Environment-Specific Novelty Detection

Stephen Marsland*
*Department of Computer Science
University of Manchester
Oxford Road
Manchester M13 9PL
UK

{smarsland, jls}@cs.man.ac.uk

Abstract

Novelty detection, recognising features that dif-
fer from those that are normally seen, is a poten-
tially useful ability for a mobile robot. Once a
robot can detect those features that are novel the
amount of learning that has to be done can be
reduced (as only new things need to be learnt),
the attention of the robot can be focused onto
the new features, and the robot can be used as
an inspection agent.

However, features that are novel in one place
could be completely normal elsewhere — for exam-
ple, tables and chairs are usually seen in offices,
but very rarely seen in corridors. This paper sug-
gests a method by which a set of novelty filters
can be trained for different environments and the
correct filter autonomously selected for the envi-
ronment that the robot is currently travelling in.
The method can also extend itself, so that further
environments that are seen by the robot can be
added without any retraining.

1 Introduction

Recognising stimuli that differ from the usual inputs in
some way is a very useful ability for both natural and
artificial learning agents. This capability is known as
novelty detection. For animals it can be a crucial sur-
vival instinct, enabling them to avoid potential preda-
tors, while for robots and other learning agents it can
help to select particular inputs of interest, reducing the
computational cost of dealing with the world.

Neural networks that can detect novelty have been
used to highlight potential problems in fields such as
medical diagnosis and machine fault detection. In these
cases there is a lot of data where the result of the test is
negative (no disease diagnosed or no machine fault), but
relatively few of the important class that the network
should detect. This means that normal neural network
training is not suitable, as many instances of the disease
may be missed. The novelty detection approach oper-

Ulrich Nehmzow**

Jonathan Shapiro*
“*Department of Computer Science
The University of Essex
Wivenhoe Park
Colchester CO4 35Q

UK

udfn@essex.ac.uk

ates by having the neural network learn a model of the
‘normal’ data that does not show any examples of the
class that should be detected, and having the novelty
detector highlight inputs that do not fit into the pattern
of the training set.

There are two important properties that the training
set for the novelty detector should have. It should con-
tain no examples of the inputs that should be detected,
otherwise this will be learnt and so these inputs will not
be found to be novel, and it should contain examples of
every possible kind of ‘normal’ inputs, otherwise these
inputs will be found to be novel.

In previous work (Marsland et al., 2000) the novelty
detection approach has been used to enable a mobile
robot to be used as an inspection agent. A robot
equipped with a novelty filter can learn a model of that
environment, perceiving its environment through what-
ever sensors it is equipped with, and then explore other
environments, highlighting features that were not found
in the original training environment.

However, there are a few problems with this basic ap-
proach. When the robot is training there is no guaran-
tee that the training set of inputs will satisfy the two
required properties of the input set. This problem is ex-
acerbated by the fact that most novelty detection algo-
rithms are not capable of learning on-line, so that further
data cannot be added at a later date. It would also be
nice if the filters could quantify the amount of novelty, so
that inputs that are only fairly novel — a few similar in-
puts have been seen during training, but not that many —
can be marked, but with less emphasis than completely
novel features. Finally, in some cases features that are
perfectly normal in one part of an environment should
be found to be novel in other places. One example of
this is that when exploring an office environment, chairs
are perfectly usual within offices, but rarely found in
corridors.

The novelty filter that is described in this paper is a
proposed solution to these problems. The filter is based
on a neural network that is capable of growing during
use, so that it can be used for continuous learning. A

part of the filter is a set of habituating synapses, so that
the filter can quantify the amount of novelty in the cur-
rent input with respect to the inputs that were seen dur-
ing training. This also means that the filter has some
robustness to incorrect information in the training set —
if there are a small number of inputs in the training set
that should not be there, they will still be found to be
novel after training because they have been seen only in-
frequently. Finally, an extension to the algorithm is de-
scribed that allows multiple novelty filters to be trained
in different environments and the correct filter for the
current inputs to be selected from those available. If
none of the filters is suitable then a new filter can be
created and trained, meaning that the system is capable
of boot-strapping during the training phase.

2 Related Work

There have been a number of novelty detection tech-
niques proposed in the literature. A more com-
plete review is given in (Marsland, 2001). The first
was Kohonen’s Novelty Filter (Kohonen and Oja, 1976,
Kohonen, 1993). This is an autoencoder network that
is trained using back-propagation of error, so that the
network extracts the principal components of the input.
The network is trained on a dataset and, after training,
any input presented to the network produces one of the
learnt outputs, and the bitwise difference between input
and output highlights novel components of the input.

(Ypma and Duin, 1997) proposed a novelty detection
mechanism based on the self-organising map. They de-
scribe a number of measures by which the goodness of
a SOM with respect to a particular dataset can be eval-
uated. In particular, they measure the average quanti-
sation error over the dataset, and also measure how far
away from each other map units that respond to similar
inputs are. By training the SOM on data that are known
to be normal, and then evaluating the measures on a new
dataset, it can be seen whether or not the new dataset
fits the same distribution as the data that generated the
SOM.

Another approach using the SOM is to calculate
the distance of the winning neuron from neighbour-
hoods that fired when training data known to be nor-
mal was introduced, and counting as novel those in-
puts where the distance is beyond a certain threshold.
This method was used by (Taylor and MacIntyre, 1998)
to detect faults when monitoring machines. The net-
work was trained on data taken from machines operat-
ing normally, and data deviating from this pattern was
taken as novel. This is a common technique when faced
with a problem for which there is very little data in
one class, relative to others. Examples include machine
breakdowns (Nairac et al., 1999, Worden et al., 2000)
and mammogram scans (Tarassenko et al., 1995). Of-
ten, supervised techniques such as Gaussian Mixture

Models or Parzen Windows are used, and the prob-
lem reduces to attempting to recognise when inputs
do not belong to the distribution which generates the
normal data (Bishop, 1994). This is the problem
of kernel density estimation. The method proposed
by (Taylor and Maclntyre, 1998) relies very strongly on
the choice of threshold and on the properties of the data
presented to the network, which must form strictly seg-
mented neighbourhood clusters without much spread.

Growing networks such as Adaptive Resonance The-
ory (ART) (Carpenter and Grossberg, 1988) can be used
to define as novel those things that have never been seen
before, by using a new, uncommitted node to represent
them.

3 The On-line Novelty Filter
3.1 Habituation

Habituation is a reversible reduction in the behavioural
response to a stimulus when it is presented repeatedly.
It enables the animal to ignore stimuli that are seen
often, so that it can concentrate on other, potentially
more important, stimuli. Habituation is thought to
be one of the fundamental mechanisms of adaptive
behaviour, and can be seen in animals as diverse
as the sea slug Aplysia (Bailey and Chen, 1983),
cats (Thompson and Spencer, 1966), toads
(Wang and Arbib, 1992) and humans
(O’Keefe and Nadel, 1978). In contrast to other
forms of behavioural decrement, such as fatigue, the
response can be restored to its original level without the
organism resting by introducing a change in the stimu-
lus. An overview of the effects and causes of habituation
can be found in (Thompson and Spencer, 1966).

There have been several attempts to model the effects
of habituation computationally and to explain the in-
teraction between habituation and dishabituation, the
process whereby an habituated response returns to its
original strength. (Groves and Thompson, 1970) sug-
gested that dishabituation was an instance of sensitisa-
tion and therefore an independent construct that inter-
acts with habituation to produce a net response. Their
model was used by (Stanley, 1976) to simulate habitua-
tion data from experiments of the spinal cord of a cat.
He described the decrease of synaptic efficacy y by the
first-order differential equation

O _ o fyo —y(e) - 500, (1)

where yo is the initial value of y, S(t) is the external
stimulation and 7 is a time constant governing the rate
of habituation, while a controls the recovery rate. A
graph showing the effects of this equation is given on
the left of figure 1. The values of the variables given in
figure 1 are the ones that were used.

o o

S

o o

Synaptic Efficacy
o

o

© o o

100 120 140 160

0 20 40 60 _ 80 ;
Number of Presentations

Figure 1:

3.2 Using Habituation in a Novelty Filter

The effect of habituation is to filter out those percep-
tions that have been seen before, meaning that only novel
stimuli are noticed. This is exactly the behaviour that
a novelty filter should demonstrate. Habituation allows
novelty to be defined more specifically as those things
which have not been seen in the current context. The
novelty filter described here operates by learning an on-
line, adaptive representation of the current environment,
testing whether the neural network has already habitu-
ated to each new perception. Habituation also allows
the novelty of a stimulus to be evaluated, so that the
novelty reduces with perception over time.

Before it is known whether a particular input is novel,
it needs to be recognised. A schematic of the novelty fil-
ter that is described in this paper is shown on the right
of figure 1. The filter uses a clustering network to iden-
tify the current perception. Each node of the clustering
network is attached to an output neuron by a synapse
that habituates with use (controlled by equation 1). This
means that the first time a node fires the output is strong
(the current input is novel), but as that node of the net-
work fires frequently its synapse habituates and so the
input is found to be normal clustering network classifies
the input, selecting the node whose weights best match
the current input vector. The output of this winning
node is propagated along the habituable synapse, which
modifies the strength of the signal. If that node has not
fired before, or fired only rarely, then the signal is passed
on without attenuation, and the activity at the output
neuron is high. If that node has fired often, meaning
that the perception is not novel, then the efficacy of the
synapse is low and so the output neuron receives a very
weak signal. As well as the synapse connecting the win-
ning node to the output habituating, the synapses of
nodes that are neighbours of the winning node in the
map space also habituate, although to a lesser extent.

This abstract representation of the novelty filter
does not require that any particular clustering net-
work be used. The network needs to cluster similar

Output Neuron

/ W \Wg \Why

rararms

Left: The dynamics of habituation using equation 1 (o = 1.05, yo = 1). Right: A diagram of the on-line novelty filter.

inputs together, be able to deal with unlabelled data
and should be capable of operating on-line. Previous
work (Marsland et al., 2000) has shown that networks
such as the Self-Organising Map are ideal except that
they are not capable of on-line operation. A new neural
network was therefore devised that can add new nodes
according to the data that is presented, so that it can
be used on-line. This network, termed the Grow When
Required (GWR) network, is the subject of the next sec-
tion.

3.8 The Grow When Required (GWR)
Algorithm

This section first describes the GWR network and then
gives details of the algorithm (section 3.3.1). The net-
work decides when to add nodes according to the activity
of the best-matching node. If a node matches an input
well, then the activity of that node is close to 1. There
are two reasons why the activity of the node could be
low — either the node is still being positioned by the
learning rule, having been added recently, or there is
a mismatch, and that node is already representing an-
other feature. If the node is a new one then it will not
have fired often, and so the habituation counter that is
attached to the node for the novelty detection part of
the filter will be high. In that case the node should be
trained to be a better match to the input.

So, if the habituation value is close to 0, then the node
should be well placed in the map field and hence the ac-
tivity should be high. If this is not the case then we
need to introduce an extra node to match the current
input better. This node is added between the winning
node, which caused the problem, and the input, with the
weights of the new node being initialised to be the mean
average of the weights for the best matching node and
the input. If the node is well placed then a neighbour-
hood connection is put between the winning node and
the second best matching node (if it does not already
exist), and the weight vectors of all nodes in the neigh-
bourhood of the winning node (that is, nodes that have

a direct neighbourhood connection to the winning node)
are updated.

Thus, two thresholds are needed to decide whether or
not to insert a node on the current iteration: a minimum
activity, ar, below which the current node is not consid-
ered to be a sufficiently good match, and a maximum
habituation value, above which the current node is not
considered to have learnt sufficiently well. In practice,
the value of the habituation threshold does not seem to
matter very much, and is usually set to 5 presentations.
The value of ar does make a considerable difference. If
the value is set very close to 1 then more nodes will be
produced to make a better match with the inputs.

3.8.1 The Algorithm

Let A be the set of map nodes, and C' C A x A be the
set of connections between nodes in the map field. Let
the input distribution be p(€), for inputs €. Define w,.
as the weight vector of node c.

3.5.2 Initialisation

The network is initialised using:

e Create two nodes for the set A,

A ={c1,c2} (2)

with their weights we,, we, initialised randomly
from p(€)

e Define C, the connection set, to be the empty set,

C=0 (3)
e Let y(0) =yo

3.3.3 Iteration

Each iteration of the algorithm follows the following
steps:

1. Generate a data sample £ for input to the network

2. For each node in the network, calculate the distance
from the input ||€ — w;]||

3. Select the best matching node, and the second best,
that is, the nodes s,t € A such that

s = argmin € - w| @
and

t =arg min —w|,)

5 min €~ w| %)

where w, is the weight vector of node c.

4. If there is not a connection between s and t, create
it with age 0
C=CU{(s,t)}, (6)

otherwise, set the age of the connection to 0.

5. Calculate the activity a of the best matching unit (s),
a = exp(—[[§ — wsl|) (7)

6. If we should add a node, i.e., if activity as < activ-
ity threshold ar and habituation ys(t) < habituation
threshold At

e Add the new node, r
A=AU{r}. (8)

e Create the new weight vector, setting the
weights to be the average of the weights for the
best matching node and the input vector

w, = (ws +§)/2. 9)

e Insert edges between r and s and between
r and ¢

C=CuU{(rs),(rt)},

e Remove the link between s and ¢
C=C/{(s,)} (11)

7. Adapt the positions of the winning node and its
neighbours, 4, that is the nodes to which it is con-

nected.
Awg = 6 (€& —w;) (12)

where the learning rates are such that 0 < ¢, < €, <
1

(10)

8. Age edges with an end at s.

age(s;) = agesq + 1. (14)

9. Habituate the winning node and its neighbours using

dyl‘ (t)
dt

where y;(t) is the strength of synapse i, yo is the
initial strength, and S(¢) is the stimulus strength,
usually 1. « and 7 are constants controlling the be-
haviour of the curve. The winner habituates faster
than its neighbours. Values of the parameters used
in the experiments are o = 1.05, yg = 1 and 7 = 3.33
for the winning node, 7 = 10.0 for the neighbours.

T = alyo —vi(t)] — S(t), (15)

10. Check if there are any nodes or edges to delete, i.e.,
if there are any nodes that no longer have any neigh-
bours, or edges whose age is greater than some con-
stant amax-

3.4 Selecting Different Novelty Filters

The second part of the system that is described in this
paper is the part that enables the robot to choose which,
if any, of a set of previously trained filters should be
used, or whether a new filter should be trained. As the
robot travels through an environment it monitors how
well each perception fits into the model of each of the
novelty filters that has been trained. At the end of a
run through that environment the robots makes a choice
about which environment it is in. At this stage a set
of different behaviours could be used to decide how the
robot should react.

A vector of ‘familiarity indices’ is used to keep a record
of how familiar each of the different trained novelty filters
finds the current perceptions of the robot. This famil-
iarity vector (with one element for each of the m trained
novelty filters) is updated after each perception has been
presented to all of the novelty filters, each of which has
produced a novelty value n.

All of the elements of the familiarity vector are ini-
tialised to be 1/m. For each input to the novelty filters
the following steps are taken:

e compute the novelty value n; (i.e., the output of the
novelty filter) for the current filter,

e update the element of the familiarity vector f for that
network:

fi :fi—CXTLi, (16)
where c is a scaling constant

e update all the other elements so that the sum of the
elements remains normalised:

cXn,; .
fi=1f+ —— 1
J J"‘n._lvVJ?éZ (17)

T

repeat for all the other novelty filters

In the experiments reported in the next section a value
of ¢ = 0.1 was used. Investigations showed that the value
was not critical, although obviously it does affect how
quickly the familiarity vector responds to inputs that
the filters find to be novel.

Once the robot had travelled through the environ-
ment a decision was made about which environment it
was. If one element of the familiarity index was signifi-
cantly larger than the others (i.e., one familiarity index
was above 0.7), then the corresponding environment was
taken as the one being explored. However, the algorithm
also stores the accumulated novelty of each novelty filter
as the robot explores it. If the best-matching novelty
filter has very high accumulated novelty then it could
be that it is not actually a good match to the inputs,

1

16 sonar
sensors

-

Turret

Base <

Figure 2: The Nomad 200 robot used in the experiments.

- 16 infrared
Sensors

merely a better match than the others. In this case a
new novelty filter should be made and trained.

In the case where no environment is obviously more
familiar than any of the others it is assumed that this
is because the robot has just explored a novel environ-
ment. The accumulated novelty should also be high in
this case. If the environment was novel then it would
be suitable to generate a new filter and further explore
the environment, training the filter. In this way the al-
gorithm could extend itself as required.

4 Experimental Results

4.1 Training a Novelty Filter

This section describes how a novelty filter can be trained.
The robot (shown in figure 2) explores two small envi-
ronments, 10m sections of corridor. In each case the
robot used a pre-trained wall-following behaviour based
on infra-red sensors to travel through an environment,
taking sonar scans as it travelled and produced an input
vector by taking the average of these readings over the
last 10 cm of travel. This input vector was then presented
to the novelty filter, which categorised it and produced
an output of how novel that perception was according
to the strength of the habituation synapse for the best-
matching node.

In the first experiment the robot, initially equipped
with an uninitialised novelty filter, travelled along a 10 m
section of corridor. Figure 3 shows the filter learning
about this environment (labelled environment A) during
three learning runs. Spikes show the amount of novelty
found in each input, with high spikes denoting novel fea-
tures and very small spikes completely normal inputs.
Initially the filter finds all perceptions novel, shown by
the burst of spikes. However, it rapidly learns to recog-
nise the wall that is seen on either side, whereupon the
only novelties are around the area of the doorway on the
right-hand side of the robot. By the second run these
have mostly been learnt, and in the third run nothing is
found to be novel.

This trained network was then used in a modified ver-
sion of the environment, environment A* in figure 4. The

Environment A

Figure 3: The novelty filter learning about environment A with
no initial training. Spikes show the output of the novelty filter,
with a high spike denoting a novel input and a low spike a normal
input. During the first run many features are found to be novel,
but these are learnt about and are not found novel by the third
run.

Environment A* .

Figure 4: The novelty filter learning about environment A* after
training in environment A. It can be seen that the only place
where novelty is found (i.e., there are high spikes in the graph)
on the first run is the area around the now-open doorway. In the
second run, the spikes are caused by a crack in the wall, which is
only detected occasionally, but that, when detected, dominates
the sonar readings.

door on the right of the robot was opened, which meant
that the sonar signals reflected off a wooden barricade
amount 1.5m further away. A cardboard box was placed
in the doorway so that the infra-red sensors that con-
trolled the wall-following motion could see it, but the
sonar sensors could not. Figure 4 shows the results of
this experiment. Only the area around the now-open
door is found to be novel, and this is learnt after the
second run through the environment.

4.2 Selecting a Suitable Filter

Using the technique described in the previous section
four separate GWR-based novelty filters were trained.
The first was trained in environment A, a schematic of
which is shown at the top of figure 3, the second in en-
vironment A* (figure 4), and the third in a very similar
area of corridor, labelled environment B. Finally, a dif-

ferent type of corridor in another part of the building
was used as environment C. This corridor is wider and is
built of different materials and is wider than the others.
The appearance of the three different corridors used can
be seen in figure 5.

The training in each environment was as described in
section 4.1. The robot made three training runs in each
of the environments, sampling the environment with its
sonar sensors and presenting an average sonar reading
over the last 10 cm of travel every 10 cm. Each network
was initially completely untrained, and after the three
training runs the filter had stopped finding any features
in the environment novel. An insertion threshold of ap =
0.9 was used. Since four novelty filters were trained, one
in each of the environments A, A*, B and C, so the
elements of the familiarity vector were initialised to i.

After training each of these filters the robot was ex-
posed to an unknown environment. Five different envi-
ronments were used for this purpose, each of the four
used for training (A, A*, B and C) and a control envi-
ronment that was completely different. This novel envi-
ronment was part of the robot laboratory, which is wider
than the corridors and has obstacles placed in the path
of the robot, so that the perceptions were very different
to those in the corridor environments.

Once the robot was placed in an environment it ex-
plored that environment using the wall-following be-
haviour to follow the wall to the right of the robot. As
the robot travelled in this test environment the algo-
rithm had to decide which environment the robot was
exploring — one of the known environments or the con-
trol environment. As in the training, the robot moved
10 cm taking sonar scans as it moved, and after moving
computed the average sonar scan over the 10 cm. It pre-
sented this average sonar scan as input to each of the
novelty filters, which produced a novelty value n for the
perception. The algorithm described in section 3.4 was
then used to update the familiarity indices of each of the
environments and the robot moved on another 10 cm.

4.2.1

Five testing runs were performed in each of the five en-
vironments, the environments A, A* B and C and the
control environment. Table 1 shows the results of the ex-
periments averaged over five testing runs. It can be seen
that in each case the algorithm picks the correct network
(shown in bold) and that the familiarity indices for the
other environments are all small. Where the algorithm is
tested in the control environment, which does not have
a trained filter, all four of the filters have similar scores
of about %.

Figure 6 shows a sample output when the algorithm is
run in each of the environments. It can be seen that for
some of the environments it takes a long time before any
one of the networks is clearly the winner, while for others

Testing the Complete System

Figure 5: Photographs of environments A (left), B (centre) and C (right). Environments A and B are similar sections of corridor,

while environment C is in a different part of the building and has brick walls instead of breezeblock.

Training Testing Environment
Environment A A* B C Control
A 0.809 + 0.055 | 0.042 £ 0.031 | 0.115 £ 0.038 | 0.026 £ 0.029 | 0.255 £ 0.067
A* 0.157 £ 0.150 | 0.723 + 0.191 | 0.014 £ 0.0128 | 0.106 £+ 0.103 | 0.242 4+ 0.073
B 0.012 £ 0.009 | 0.073 £ 0.078 | 0.899 £+ 0.093 | 0.016 £+ 0.032 | 0.245 £+ 0.045
C 0.068 £ 0.060 | 0.102 £ 0.082 | 0.034 + 0.024 | 0.796 £ 0.099 | 0.263 £+ 0.102

Table 1: The familiarity index for each of the environments
table entry gives mean + standard deviation.

the winner is apparent very quickly. It is particularly
interesting that when the robot explores environment
C, which is very different to the others, the filter for
environment C is initially very low in familiarity, and
only late in the run does the correct hypothesis overtake
the others. This is probably because the start of this
environment contains a door very similar to those seen
in the other environments and only later is the different
brick, etc. apparent.

In environment B, initially all of environments A, A*
and B (which do look similar) are equally likely, and it
takes quite a while to settle for environment B. It does
this towards the end, where the perceptions of the boxes
on the wall appear. These boxes do not appear in any of
the other environments. To differentiate between envi-
ronments A and A*, the algorithm has to wait until the
perceptions of the doorway that can be open or closed
are seen. However, for the novel environment, none of
the possible environments were ever seen to be similar
to the perceptions. This is very encouraging.

As a further test of the system, a different type of
testing was performed. Here, one of the four environ-

for each of the trained networks, averaged over five runs. Each

ments was missed out of the bank of trained filters, so
that there were only three trained filters. The results of
this are shown for environments B and C in figure 7. It
can be seen that in the case where the robot explores
environment B, environments A and C are considered
equally likely, but environment A*, which contains the
open door, is unlikely. In this kind of case the algorithm
also looks at the total amount of novelty that has been
found in the environment. This is computed by sum-
ming the novelty found at each timestep. For testing in
environment B this was at least 14.4, as compared to
under 5.2 for non-novel environments.

In the case where environment C is explored, environ-
ment A is initially favoured, presumably because it also
has a door on the right-hand side of the robot, as does
environment C, but environment B becomes more likely
as the run progresses. The minimum amount of novelty
found during testing in environment C in any of the five
runs was 19.8. In both of these cases it is very unclear
which of the environments was more likely, and the total
novelty found during the testing run would be sufficiently
high to suggest that this was a novel environment and

0. Exploring Environment A 0.] Exploring Environment A*
Environment A Environment A
— Environment A* — Environment A*
0.1} - Environment B 0% - EnvironmentB | ~ ———
— Environment C — Environment C |
0. 0.
X X
Q [J]
2o. 2o.
2 2
0. 0.
%0. %0.
L L
0. 0.
0. g 0.
20 ! 0 80 10 100

40 60 40 60
Number of Perceptions Number of Perceptions

(=]
A

0. Exploring Environment B 1 Exploring Environment C
Environment A Environment A
0.8 — Environment A* 0.9 — Environment A*
*9--- Environment B \,\/' 1| -~ Environment B
0= Environment C 0. ronment C
X ! 0.1
S0g g
£ £0.
0.5 2
N 50
Eo EO'
b 0.
0.
0.1

o

80 100

20 40 60 . 100 20 40 60
Number of Perceptions Number of Perceptions
1.0 Exploring Novel Environment
Environment A
0.6 — Environment A*
‘1 - Environment B
08— Environment C
3 0F
ke}
£06
2
505
E04
i
0.3
0.2
0.1
20 ! ‘ 80 100

40 60
Number of Perceptions

Figure 6: Plots of the familiarity indices for the trained novelty filters during sample runs in each of the five test environments.
The xz—axis shows the number of perceptions of the environment. Top left: Environment A. Top right: Environment A*. Middle
left: Environment B. Middle right: Environment C. Bottom: Novel (control) environment. In all cases the correct environment is
selected.

] Exploring Environment B
Environment A

— Environment A*

--- Environment C

Familiarity Index
e 0 0 o0 o o o o o

80 10¢

40 60 |
Number of Perceptions

Figure 7:

0. . Exploring Environment C
Environment A
08 — Environment A*
9| - - Environment B
0.
b
go. -
£ !
Z‘O. o 7!
5 :
0 -
S | 0 -
L0.3 !

Left: Familiarity indices for the novelty filters trained in A, A* and C, for tests in environment B. Right: Testing on

environment C after training on A, A* and B. All of the trained filters are found to be unlikely in both cases.

so a new filter should be trained.

5 Discussion and Conclusions

The novelty filter that is described in this paper is ca-
pable of learning on-line about a series of environments
as the robot travels through them. This means that the
robot can be used as an inspection agent, exploring a set
of environments that are known to be normal (that is, to
contain no unusual features or features that are known
to be possible problems). Once this training set has been
learned, the robot can be used to inspect further envi-
ronments, highlighting any inputs that do not fit into the
training set, and so are potential faults. One benefit of
the novelty filter proposed here is that it learns on-line,
which means that if any important feature is missing
from the training set it can be added in at a later date
without any requirement for retraining on the rest of the
data.

The extension to the novelty filter system that has
been described here means that a bank of novelty filters
can be trained for the different places that the robot
can visit. In this way the fact that each of these dif-
ferent places has different properties, and that different
things may be found to be novel in each is encoded. The
robot can then decide autonomously which of its bank
of filters should be used to evaluate the current inputs,
or whether none of them is sufficient and a new filter
should be trained. It has been demonstrated that in the
experiments presented here the correct filter was selected
100% of the time.

In this paper the only inputs that have been used
have been the sonar sensors of the robot. It would
be necessary to use more sensors, especially cameras,
in order to enable the robot to act properly as an in-
spection agent in any sort of real world environment.

While this has been considered for simple camera im-
ages (Marsland et al., 2001), it has not been covered for
more complex images, nor has the question of sensor fu-
sion yet been addressed.

Acknowledgements

This work was supported by an EPSRC studentship.

References

Bailey, C. and Chen, M. (1983). Morphological basis of
long-term habituation and sensitization in aplysia.
Science, 220:91-93.

Bishop, C. M. (1994). Novelty detection and neural
network validation. IEFE Proceedings on Vision,
Image and Signal Processing, 141(4):217-222.

Carpenter, G. A. and Grossberg, S. (1988). The ART
of adaptive pattern recognition by a self-organising
neural network. IEEE Computer, 21:77 — 88.

Groves, P. and Thompson, R. (1970). Habitua-
tion: A dual-process theory. Psychological Review,
77(5):419-450.

Kohonen, T. (1993). Self-Organization and Associative
Memory, 3rd ed. Springer, Berlin.

Kohonen, T. and Oja, E. (1976). Fast adaptive forma-
tion of orthogonalizing filters and associative mem-
ory in recurrent networks of neuron-like elements.
Biological Cybernetics, 25:85-95.

Marsland, S. (2001). On-line Novelty Detection
Through Self-Organisation, With Application to In-
spection Robotics. PhD thesis, Department of Com-
puter Science, University of Manchester.

Marsland, S., Nehmzow, U., and Shapiro, J. (2000).
Novelty detection on a mobile robot using habitu-
ation. In From Animals to Animats: Proceedings
of the 6th International Conference on Simulation
of Adaptive Behaviour (SAB’00), pages 189 — 198.
MIT Press.

Marsland, S., Nehmzow, U., and Shapiro, J. (2001).
Vision-based environmental novelty detection on
a mobile robot. In Proceedings of Interna-

tional Conference on Neural Information Processing
(ICONIP01).

Nairac, A., Townsend, N., Carr, R., King, S., Cow-
ley, P., and Tarassenko, L. (1999). A system for
the analysis of jet system vibration data. Integrated
Computer-Aided Engineering, 6(1):53 — 65.

O’Keefe, J. and Nadel, L. (1978). The Hippocampus as
a Cognitive Map. Oxford University Press, Oxford,
England.

Stanley, J. C. (1976). Computer simulation of a model
of habituation. Nature, 261:146-148.

Tarassenko, L., Hayton, P., Cerneaz, N., and Brady, M.
(1995). Novelty detection for the identification of
masses in mammograms. In Proceedings of the jth
IEE International Conference on Artificial Neural
Networks (ICANN’95), pages 442 — 447.

Taylor, O. and MacIntyre, J. (1998). Adaptive local
fusion systems for novelty detection and diagnos-
tics in condition monitoring. In SPIE International
Symposium on Aerospace/Defense Sensing.

Thompson, R. and Spencer, W. (1966). Habitua-
tion: A model phenomenon for the study of neu-
ronal substrates of behaviour. Psychological Review,
73(1):16-43.

Wang, D. and Arbib, M. A. (1992). Modelling the
dishabituation hierarchy: The role of the primordial
hippocampus. Biological Cybernetics, 76:535-544.

Worden, K., Pierce, S., Manson, G., Philp, W,
Staszewski, W., and Culshaw, B. (2000). Detection
of defects in composite plates using lamp waves and

novelty detection. International Journal of Systems
Science, 31(11):1397 — 1409.

Ypma, A. and Duin, R. P. (1997). Novelty detection us-
ing self-organizing maps. In Proceedings of Interna-
tional Conference on Neural Information Processing
and Intelligent Information Systems (ICONIP’97),
pages 1322 — 1325.

