Advanced Processor Technologies Home
APT Advanced Processor Technologies Research Group

Towards Real-World Neurorobotics: Integrated Neuromorphic Visual Attention

Adams, S.V.; Rast, A.D.; Patterson, C.; Galluppi, F.; Brohan, K.; Pérez-Carrasco, J.-A.;
Wennekers, T.; Furber, S.; Cangelosi, A.

Abstract

Neuromorphic hardware and cognitive robots seem like an obvious fit, yet progress to date has been frustrated by a lack of tangible progress in achieving useful real-world behaviour. System limitations: the simple and usually proprietary nature of neuromorphic and robotic platforms, have often been the fundamental barrier. Here we present an integration of a mature "neuromimetic" chip, SpiNNaker, with the humanoid iCub robot using a direct AER - address-event representation - interface that overcomes the need for complex proprietary protocols by sending information as UDP-encoded spikes over an Ethernet link. Using an existing neural model devised for visual object selection, we enable the robot to perform a real-world task: fixating attention upon a selected stimulus. Results demonstrate the effectiveness of interface and model in being able to control the robot towards stimulus-specific object selection. Using SpiNNaker as an embeddable neuromorphic device illustrates the importance of two design features in a prospective neurorobot: universal configurability that allows the chip to be conformed to the requirements of the robot rather than the other way around, and standard interfaces that eliminate difficult low-level issues of connectors, cabling, signal voltages, and protocols. While this study is only a building block towards that goal, the iCub-SpiNNaker system demonstrates a path towards meaningful behaviour in robots controlled by neural network chips.

DOI-Link