Advanced Processor Technologies Home
APT Advanced Processor Technologies Research Group

Optimizing Indirect Branches in Dynamic Binary Translators

Amanieu D'antras, Cosmin Gorgovan, Jim Garside, and Mikel Luján

Abstract

Dynamic binary translation is a technology for transparently translating and modifying a program at the machine code level as it is running. A significant factor in the performance of a dynamic binary translator is its handling of indirect branches. Unlike direct branches, which have a known target at translation time, an indirect branch requires translating a source program counter address to a translated program counter address every time the branch is executed. This translation can impose a serious runtime penalty if it is not handled efficiently. MAMBO-X64, a dynamic binary translator that translates 32-bit ARM (AArch32) code to 64-bit ARM (AArch64) code, uses three novel techniques to improve the performance of indirect branch translation. Together, these techniques allow MAMBO-X64 to achieve a very low performance overhead of only 10% on average compared to native execution of 32-bit programs. Hardware-assisted function returns use a software return address stack to predict the targets of function returns, making use of several novel optimizations while also exploiting hardware return address prediction. This technique has a significant impact on most benchmarks, reducing binary translation overhead compared to native execution by 40% on average and by 90% on some benchmarks. Branch table inference, an algorithm for detecting and translating branch tables, can reduce the overhead of translated code by up to 40% on some SPEC CPU2006 benchmarks. The remaining indirect branches are handled using a fast atomic hash table, which is optimized to work with multiple threads. This last technique translates indirect branches using a single shared hash table while avoiding expensive synchronization in performance-critical lookup code. This allows the performance to be on par with thread-private hash tables while having superior memory scalability.

DOI-Link