Advanced Processor Technologies Home
APT Advanced Processor Technologies Research Group

De-Elastisation: From Asynchronous Dataflows to Synchronous Circuits

Mahdi Jelodari Mamaghani, Jim Garside, Doug Edwards

Abstract

Whilst asynchronous VLSI programming provides a flexible abstract formalism to realise concurrent systems, the resulting performance is still an issue when adapting the flow in the industrial context. The asynchronous design paradigm provides `elasticity' which enables the system to tolerate delays in communication and computation; the drawback is that it imposes a communication overhead to the system which becomes prohibitively expensive when applied at a fine-grained level. This paper proposes a "De-elastisation" technique in a CAD flow for asynchronous dataflow networks to improve the circuits' performance and area. To preserve the architectural advantages of asynchronous design (e.g. short cycles) the type of circuits are classified into blocking and non-blocking loops upon which our de-elastisation scheme relies. The technique is incorporated in the Teak CAD flow. Experimental results on several substantial case studies show significant performance and area improvement. This work shows 3x improvement for the first category of circuits, suitable for iterative realisations and DSP-like architectures and 4x for the second category which are suitable for concurrent realisations.

IEEE Copyright