The second evaluates the consistency of
the landmark selections, where a landmark is consid-
ered to be consistent if it is selected in the same place
repeatedly on successive runs.

5.1. Assessment by sum-of-squares error

A standard way of comparing two ordered datasets
is to measure the square of the distance between the
two sets at each point, and to sum these values over the
number of elements. This measure increases rapidly
when the distance between two points is large, which
is a useful feature for our purposes because small de-
viations between the error curves on two runs are not
a problem, but a large difference is likely to lead to a
landmark being predicted in one run, but not the other.

Comparing the error curves before the different
landmark selection mechanisms are applied allows
the performance of the different neural network ar-
chitectures to be evaluated. It would be expected that

good performance would mean that the error curves
would be similar every time.

5.2. Assessment by measuring the consistency of
landmark selection

The second measure that is proposed is a way of
evaluating the consistency of a landmark. A landmark
is of high consistency if it is detected in the same
place on each run. This means that landmarks that do
not correspond to reliable features of the environment,
e.g., errors in sensor readings and cross-talk between
sensors, are not consistent landmarks. The following
measurement, termed LandMark Consistency (LMC)
measures this, but allows for some leeway so that a
landmark that has moved by one or two sampling
points is also given some credit. The measurement is
conducted in the following way.

For each test run in a particular environment, a vec-
tor is made. There is one element of the vector for
each sampling point in the environment. Each element
of the vector contains information about whether or
not that place has been selected as a landmark. If it is,
the value 1/

√
2 is used; if the place is adjacent to a

landmark the value12 is used, and otherwise a 0 is put
into the element. This produces a vector with as many
elements as there were samples in the environment, a
typical section of which may look like(

. . . 0, 0,
1

2
,

1√
2
,

1

2
, 0, 0, . . .

)
. (10)

The vectors for two different runs are then multiplied
together using the scalar product, and the average for
each landmark is taken by dividing the result by the
number of landmarks detected in the run. If the number
of landmarks is different in the two runs, the maximum
is taken. This means that if the number of landmarks is
not the same in both runs, the value of LMC is lower.
The values 1/

√
2 and1

2 were chosen so that a perfect
match between a landmark in two different runs gives
a value of 1, and a close miss gives a value of 1/

√
2.

The information about a landmark being present was
spread across three elements of the vector to allow
for error in the measurement of the robot’s odometry,
which could change the position of the landmark. In
the event that two consecutive positions were recog-
nised as landmarks, both landmarks would be marked
as 1/

√
2. In this case, a perfect match would result in
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a value greater than 1 being produced. This did not
happen in any of the testing. The measure can be writ-
ten in the following way:

LMC(a, b) = a · b
max(Na, Nb)

, (11)

whereNa is the number of landmarks in vectora (sim-
ilarly for Nb), and LMC the LandMark Consistency
performance measure.

Using this measure, each comparison between two
runs yields a value between 0 and 1 (assuming that
landmarks never appear in consecutive elements),
where 0 means that no landmarks correlated, and
1 means that all the landmarks matched perfectly.
The two possible different overlaps (of two elements
and one element) produce values of 1/

√
2 and 1

4,
respectively.

6. Results

6.1. Data collection

The mechanism proposed here selects landmarks
based on the robot’s perceptions. The system is en-
tirely passive — it receives data from the sensors, but
does not have any control of the motor actions. For
this reason, although the system is designed to run

Fig. 6. Left: the Bremen semi-autonomous wheelchair,Rolland. Right: the arrangement of the 27 sonars on the wheelchair. @ and∗
denote the sonars that were used for data collection.

on-line while the robot is in operation, using data col-
lected by the robot in a number of environments is
sufficient. On-line operation is demonstrated and dis-
cussed in Section 6.5.

The data used in the experiments described in this
paper were collected on two different robots. The first
was the Bremen wheelchair,Rolland, which is shown
in Fig. 6. The robot is a motorised wheelchair, made
by the German company Meyra, which has been aug-
mented with 27 sonar sensors arranged around the
robot. The positions of the sensors are shown in the
right of Fig. 6. The wheelchair was used to collect
data in seven different environments (A–G) on the 8th
floor of the MZH building at the University of Bre-
men. The layout of this building, and the location of
the various data runs are shown in the left of Fig. 8.

The second robot was the Manchester Nomad 200
robot, FortyTwo, shown in Fig. 7. The robot has 16
sonar sensors arranged in a ring around its circumfer-
ence. This robot was run in a number of environments
on the second floor of the Computer Science depart-
ment at Manchester University. A map of this area is
given in the right of Fig. 8.

The experimental procedure was the same for all ex-
periments, both in Bremen and Manchester, and con-
sisted of the following steps. The robot was placed
at a starting location in the environment. From there
the robot moved forwards, pausing every 20 cm and
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Fig. 7. Left: the Manchester Nomad 200,FortyTwo. Right: the arrangement of the 16 sonars on the robot.∗ denotes the sonars that were
used for data collection.

recording the values of the sonar readings at the current
place. The path of the robot through the environment
was constrained to be a straight line (or as close as
possible) parallel to the wall. The trajectory was con-
trolled by steering with the joystick on the wheelchair,
and using a wall-following behaviour produced by a

Fig. 8. Left: the environments on the 8th floor of the MZH building at Bremen University where data was collected. The letters show where
that data run started, and the dashed lines show the intended robot trajectories. Right: the 2nd floor of the Computer Science Department
at the University of Manchester, where further data were collected.

force-field approach onFortyTwo. Further details are
given in [7] for the wheelchair and [9] forFortyTwo.

The technique of early stopping, described in Sec-
tion 3.3, was used to decide when network training
should be terminated. This was done by obtaining data
from 10 runs through an environment, and using five
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of them as training data and the other five runs as vali-
dation data. Using this method, it was established that
20 training epochs was sufficient; the data of those 10
runs was then discarded.

For the experiments proper, data were obtained from
another 20 data collection runs in each of a number of
environments. Of these 20, 10 were used as training
data and 10 were used as test data. The question of
how many of the environments should be used to gen-
erate the training inputs was investigated, experiment-

Fig. 9. The results of evaluating the sum-of-squares error for the output of each of the different neural networks. The error is shown for
each network, tested in each of environments A–F. The four pictures show the results after training in different sequences of environments
(ABC, ABE, BDE, ABCDEFG, respectively).

ing with taking training data from three environments
and from seven environments, the maximum number
available. However, much data are used, it should be
possible to use the trained network in any environ-
ment, including those that it was trained in.

6.2. Evaluation using the sum-of-squares error

Comparing the performance of the trained neural
networks before the landmark selection algorithm is
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Table 1
The mean sum-squared error and the standard deviation, for the
neural network error curve, averaged over the testing environments,
for the different network training algorithmsa

Algorithm Training
environments

Mean
error

Standard
deviation

Modified perceptron ABC 16.28 10.61
ABE 25.62 16.48
BDE 25.68 16.45
ABCDEFG 25.64 16.47

Recurrent perceptron ABC 0.44 0.28
ABE 0.64 0.36
BDE 0.32 0.32
ABCDEFG 0.45 0.28

Lagged perceptron ABC 0.53 0.36
ABE 1.21 0.72
BDE 1.17 0.75
ABCDEFG 1.13 0.73

a The systems were tested using independent data from training
sets collected in environments A–G.

used can give useful information about how consis-
tently the networks are performing, and which features
are useful for landmark selection. This comparison is
done using the sum-of-squares error. The results given
in this section were generated using the data collected
on the wheelchair at Bremen University.

The different trained networks were all evalu-
ated over the 10 test runs in each environment. The

Fig. 10. The results of evaluating the sum-of-squares error for the different neural networks with median filter pre-processing. By comparing
with Fig. 9 we can see that it does not make a difference for the lagged and recurrent perceptrons. The error is shown for each network,
tested in each of environments A–F. The pictures show the results after training in environments ABC and ABCDEFG, respectively.

Table 2
The mean sum-squared error and the standard deviation, for the
neural network error curve, averaged over the testing environments,
for the different network training algorithms with the inputs median
filtereda

Algorithm Training
environments

Mean Standard
deviation

Modified perceptron ABC 2.69 2.11
ABCDEFG 2.42 2.32

Recurrent perceptron ABC 0.51 0.27
ABCDEFG 0.78 0.66

Lagged perceptron ABC 0.73 0.67
ABCDEFG 0.71 0.77

a The systems were tested using independent data from training
sets collected in environments A–G.

sum-squared-difference between each pair of curves
was then evaluated, leading to 45(9 + 8 + · · · + 1)

values for each network in each environment. These
numbers were averaged to produce an average er-
ror for each network in each environment. Fig. 9
shows the average, best, and worst error values for
each of the network architectures tried. In addition,
Table 1 shows the mean sum-squared error and the
standard deviation, averaged across the different test
environments. These results show that the modified
perceptron generally produces the highest errors. This
makes sense since this network receives less input
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that the other networks. The huge errors appear to be
caused by places where a landmark is predicted in
some runs, but not in others.

By comparing the graph for training in all environ-
ments (ABCDEFG) at the bottom right of Fig. 9 with
the others, it can be seen that the additional training
does not make a significant difference compared to
training in only three. A paired Student’st-test [10]
comparing the sum-squared error after training in
environments BDE and in environments ABCDEFG

Fig. 11. The results of evaluating the consistency of landmarks (LMC) for the peak detection approach. The LMC is shown for each
network, tested in each of environments A–F. The four pictures show the results after training in different sequences of environments
(ABC, ABE, BDE, ABCDEFG, respectively).

confirmed this(p = 0.01). Using thet-test on the
sum-squared error curves for the modified perceptron
and the lagged perceptron suggests that the chance of
them coming from the same distribution is low. The
probability of the results of the lagged and recurrent
perceptrons being from the same distribution is even
lower.

Fig. 10 shows the sum-squared error curves gener-
ated when the inputs to the networks are first median
filtered, and Table 2 gives the mean and standard
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deviation in the measurements. The results are shown
for training in three environments (A–C) and for
training in all seven environments. One can see that
this technique makes a significant difference to the
modified perceptron, but does not really affect the
lagged and the recurrent perceptron models. In fact,
the results look slightly worse. These results are con-
firmed by the pairedt-test, which suggests that the
median filtered versions of the recurrent and lagged
perceptions correlate highly with the non-median fil-
tered versions, while the chance of the results from

Fig. 12. The results of evaluating the consistency of landmarks (LMC) for the Kalman filter approach. The LMC is shown for each network,
tested in each of environments A–F. The four pictures show the results after training in different sequences of environments (ABC, ABE,
BDE, ABCDEFG, respectively).

the modified perceptron and the modified perceptron
using median filtered input coming from the same
distribution is negligible(p = 0.01).

6.3. Evaluating the landmark consistency

Having compared the quality of the neural network
error curves, we now compare the consistency of land-
mark selection, using the LMC performance measure
described in Section 5.2. This was done in a very sim-
ilar way to the previous sum-squared error measure-
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Table 3
The mean LMC and the standard deviation, averaged over the testing environments, for the peak detection and Kalman filter algorithmsa

Algorithm Training
environments

Peak detection
(mean± standard deviation)

Kalman filter
(mean± standard deviation)

Modified perceptron ABC 0.13± 0.04 0.71± 0.13
ABE 0.14± 0.04 0.71± 0.15
BDE 0.17± 0.03 0.71± 0.14
ABCDEFG 0.15± 0.04 0.71± 0.13

Recurrent perceptron ABC 0.15± 0.04 0.59± 0.14
ABE 0.14± 0.05 0.59± 0.15
BDE 0.15± 0.02 0.61± 0.15
ABCDEFG 0.15± 0.04 0.61± 0.14

Lagged perceptron ABC 0.15± 0.02 0.54± 0.05
ABE 0.14± 0.05 0.56± 0.11
BDE 0.15± 0.04 0.56± 0.11
ABCDEFG 0.14± 0.04 0.54± 0.09

a The systems were tested using independent data collected in environments A–G.

ments, using an average of the results for each of the
testing runs.

The results of this are shown in Figs. 11 and 12 for
the three different neural network architectures (mod-
ified perceptron, lagged perceptron and recurrent per-
ceptron) with the peak detection algorithm and the
Kalman filter, respectively. Again, the average case
together with the best and worst cases are shown.
Table 3 shows the mean and standard deviation for
these results. Again, these are averaged across all of
the test environments.

A comparison between the two figures shows very
clearly that the performance of the Kalman filter with
this measure is significantly better than that of the peak
detection. The paired Student’st-test was used to com-
pare the peak detection and Kalman filter algorithms
for each of the neural network architectures. The re-
sults show that the probability of the LMC measures
for the two algorithms coming from the same distribu-
tion, regardless of neural network used, is negligible.

Looking at Fig. 11, which shows the LMC measure
for the peak detection, we see that while the best case
performance is fairly good, in the worst case there
are no matches, and the average is also very low. The
performance of the algorithm does not appear to vary
much between the different network architectures, nor
between the different training sets. A pairedt-test
comparing the different network architectures shows
that the performances of the lagged perceptron and
the modified perceptron are very similar(p = 0.01),

while the performance of the recurrent perceptron is
significantly different (in both cases,p = 0.01).

Fig. 12 shows the results of the LMC evaluation
for the Kalman filter algorithm. It can be seen that the
average landmark consistency is significantly higher
than it is for the peak detection, and the worst case has
risen above 0 in virtually every case. Interestingly, the
Kalman filter technique appears to work best on the
modified perceptron data, which the sum-of-squared
error method of the previous section found to be most
noisy. This combination of modified perceptron and
Kalman filter provides the best landmark consistency
overall, which leads to the question of whether or
not we actually need the neural network, rather than

Table 4
The average number of landmarks chosen in each environment by
the two landmark detection algorithmsa

The environment Average number of landmarks±
standard deviation

Peak detection Kalman filter

A 2.1 ± 0.5 4.5 ± 1.1
B 2.5 ± 1.0 5.5 ± 0.5
C 1.8 ± 0.7 3.4 ± 0.9
D 1.0 ± 0.0 5.0 ± 0.0
E 1.4 ± 0.5 4.9 ± 0.5
F 1.9 ± 0.6 3.4 ± 0.6

a The neural network that was used was the one that performed
best for each of the landmark algorithms, the recurrent perceptron
for the peak detection and the modified perceptron for the Kalman
filter.
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a very simple model that just predicts that the new
perception is the same as the current one. However,
while simpler, this system has a number of disadvan-
tages. For instance, whenever a doorway is predicted
there will be a large number of potential landmarks
detected, as the various sensors detect the doorjamb,
followed by the door itself and then the second
doorjamb.

Fig. 13. The positions of the landmarks (drawn as dots) using the peak detection algorithm on two different environments.

6.4. Number of landmarks

Table 4 shows the average number of landmarks
that are produced by each of the algorithms for dif-
ferent test sets. It can be seen that the Kalman filter
approach finds significantly more landmarks, and that
the standard deviation in the number of landmarks
found is similar for both landmark detection algo-
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rithms, averaged over the different neural network
architectures. The goal of this project is to reduce
the number of landmarks that are needed for reliable
robot navigation, but obviously there still need to be
a usable number of landmarks. As the results given
here show that in general the landmarks are not found
perfectly, having several landmarks in an environment
is a definite advantage, as it increases the probability
of the robot finding some of them.

6.5. On-line operation

In addition to the off-line operation that has been
discussed in previous sections, we also want to demon-
strate that the algorithms can be used on-line. Once
the neural network has been trained, the processing
of the sonar data is a very simple task and does not
require much computational time. It is, therefore,
suitable for on-line use. A version of the algorithms
that detected landmarks for use as the robot explored
was implemented.

Using the peak detection algorithm operating on
FortyTwo, the robot travelled along a number of dif-
ferent corridor environments. Each time the algorithm
selected a landmark, the robot notified the user, who
noted the position of the landmark on a floor plan. The
robot travelled in each environment 12 times. The re-
sults of two of these experiments are shown in Fig. 13.
The picture on the left demonstrates one reliable land-
mark, picked in 10 of the 12 runs, outside room 2.32,
and one that is spread across several sampling loca-
tions (outside room 2.30). The area outside room 2.38
appears as one large landmark.

The results obtained in a second environment,
shown in the right of Fig. 13 are crisper. There are
several stretches of corridor where no landmarks are
detected in any of the runs. These mark places where
the perceptions of the robot are predicted accurately
by the network, so that no landmarks are selected. We
can also see three good clusters of landmarks, where
a landmark was predicted reliably, and only one area
where the prediction was less reliable.

7. Conclusions

7.1. Motivation

For a mobile agent, the ability to navigate is of
fundamental importance. Over short distances, this

capability of goal-oriented motion may be achieved
by path integration through dead reckoning, but very
quickly odometry drift errors render dead reckon-
ing navigation systems too inaccurate for useful
navigation.

The alternative is to use perceptual landmarks for
navigation. Typical landmark-based navigation sys-
tems either log perceptions at regular intervals, or
match perceptions with pre-supplied templates of
‘desirable’ landmarks. The former approach is ineffi-
cient and runs the risk of missing out clearly visible
landmarks that lie between sampling points. The
latter approach runs the risk of being based on land-
marks that are easily visible to a human, but not to a
robot, or (equally undesirable) of missing landmarks
that are easily visible to a robot, but that remain un-
selected because they are not important for human
navigation.

A suitable way to address these problems is to de-
vise an automatic landmark selection mechanism that
allows the robot to select suitable landmarks without
a pre-defined model of those landmarks, or human su-
pervision. This paper has described an algorithm that
can be used to achieve this.

7.2. Approach

In this paper, it is argued that a landmark should be
both clearly detectable and conspicuous, and reliably
and repeatedly detectable. To identify conspicuous
perceptions a robot acquires a model of the usual tem-
poral relationship between consecutive sensory per-
ceptions. In the landmark-selection phase, this model
is then used to predict the next sensory perception,
based on the current sensory perception. Wherever
this prediction fails, i.e., wherever the predicted per-
ception differs markedly from that actually observed,
the location is selected as a landmark on the grounds
that it ‘stands out’ from the usual perceptions com-
monly observed. To assess the consistency of land-
mark selection, we use two performance measures —
sum-squared error and LMC.

7.3. Discussion of results

Three different neural networks were investigated as
ways to acquire the model, and two different methods
of selecting landmarks based on the prediction error



S. Marsland et al. / Robotics and Autonomous Systems 37 (2001) 241–260 259

made by the respective model were tried. Experiments
show that landmark selection is possible and consis-
tent using the proposed method, and that this research
is promising enough to merit further investigations on
an even larger scale. The three models investigated —
modified perceptron, recurrent perceptron and lagged
perceptron — do not differ dramatically in their pre-
diction accuracy.

When selecting landmarks by detecting peaks in
the error curve, the performance of the modified
perceptron is worst, while the recurrent perceptron
and lagged perceptron perform practically identically
(Fig. 9). However, with appropriate pre-processing of
the raw sensor perceptions, the modified perceptron
also performs as well as the other two models (Fig. 10).

If the Kalman filter is used for landmark selection,
there is no discernible difference in performance be-
tween the three models (Fig. 12), but the results are
always better than using peak detection. The Kalman
filter approach has another possible benefit — because
the definition of an ‘outlier’ (currently four standard
deviations) can be modified, the number of landmarks
selected in a particular environment can also be in-
fluenced. This property is useful, because it facilitates
the application of more stringent selection criteria in
‘landmark-rich’ environments, and less stringent cri-
teria in ‘landmark-poor’ environments. However, the
experiments reported here show that a value of four
standard deviations produces useful results in a vari-
ety of environments.

The results also show that in order to train the model
it is not necessary to expose it toall environments that
the robot may encounter during operation (Fig. 9).
This observation confirms initial expectations. The
robot is essentially learning a model of the temporal
relationship between its own sensory perceptions, not
a model of any particular world. Provided that the
training data are rich enough to provide most possible
temporal constellations of sensory perceptions, the
model acquired in one or two training environments
is then applicable toany environment. As the train-
ing data are acquired during several runs through an
environment, the robot will have taken paths that
have slightly different orientations. It can, therefore,
be assumed that these small changes will be built into
the model.

There is a further interesting application of the
method described here. Obviously, the robot acquires

a model of ‘normal’ perceptions against which each
set of sensory perceptions are measured, to detect
those perceptions that ‘stand out’. This is a form
of novelty detection. The algorithm described here
can, therefore, be used to detect abnormalities (with
respect to the robot’s sensory perceptions) in the
environment.

7.4. Future work

To make predictions, the robot has to move in
straight-line segments between consecutive percep-
tions. It is conceivable that the approach can be
expanded to arbitrary motions between perceptions.
Furthermore, for the experiments described here, the
robots have sampled perceptual data in regular inter-
vals. Clearly, the proposed algorithm is intended to
select landmarks fromcontinuousobservations of the
environment and although a robot will always only be
able to sample the environment in discrete time steps,
it is no problem to increase the sampling rate beyond
that used in the experiments discussed in this paper.

Finally, how useful the selected landmarks are for
actual navigation has not yet been investigated. The
purpose of this research was to investigate theconsis-
tencyof landmark selection. The construction of an
entire mobile robot navigation system, incorporating
the landmark selection algorithm presented here, is
subject to ongoing research.
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